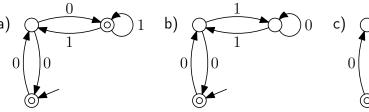
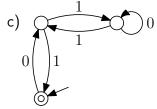
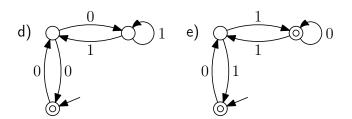
Theoretische Informatik 1

Gewertete Aufgaben, Blatt 6

Abgabe ins Fach Ihrer/s Tutor(in) bis 12. 12. 11, 14:00 Besprechung: KW 50


1. (25%) Zeigen Sie durch Anwendung des einfachen Pumping-Lemmas, dass $\{a^nb^m\mid n\leqslant m\leqslant 2n\}$ nicht erkennbar ist.


- 2. (12.5% + 12.5% = 25%)
 - a) Modifizieren Sie den Polynomialzeitalgorithmus für das Leerheitsproblem für NEAs aus der Vorlesung (siehe Folien), so dass er das Wortproblem für NEAs in Polynomialzeit entscheidet.
 - b) Geben Sie eine Reduktion des folgenden Problems auf ein aus der Vorlesung bekanntes Problem an.


EINGABE: Ein NEA $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ und ein Wort $w \in \Sigma^*$.

FRAGE: Ist w ein Suffix jedes Worts aus L(A)?

3. $(5 \cdot 5\% = 25\%)$ Ordnen Sie jedem der folgenden Automaten einen äquivalenten regulären Ausdruck aus der Liste weiter unten zu.

- i) $\varepsilon + 0(01^*1 + 00)^*01^*$
- ii) $\varepsilon + 0(10^*1 + 10)^*10^*$
- iii) $\varepsilon + 0(10^*1 + 00)^*0$
- iv) $\varepsilon + 0(01^*1 + 00)^*0$
- v) $\varepsilon + 0(10^*1 + 10)^*1$
- 4. (12,5 % + 12,5 % = 25 %) Sei $\Sigma = \{a,b\}$. Geben Sie für jede der folgenden Sprachen L_i einen regulären Ausdruck r_i mit $L_i = L(r_i)$ an. Erklären Sie die Wahl Ihrer regulären Ausdrücke r_i .
 - a) $L_1 = \{ w \in \Sigma^* \mid w \text{ beginnt mit } a \text{ und enthält eine gerade Anzahl } b$'s}.
 - b) $L_2 = \{ w \in \Sigma^* \mid aa \text{ ist kein Infix von } w \}.$