From syllogism to common sense . . . Exercise Sheet 3: Propositional Logic

To be discussed on 1 December 2011

- **1.** Assume that \bot, \top are defined by $\bot = (p \land \neg p)$ and $\top = \neg \bot$. Show that $w\top = 1$ and $w\bot = 0$ for all valuations w.
- 2. Show the following equivalences via truth tables.
 - a) the de Morgan rules $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ and $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$
 - b) the rule that allows arbitrary order of premises in a chain of two implications:

$$\alpha \to \beta \to \gamma \equiv \alpha \land \beta \to \gamma \equiv \beta \to \alpha \to \gamma$$

c) the formulas from the "strange natural language example":

$$(S \to H) \land (P \to H) \equiv (S \lor P) \to H$$

- **3**. Prove that the signature $\{\uparrow\}$ is functionally complete.
- 4. Prove the replacement theorem.
- **5**. (*) Only if you enjoy proving theorems.

Prove the unique formula reconstruction property. Proceed in two steps, the first of which is almost immediate.

- a) Verify that a compound formula φ is either of the form $\varphi = \neg \alpha$ or $\varphi = (\alpha \land \beta)$ or $\varphi = (\alpha \lor \beta)$ for suitable formulas α, β .
- b) Prove the following proposition. A proper initial segment of a formula is never a formula. Equivalently: if αξ = βη for formulas α, β and arbitrary strings ξ, η, then α = β.

With the help of this proposition, prove the claim of uniqueness in the theorem.