MZH 3090 clu@informatik.uni-bremen.de Tel.: 0421/218-64431

3. Aufgabenblatt für die Vorlesung "Beschreibungslogik und Ontologiesprachen"

Aufgabe 10: 9 Punkte

Für jedes der Interpretationspaare \mathcal{I}_i , \mathcal{J}_i in Anhang I, bestimme ob es ein \mathcal{ALC} -Konzept C gibt mit $d \in C^{\mathcal{I}_i}$ und $e \notin C^{\mathcal{I}_j}$ oder umgekehrt. Wenn dies der Fall ist, gib das Konzept C explizit an. Wenn nicht, zeige dass $(\mathcal{I}_i, d) \sim (\mathcal{J}_i, e)$.

Aufgabe 11: 6 Punkte

Konstruiere das Unravelling der Interpretation \mathcal{J}_2 in Anhang I. Führe dazu zunächst Namen für die unbenannten Elemente ein. Halte Dich bei der Konstruktion exakt an Definition 3.5 aus der Vorlesung.

Aufgabe 12: 6 Punkte

Sei C = A und $\mathcal{T} = \{A \sqsubseteq \forall r.B, A \sqcap B \sqsubseteq \forall r.B, \neg B \sqsubseteq \exists r.A\}$. Konstruiere die Filtration des Modells in Anhang II bzgl. C und \mathcal{T} . Halte Dich bei der Konstruktion exakt an Definition 3.12 aus der Vorlesung.

Aufgabe 13: 10 Punkte

Beweise oder widerlege:

- (a) Jede generelle TBox hat mindestens ein Modell.
- (b) Es gibt eine generelle TBox, die nur endliche Modelle hat.
- (c) Jede generelle TBox hat entweder kein Modell oder unendlich viele Modelle.
- (d) \mathcal{ALC} hat zwar die Baummodelleigenschaft und die endliche Modelleigenschaft, aber nicht die endliche Baummodelleigenschaft: es gibt ein Konzept C und eine generelle TBox \mathcal{T} , so dass C erfüllbar bzgl. \mathcal{T} und jedes Modell von C und \mathcal{T} entweder unendlich ist oder nicht baumförmig.

Die Resultate aus Kapitel 3 dürfen verwendet werden.

Aufgabe 14: 5 Punkte (Zusatzaufgabe)

Beweise, dass die folgende Formel der Logik erster Stufe nicht in \mathcal{ALC} ausdrückbar ist:

$$\exists y, z . r(x, y) \land r(x, z) \land r(y, z)$$

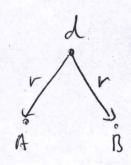
Verwende Bisimulation und verfahre wie im Beweis von Theorem 3.3.

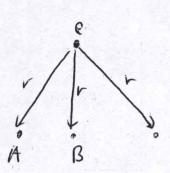
Aufgabe 15: 10 Punkte (Zusatzaufgabe)

Definiere die Menge $\mathsf{sub}(C)$ der Teilkonzepte eines Konzeptes C per Induktion über die Struktur von C. Beweise dann per Induktion über die Struktur von C, dass $|\mathsf{sub}(C)| \leq |C|$.

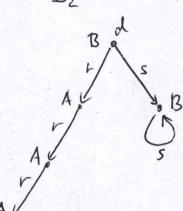
Hinweis zu den Zusatzaufgaben: erzielte Punkte werden angerechnet, die Punktzahl dieser Aufgaben geht jedoch nicht in die zu erreichende Gesamtpunktzahl ein.

In





I,





I3

