Be schreibung slogik

Fragebogen 12 vom 28.5.

1.	Ехр	Time-Spiele
	a)	Wie müssen in Spiel a) die Variablen p_1, p_2, q_1, q_2 belegt sein, damit Spielerin 1 gewinnt?
	b)	Welche zusätzliche Möglichkeit zu gewinnen hat Spielerin 1 in Spiel b)?
2.	Gew	vinnstrategien
	a)	Was bedeutet "Spielerin 2 hat eine Gewinnstrategie" umgangssprachlich?
		\square Es gibt einen Spielverlauf, in dem Spielerin 2 gewinnt.
		\square In jedem Spielverlauf gewinnt Spielerin 2.
		$\hfill\Box$ Spielerin 2 kann so spielen, dass sie jedes Spiel gewinnt, unabhängig davon welche Spielzüge Spielerin 1 macht.
	b)	Welche Information muss eine Gewinnstrategie (Baum) für Spielerin 2 enthalten
		□ Für jede Spielsituation (Knoten), in der Spielerin 1 an der Reihe ist, gibt es genau einen Nachfolgerknoten (für einen beliebigen Zug von Spielerin 1).
		□ Für jede Spielsituation (Knoten), in der Spielerin 1 an der Reihe ist, gibt es für jeden möglichen Zug von Spielerin 1 einen Nachfolgerknoten.
		□ Für jeden Knoten, in dem Spielerin 2 an der Reihe ist, gibt es genau einen Nachfolgerknoten (für einen zum Erfolg führenden Zug von Spielerin 2).
		□ Für jeden Knoten, in dem Spielerin 2 an der Reihe ist, gibt es für jeden möglichen Zug von Spielerin 2 einen Nachfolgerknoten.
3.	Kod	ierung der Gewinnstrategie
		chreibe möglichst präzise in eigenen Worten, wofür die Konzeptnamen V_i in der ierung benutzt werden.

4. Rückrichtung des Korrektheitsbeweises

Achte während des Beweises darauf, dass alle Konzeptinklusionen (1)–(8) im Beweis verwendet werden.

Bitte wenden.

Definition 5.9 (Gewinnstrategie)

wobei ℓ jedem Knoten $v \in V$ Konfiguration $\ell(v)$ zuweist, so dass: Eine Gewinnstrategie für Spielerin 2 im Spiel $(\varphi, \Gamma_1, \Gamma_2, \pi_0)$ ist ein unendlicher knotenbeschrifteter Baum (V,E,ℓ)

- (a) Die Wurzel ist beschriftet mit $(1, \pi_0)$.
- (b) Wenn $\ell(\nu) = (2, \pi)$, dann hat ν Nachfolger ν' mit $\ell(\nu')=(1,\pi')$ und π' 2-Variation von π .
- (c) Wenn $\ell(\nu)=(1,\pi)$, dann hat ν Nachfolger $\nu_0,\ldots,\nu_{|\Gamma_1|}$ $\pi_0, \, \dots, \, \pi_{|\Gamma_1|}$ alle existierenden 1-Variationen von π sind. mit $\ell(v_i) = (2, \pi_i)$, wobei
- (d) Wenn $\ell(\nu) = (i, \pi)$, dann $\pi \not\models \varphi$.

T 5.5

Details der Reduktion

(1) Die Anfangskonfiguration ist korrekt:

$$W \sqsubseteq S_1 \sqcap \bigsqcup_{i < n} \neg P_i \sqcap \bigsqcup_{i < n} P_i$$

$$\pi_0(p_i) = 0 \qquad \pi_0(p_i) = 1$$

(2) Wenn Spielerin 1 am Zug ist, gibt es k+1 Nachfolger:

$$S_1 \sqsubseteq \exists r. (\neg V_0 \sqcap \cdots \sqcap \neg V_{n-1}) \sqcap \sqcap \exists r. V_i$$

(3) Wenn Spielerin 2 am Zug ist, gibt es einen Nachfolger:

$$S_2 \sqsubseteq \exists r. (\neg V_0 \sqcap \cdots \sqcap \neg V_{n-1}) \sqcup \bigsqcup_{k \leq i < n} \exists r. V_i$$

(4) Es ändert sich höchstens eine Variable pro Zug:

$$\top \sqsubseteq \bigcap_{i < j < n} \neg (V_i \sqcap V_j)$$

Details der Reduktion

(5) Die ausgewählte Variable ändert ihren Wahrheitswert: $^{
m 1}$

$$\top \sqsubseteq \bigcap_{i < n} \left(\left(P_i \to \forall r. (V_i \to \neg P_i) \right) \sqcap \left(\neg P_i \to \forall r. (V_i \to P_i) \right) \right)$$

(6) Alle anderen Variablen behalten ihren Wert: $^{\mathrm{1}}$

$$\top \sqsubseteq \bigcap_{i < n} \left(\left(P_i \to \forall r. (\neg V_i \to P_i) \right) \sqcap \left(\neg P_i \to \forall r. (\neg V_i \to \neg P_i) \right) \right)$$

(7) Die Spielerinnen wechseln sich ab:

$$S_1 \sqsubseteq \forall r.S_2, S_2 \sqsubseteq \forall r.S_1, S_1 \sqsubseteq \neg$$

(8) Die Formel φ ist immer falsch: $\top \sqsubseteq \neg \varphi$

 $C \to D$ ist Abkürzung für $\neg C \sqcup D$.