Überblick

Automatentheorie und ihre Anwendungen Teil 3: Automaten auf unendlichen Wörtern

Thomas Schneider

28. Mai - 16. Juli 2014

1	Motivation	und	Beispiele
---	------------	-----	-----------

- ② Grundbegriffe und Büchi-Automaten
- Abschlusseigenschaften
- Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 🕡 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Thomas Schneider		er	Automatentheorie 3: unendliche Wörter		1		Thomas Schneider		Automatentheorie 3: unendliche Wörter			2	
Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking
Hno	l nun						Torr	minierun	œ				

Und nun ...

- Motivation und Beispiele
- ② Grundbegriffe und Büchi-Automaten
- Abschlusseigenschaften
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

rerminierung

Terminierung von Algorithmen ist wichtig für Problemlösung.

Übliches Szenario:

- Eingabe: endliche Menge von Daten
- Lasse Programm P laufen, bis es terminiert
- Ausgabe: Ergebnis, das durch P berechnet wurde

Um Ausgabe zu erhalten, muss P für jede Eingabe terminieren.

Beispiel: Validierung von XML-Dokumenten für gegebenes Schema

- Konstruiere Automaten für Schema und Dokument (terminiert)
- Reduziere auf Leerheitsproblem (terminiert)
- Löse Leerheitsprob. (sammle erreichb. Zustände terminiert)

Terminierung unerwünscht

Von manchen Systemen/Programmen fordert man, dass sie nie terminieren.

Beispiele:

- (Mehrbenutzer-)Betriebssysteme sollen beliebig lange laufen ohne abzustürzen, egal was Benutzer tun
- Bankautomaten, Flugsicherungssysteme, Netzwerkkommunikationssysteme, . . .

Gängiges Berechnungsmodell:

- endliche Automaten mit nicht-terminierenden Berechnungen
- Terminierung wird als Nicht-Akzeptanz angesehen
- ursprünglich durch Büchi entwickelt (1960) Ziel: Algorithmen zur Entscheidung mathematischer Theorien

Ziel dieses Kapitels

- Beschreibung von Automatenbegriffen mit nicht-terminierenden Berechnungen
- Betrachtung unendlicher Eingaben und Berechnungen
- ausgiebiges Studium von Büchi-Automaten und der von ihnen erkannten Sprachen:
 - $\bullet \ \ Definition, \ Abschlusseigenschaften$
 - Charakterisierung mittels regulärer Sprachen
 - Determinisierung
 - Entscheidungsprobleme
- Anwendung: Spezifikation und Verifikation in Linearer Temporallogik (LTL)

Automatentheorie 3: unendliche Wörter

Thomas Schneider Automatentheorie 3: unendliche Wörter 5 Thomas Schneider Automatentheorie 3: unendliche Wörter 6

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Beispiel 1: Philosophenproblem

(Dining Philosophers Problem)

- erläutert Nebenläufigkeit und Verklemmung von Prozessen
- demonstriert auch unendliche Berechnungen
- hier: einfachste Version mit 3 Philosophen

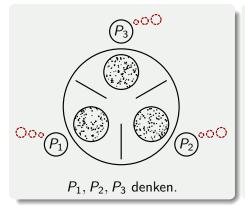
Philosophenproblem

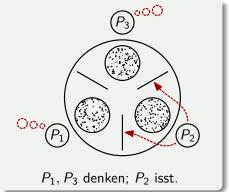
- 3 Philosophen P_1, P_2, P_3
- Für alle i gilt: entweder denkt P_i , oder P_i isst.
- Alle P_i sitzen um einen runden Tisch.
- Jeder P_i hat einen Teller mit Essen vor sich.
- Zwischen je zwei Tellern liegt ein Essstäbchen.
- Um zu essen, muss P_i beide Stäbchen neben seinem Teller benutzen.
 - \Rightarrow Keine zwei P_i, P_i können gleichzeitig essen.

Skizze zum Philosophenproblem

Zusammenfassung

- Für alle i: entweder denkt P_i , oder P_i isst.
- Keine zwei P_i, P_i können gleichzeitig essen.





Thomas Schneider Automatentheorie 3: unendliche Wörter

orie 3: unendliche Wörter 7 Thomas Schneider

Modellierung durch endliches Transitionssystem

Annahmen

- Am Anfang denken (d) alle P_i .
- Reihum können sich P₁, P₂, P₃ entscheiden,
 ob sie denken oder essen (e) wollen.

Zustände des Systems

- Anfangszustand ddd1: alle P_i denken, und P_1 trifft nächste Entscheidung.
- alle zulässigen Zustände:

ddd1 edd1 ded1 dde1 ddd2 edd2 ded2 dde2 ddd3 edd3 ded3 dde3

Zustandsüberführungen:

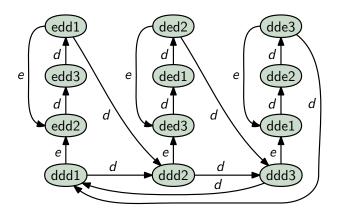
d oder e – je nach Entscheidung des P_i , der an der Reihe ist

	Thomas Schneider Automatent		Automatentheori	e 3: unendliche Wörte	9		Thomas Schneider		Automatentheori	e 3: unendliche Wörter	10		
Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking

Warum unendliche Zeichenketten?

- Nehmen an, jeder P_i möchte beliebig oft denken und essen.
 Dann ist P_i zufrieden.
- System soll beliebig lange ohne Terminierung laufen.
- → mögliche Fragen:
 - 1 lst es überhaupt möglich, dass das System beliebig lange läuft?
 - 2 lst es zusätzlich möglich, dass P_i zufrieden ist?
 - \odot Ist es möglich, dass P_1, P_2 zufrieden sind, aber P_3 nicht?
 - \bullet Ist es möglich, dass alle P_i zufrieden sind?

Das Transitionssystem

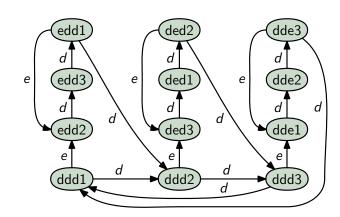


Was sind die Eingaben in das System?

Endliche Zeichenketten über $\Sigma = \{d, e\}$? Dann ist das System ein NEA.

▶ Unendliche Zeichenketten über $\Sigma = \{d, e\}$!

Frage 1

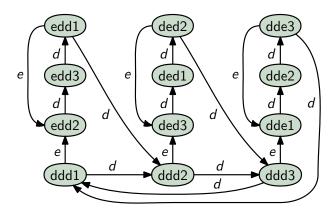


Ist es überhaupt möglich, dass das System beliebig lange läuft?

Ja: jeder Zustand hat mindestens einen Nachfolgerzustand. dddddd... ist ein möglicher unendlicher Lauf.

Thomas Schneider Automatentheorie 3: unendliche Wörter 11 Thomas Schneider Automatentheorie 3: unendliche Wörter

Frage 2 Frage 3



Ist es möglich, dass P_i zufrieden ist?

Ja: z. B. wenn ein Lauf ddd1 und edd1 unendlich oft durchläuft: $ed^5ed^5\dots$

e edd1 ded2 dde3 d dde2 dde4 dde1 e ddd1 d ddd1 d ddd2 d ddd3

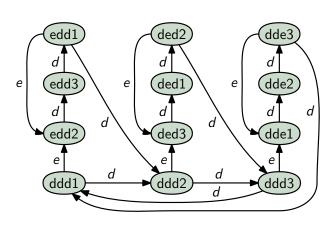
Ist es möglich, dass P_1 , P_2 zufrieden sind, aber P_3 nicht?

Ja: z. B. ddd1, edd1, ddd2, ded2 unendlich oft, aber ddei nicht: $ed^3ed^4ed^3ed^4\dots$

Thomas Schneider Automatentheorie 3: unendliche Wörter 13 Thomas Schneider Automatentheorie 3: unendliche Wörter 14

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Frage 4



Ist es möglich, dass alle P_i zufrieden sind?

Ja: z. B. ddd1, edd1, ddd2, ded2, ddd3, dde3 unendlich oft: $ed^3ed^3...$ oder $ed^2ed^3ed^2ed^3...$ oder ...

Beispiel 2: Konsument-Produzent-Problem

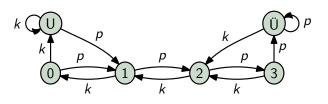
- \bullet Perzeugt Produkte und legt sie einzeln in einem Lager ab
- ullet K entnimmt Produkte einzeln dem Lager
- Lager fasst maximal 3 Stück

Modellierung durch endliches Transitionssystem

- Zustände 0, 1, 2, 3, Ü, U
 - 0,1,2,3: im Lager liegen 0,1,2,3 Stück
 - Überschuss: P will ein Stück im vollen Lager ablegen
 - Unterversorgung: K will ein Stück aus leerem Lager nehmen
- Aktionen P, K (P legt ab oder K entnimmt)

Abschlusseig. Entscheidungsprobl Model-Checking Determinismus Model-Checking Charakt. Determinismus Entscheidungsprobl.

Das Transitionssystem



Eingaben in das System: unendliche Zeichenketten über $\Sigma = \{p, k\}$

Zufriedenheit: *P* (*K*) möchte . . .

- beliebig oft Produkte produzieren (konsumieren)
- nur endlich oft Überschuss (Unterversorgung) erleiden

Sequenz. die *P* und *K* zufrieden stellt: $p^3k^3p^3k^3...$ oder ppkpkpk... oder ...

Sequenz, die weder P noch K zufrieden stellt: $p^4k^4p^4k^4...$

Thomas Schneider Automatentheorie 3: unendliche Wörter Büchi-Aut. Entscheidungsprobl Model-Checking

Grundbegriffe

Unendliches Wort über Alphabet Σ

- ist Funktion $a: \mathbb{N} \to \Sigma$
- a(n): Symbol an *n*-ter Stelle (auch: a_n)
- wird oft geschrieben als $a_0 a_1 a_2 \dots$
- a[m, n]: endliche Teilfolge $a_m a_{m+1} \dots a_n$

 Σ^{ω} : Menge aller unendlichen Zeichenketten

ω-Sprache: L ⊂ Σ^ω

Und nun ...

- ② Grundbegriffe und Büchi-Automaten

Büchi-Automaten

Definition 1

Ein nichtdeterministischer Büchi-Automat (NBA) über einem **Alphab**et Σ ist ein 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, wobei

- Q eine endliche nichtleere Zustandsmenge ist,
- \bullet Σ eine endliche nichtleere Menge von Zeichen ist,
- $\Delta \subseteq Q \times \Sigma \times Q$ die Überführungsrelation ist,
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der Endzustände ist.

... bisher kein Unterschied zu NEAs!

Berechnungen und Akzeptanz

Definition 2

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein Büchi-Automat.

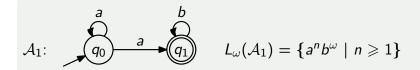
• Ein Run von \mathcal{A} auf $w = a_0 a_1 a_2 \dots$ ist eine Folge

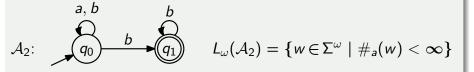
$$r=q_0q_1q_2\ldots,$$

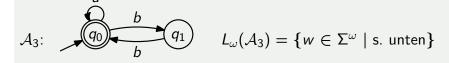
so dass für alle $i \geqslant 0$ gilt: $(q_i, a_i, q_{i+1}) \in \Delta$.

- Unendlichkeitsmenge Inf(r) von $r=q_0q_1q_2\ldots$: Menge der Zustände, die unendlich oft in r vorkommen
- Erfolgreicher Run $r = q_0 q_1 q_2 \dots$: $q_0 \in I$ und $Inf(r) \cap F \neq \emptyset$
- \mathcal{A} akzeptiert w, wenn es einen erfolgreichen Run von \mathcal{A} auf w gibt.
- Die von \mathcal{A} erkannte Sprache ist $L_{\omega}(\mathcal{A}) = \{ w \in \Sigma^{\omega} \mid \mathcal{A} \text{ akzeptiert } w \}.$

Beispiele





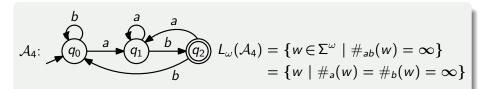


Zwischen zwei aufeinanderfolgenden a's in w – und am Anfang von w – steht eine gerade Anzahl von b's.

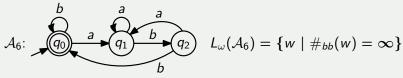
Thomas Schneider Automatentheorie 3: unendliche Wörter 21 Thomas Schneider Automatentheorie 3: unendliche Wörter 22

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Mehr Beispiele



(Idee: q_1 kann nur erreicht werden, wenn ein a gelesen wird)



(Idee: q_0 nur durch bb erreichbar; jeder Teilstring bb führt zu q_0)

Erkennbare Sprache

Definition 3

Eine Sprache $L \subseteq \Sigma^{\omega}$ ist Büchi-erkennbar, wenn es einen NBA \mathcal{A} gibt mit $L = L_{\omega}(\mathcal{A})$.

Thomas Schneider Automatentheorie 3: unendliche Wörter 23 Thomas Schneider Automatentheorie 3: unendliche Wörter

Büchi-Aut Abschlusseig. Charakt Entscheidungsprobl Model-Checking Büchi-Aut. Abschlusseig. Charakt. Model-Checking Determinismus Determinismus Entscheidungsprobl

Und nun ...

Abschlusseigenschaften

6 Entscheidungsprobleme

Zur Erinnerung

Die Menge der Büchi-erkennbaren Sprachen ist abgeschlossen unter

• Vereinigung, wenn gilt: Falls L_1, L_2 Büchi-erkennbar, so auch $L_1 \cup L_2$.

• Durchschnitt, wenn gilt: Falls L_1, L_2 Büchi-erkennbar, so auch $L_1 \cap L_2$.

• Komplement, wenn gilt: Falls L Büchi-erkennbar, so auch \overline{L} .

Quiz

Unter welchen Operationen gilt Abgeschlossenheit, und wie leicht ist das zu zeigen?

> Vereinigung? √ (leicht) Durchschnitt? (mittel) Komplement? √ (schwer)

> > Automatentheorie 3: unendliche Wörter

Thomas Schneider

Automatentheorie 3: unendliche Wörter

Entscheidungsprobl

Model-Checking

25

Thomas Schneider

Model-Checking

Abgeschlossenheit

Satz 4

Die Menge der Büchi-erkennbaren Sprachen ist abgeschlossen unter den Operationen \cup und \cap .

Beweis: Direkte Konsequenz aus den folgenden Lemmata.

Abgeschlossenheit unter -: siehe Abschnitt "Determinisierung"

Abgeschlossenheit unter Vereinigung

Lemma 5

Seien A_1, A_2 NBAs über Σ . Dann gibt es einen NBA A_3 mit $L_{\omega}(A_3) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$.

Beweis: Seien $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$ für i = 1, 2. O. B. d. A. gelte $Q_1 \cap Q_2 = \emptyset$.

Konstruieren $A_3 = (Q_3, \Sigma, \Delta_3, I_3, F_3)$ wie folgt.

- ▶ Idee wie für NEAs: vereinige A_1 und A_2 .
- $Q_3 = Q_1 \cup Q_2$
- $\Delta_3 = \Delta_1 \cup \Delta_2$
- $I_3 = I_1 \cup I_2$
- $F_3 = F_1 \cup F_2$

Dann gilt $L_{\omega}(A_3) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$.

Abgeschlossenheit unter Durchschnitt

Zur Erinnerung, für NEAs:

Gegeben A_1, A_2 , konstruiere A_3 mit $L(A_3) = L(A_1) \cap L(A_2)$:

- ▶ Idee: lasse A_1 und A_2 "gleichzeitig" auf Eingabewort laufen.
- $Q_3 = Q_1 \times Q_2$
- $\Delta_3 = \{((p, p'), a, (q, q')) \mid (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2\}$
- $I_3 = I_1 \times I_2$
- $\bullet \ F_3 = F_1 \times F_2$

Funktioniert das auch für Büchi-Automaten?

Nein. Wir bekommen Probleme mit Erreichbarkeit. Beispiel siehe Tafel.

Abgeschlossenheit unter Durchschnitt

Lemma 6

Seien A_1, A_2 NBAs über Σ . Dann gibt es einen NBA A_3 mit $L_{\omega}(A_3) = L_{\omega}(A_1) \cap L_{\omega}(A_2)$.

Beweis: siehe Tafel

	Thomas Schneide	er	Automatentheori	e 3: unendliche Wörter		29		Thomas Schneid	der	Automatentheor	ie 3: unendliche Wörte	er	30
Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking

Abgeschlossenheit unter Komplement

... siehe Abschnitt "Deterministische Büchi-Automaten und Determinisierung"

Und nun ...

- 1 Motivation und Beispiele
- 2 Grundbegriffe und Büchi-Automaten
- Abschlusseigenschafter
- Charakterisierung
- Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Thomas Schneider Automatentheorie 3: unendliche Wörter 31 Thomas Schneider Automatentheorie 3: unendliche Wörter 33

Ziel

Von regulären zu Büchi-erkennbaren Sprachen (1)

Ziel dieses Abschnitts

Charakterisierung der Büchi-erkennbaren Sprachen mittels regulärer Sprachen

Etwas Notation

Seien $W \subseteq \Sigma^*$ und $L \subseteq \Sigma^\omega$.

- $W^{\omega} = \{w_0 w_1 w_2 \cdots \mid w_i \in W \setminus \{\varepsilon\} \text{ für alle } i \geqslant 0\}$ (ist ω -Sprache, weil ε ausgeschlossen wurde)
- $WL = \{ wv \mid w \in W, v \in L \}$ (ist ω -Sprache)

Lemma 7

Für jede reguläre Sprache $W\subseteq \Sigma^*$ gilt: W^ω ist Büchi-erkennbar.

Beweis.

- Sei $A_1 = (Q_1, \Sigma, \Delta_1, \{q_0\}, F_1)$ ein NEA mit $L(A_1) = W \setminus \{\varepsilon\}$.
- Idee: konstruiere NBA, der
 - ullet \mathcal{A}_1 simuliert, bis ein Endzustand erreicht ist und
 - dann nichtdeterministisch entscheidet, ob die Simulation fortgesetzt wird oder eine neue Simulation von q_0 aus gestartet wird
- Details: siehe Tafel■ □

Thomas Schneider Automatentheorie 3: unendliche Wörter 33 Thomas Schneider Automatentheorie 3: unendliche Wörter

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl

Von regulären zu Büchi-erkennbaren Sprachen (2)

Lemma 8

Für jede reguläre Sprache $W \subseteq \Sigma^*$ und jede Büchi-erkennbare Sprache $L \subseteq \Sigma^{\omega}$ gilt: WL ist Büchi-erkennbar.

Beweis:

Wie Abgeschlossenheit der reg. Sprachen unter Konkatenation. \Box

Satz von Büchi

Satz 9

Eine Sprache $L \subseteq \Sigma^{\omega}$ ist Büchi-erkennbar genau dann, wenn es reguläre Sprachen $V_1, W_1, \ldots, V_n, W_n$ gibt mit $n \geqslant 1$ und

$$L = V_1 W_1^{\omega} \cup \cdots \cup V_n W_n^{\omega}$$

Beweis:

Siehe Tafel.

Konsequenz:

Büchi-erkennbare Sprachen durch ω -reguläre Ausdrücke darstellbar:

$$r_1s_1^{\omega}+\cdots+r_ns_n^{\omega}$$
,

wobei r_i , s_i reguläre Ausdrücke sind

Model-Checking

Model-Checking

•

Büchi-Aut. Abschlusseig Charakt. Model-Checking Charakt Determinismus Entscheidungsprobl Model-Checking Determinismus Entscheidungsprobl

Und nun ...

- 5 Deterministische Büchi-Automaten und Determinisierung

Ziel dieses Abschnitts

Wollen zeigen:

- det. und nichtdet. Büchi-Automaten sind nicht gleichmächtig d. h.: es gibt ω -Sprachen, die von NBAs akzeptiert werden, aber nicht von DBAs
- Komplement-Abgeschlossenheit gilt trotzdem

Etwas Notation:

- DBA: NBA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ mit
 - |I| = 1
 - $|\{q' \mid (q, a, q') \in \Delta\}| = 1$ für alle $(q, a) \in Q \times \Sigma$
- Sei $W \subset \Sigma^*$. $\overrightarrow{W} = \{ w \in \Sigma^{\omega} \mid w[0, n] \in W \text{ für unendlich viele } n \}$ (d. h. w hat ∞ viele Präfixe in W)

Beispiel: siehe Tafel

Automatentheorie 3: unendliche Wörter

Thomas Schneider

Automatentheorie 3: unendliche Wörter

Entscheidungsprobl

Model-Checking

Zu Hilfe: Charakterisierung der DBA-erkennbaren Sprachen

DBAs sind schwächer als NBAs

Satz 10

Eine ω -Sprache L $\subset \Sigma^{\omega}$ ist DBA-erkennbar genau dann, wenn es eine reguläre Sprache $W \subset \Sigma^*$ gibt mit $L = \overline{W}$.

Beweis.

- ullet Idee: sieh beliebigen D?A ${\cal A}$ gleichzeitig als DEA und DBA an. $\rightarrow L_{\omega}(A) = \overline{L(A)}$
- Details: siehe Tafel.

Satz 11

Es gibt eine Büchi-erkennbare Sprache, die nicht durch einen DBA erkannt wird.

Beweis.

Thomas Schneider

- Betrachte $L = \{ w \in \{a, b\}^{\omega} \mid \#_a(w) \text{ ist endlich} \}$
- L ist Büchi-erkennbar: $L = \Sigma^* \{b\}^{\omega}$, wende Satz 9 an
- Annahme, L sei DBA-erkennbar.
 - \Rightarrow Satz 10: $L = \overrightarrow{W}$ für eine reguläre Sprache W
 - \Rightarrow Wegen $b^{\omega} \in L$ gibt es ein nichtleeres Wort $b^{n_1} \in W$ Wegen $b^{n_1}ab^{\omega} \in L$ gibt es ein nichtleeres Wort $b^{n_1}ab^{n_2} \in W$
 - $\Rightarrow w := b^{n_1} a b^{n_2} a b^{n_3} \dots \in \overrightarrow{W}$

Widerspruch: $w \notin L$

ullet

Nebenprodukt des letzten Beweises

Wie können wir trotzdem determinisieren?

DBAs sind **nicht** unter Komplement abgeschlossen:

- $L = \{w \in \{a, b\}^{\omega} \mid \#_a(w) \text{ ist endlich}\}$ wird von keinem DBA erkannt
- aber \overline{L} wird von einem DBA erkannt (Ü)

Indem wir das Automatenmodell ändern!

Genauer: ändern die Akzeptanzbedingung

Zur Erinnerung

NBA ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ mit

- ...
- $F \subseteq Q$ (Menge der Endzustände)

Erfolgreicher Run: $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und $Inf(r) \cap F \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow ein Zustand aus F kommt ∞ oft in r vor

(Julius Richard Büchi, 1924–1984, Logiker/Mathematiker; Zürich, Lafayette)

Thomas Schneider Automatentheorie 3: unendliche Wörter 41 Thomas Schneider Automatentheorie 3: unendliche Wörter 42

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Muller-Automaten

(David E. Muller, 1924–2008, Math./Inf.; Illinois)

Rabin-Automaten (Michael O. Rabin, *1931, Inf.; Jerusalem, Princeton, Harvard)

Definition 12

Nichtdet. Muller-Automat ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{F})$ mit

- ...
- $\mathcal{F} \subseteq 2^Q$ (Kollektion von Endzustandsmengen)

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und $Inf(r) \in \mathcal{F}$

Idee: r erfolgreich \Leftrightarrow Inf(r) stimmt mit einer Menge aus \mathcal{F} überein

Beispiel: Siehe Tafel

Definition 13

Nichtdet. Rabin-Automat ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \overset{\mathcal{P}}{\sim})$ mit

- . .
- $\mathcal{P} = \{(E_1, F_1), \ldots, (E_n, F_n)\}$ mit $E_i, F_i \subseteq Q$ (Menge "akzeptierender Paare")

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und

 $\exists i \in \{1, ..., n\}$ mit $lnf(r) \cap E_i = \emptyset$ und $lnf(r) \cap F_i \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow es gibt Paar (E_i, F_i) , so dass

- mindestens ein Zustand aus F_i unendlich oft in r vorkommt &
- alle Zustände aus E_i nur endlich oft in r vorkommen (Bsp. •)

43

Streett-Automaten

(Robert S. Streett, ?; Boston, Oakland)

Gleichmächtigkeit der vier Automatenmodelle

Definition 14

Nichtdet. Streett-Automat ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \overset{\mathcal{P}}{\sim})$ mit

- ...
- $\mathcal{P} = \{(E_1, F_1), \ldots, (E_n, F_n)\}$ mit $E_i, F_i \subseteq Q$ (Menge "fairer Paare")

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und

 $\forall i \in \{1, \dots, n\}$: wenn $Inf(r) \cap F_i \neq \emptyset$, dann $Inf(r) \cap E_i \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow für alle Paare (E_i, F_i) gilt:

- wenn ein Zustand aus F_i unendlich oft in r vorkommt,
- dann kommt ein Zustand aus E_i unendlich oft in r vor (Bsp. •)

Automatentheorie 3: unendliche Wörter

Satz 15

Für jede Sprache $L\subseteq \Sigma^\omega$ sind die folgenden Aussagen äquivalent.

- (B) L ist Büchi-erkennbar.
- (M) L ist Muller-erkennbar.
- (R) L ist Rabin-erkennbar.
- (S) L ist Streett-erkennbar.

Beweis.

- (B), (R), (S) \rightarrow (M): kodiere F bzw. \mathcal{P} in \mathcal{F} (s. Tafel)
- (B) \rightarrow (R), (S): ersetze F durch das Paar (\emptyset , F) bzw. (F, Q) (s. Tafel)
- (M) \rightarrow (B): komplexere Transformation, benutzt Nichtdeterm. \downarrow

Automatentheorie 3: unendliche Wörter

Van Mullan - Düalai Autamatan

Von Muller- zu Büchi-Automaten

Lemma 16

Jede Muller-erkennbare Sprache ist Büchi-erkennbar.

Beweis.

- Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{F})$ ein Muller-Automat
- Dann ist $L_{\omega}(A) = \bigcup_{F \in \mathcal{F}} L_{\omega}((Q, \Sigma, \Delta, I, \{F\}))$
- \rightsquigarrow Wegen \cup -Abgeschlossenheit: nehmen o. B. d. A. $\mathcal{F} = \{F\}$ an
 - Konstruiere Büchi-Automaten $\mathcal{A}' = (Q', \Sigma, \Delta', I, F')$, der
 - A simuliert
 - einen Zeitpunkt rät,
 ab dem nur noch Zustände aus F vorkommen
 - ab dort sicherstellt, dass jedes q_i unendlich oft vorkommt

Details: siehe Tafel

Gleichmächtigkeit der deterministischen Varianten

Definition 17 (Determinismus)

Ein Büchi-, Muller-, Rabin- oder Streett-Automat $\mathcal{A} = (Q, \Sigma, \Delta, I, Acc)$ ist deterministisch, wenn gilt:

|/| = 1

Thomas Schneider

• $\{q' \mid (q, a, q') \in \Delta\} = 1$ für alle $(q, a) \in Q \times \Sigma$

Zu Satz 15 analoge Aussage:

Satz 18

Für jede Sprache $L \subseteq \Sigma^{\omega}$ sind die folgenden Aussagen äquivalent.

- (M) L ist von einem deterministischen Muller-Autom. erkennbar.
- (R) L ist von einem deterministischen Rabin-Autom. erkennbar.
- S) L ist von einem deterministischen Streett-Autom. erkennbar.

Ohne Beweis (Variante des Beweises von Satz 15).

 \bullet

Model-Checking

Abschlusseigenschaften

Zur Erinnerung

Satz 4

Die Menge der Büchi-erkennbaren Sprachen ist abgeschlossen unter den Operationen \cup und \cap .

Direkte Konsequenz

Folgerung 19

Die Menge der

- Muller-erkennbaren Sprachen,
- Rabin-erkennbaren Sprachen,
- Streett-erkennbaren Sprachen

ist abgeschlossen unter den Operationen \cup und \cap .

Determinisierung von Büchi-Automaten

Zur Erinnerung: Satz 11

Es gibt eine Büchi-erkennbare Sprache, die nicht durch einen DBA erkannt wird.

Ziel: Prozedur, um gegebenen NBA in äquivalenten deterministischen Rabin-Automaten umzuwandeln

- → wegen Satz 18 bekommt man daraus auch eine Umwandlung in einen äquiv. determ. Muller- bzw. Streett-Automaten
 - Resultat geht auf McNaughton zurück (1965 von Robert McNaughton, ?, Phil./Inform.; Harvard, Rensselaer)
 - Verwenden intuitiveren Beweis von Safra (1988 von Shmuel Safra, ?, Informatiker; Tel Aviv)

Zu Komplement-Abgeschlossenheit kommen wir jetzt.

Thomas Schneider Automatentheorie 3: unendliche Wörter 49 Thomas Schneider Automatentheorie 3: unendliche Wörter 5

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Potenzmengenkonstruktion versagt

Erster naheliegender Versuch:

NBA → DBA mittels Potenzmengenkonstruktion (PMK)

- muss wegen Satz 11 fehlschlagen
- Beispiel: siehe Tafel

Zweiter naheliegender Versuch:

NBA \rightsquigarrow deterministischer X-Automat mittels PMK, $X \in \{\text{Muller}, \text{Rabin}, \text{Streett}\}$

• schlägt auch fehl – Beispiel siehe Tafel

Hauptproblem:

- Potenzautomat simuliert mehrere Runs gleichzeitig (wie Produktautomat)
- Endzustände müssen dabei nicht synchron erreicht werden

Safras Ideen informell dargestellt

- Ziel: NBA $\mathcal{A} = (Q, \Sigma, \Delta, I, F) \rightsquigarrow \mathsf{DRA}\ \mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P}^d)$ mit $L_{\omega}(\mathcal{A}) = L_{\omega}(\mathcal{A}^d)$
- Problem mit PMK: bad runs von \mathcal{A}^d , die keinem erfolgr. Run von \mathcal{A} entsprechen
- Safras Tricks erweitern die PMK und vermeiden das Problem

Etwas Notation

- Makrozustände: Zustände der alten PMK (Mengen $M \subseteq Q$)
- Zustände von \mathcal{A}^d : \approx Bäume, deren Knoten mit Makrozuständen markiert sind

52

Thomas Schneider Automatentheorie 3: unendliche Wörter 51 Thomas Schneider Automatentheorie 3: unendliche Wörter

Safras Tricks

Beginne wie bei der PMK mit Knoten /

● Von Makrozuständen mit Endzuständen, beginne neue Runs •

• erzeuge neues Kind mit Nachfolgezuständen aller Endzustände

• wende zukünftig PMK auf jeden Knoten an

② Erkenne zusammenlaufende Runs; lösche überflüssige Info

• das beschränkt Weite eines Safra-Baums

"horizontal merge"

Gib überflüssige Makrozustände zur Löschung frei

 wenn alle Kinder eines MZ M bezeugen, dass jeder Zustand in M einen Endzustand als Vorgänger hat, dann kann M gelöscht werden

• "vertical merge"

Safra-Bäume

"Bausteine":

ullet V: Menge von Knotennamen

Safra-Baum über Q, V:

ullet geordneter Baum mit Knoten aus V

• jeder Knoten mit einem **nichtleeren** MZ markiert und möglicherweise auch mit ①

• Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind, dann:

Entscheidungsprobl

Model-Checking

 \bigcirc M_i sind paarweise disjunkt

Thomas Schneider Automatentheorie 3: unendliche Wörter 53 Thomas Schneider Automatentheorie 3: unendliche Wörter

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus

Safra-Bäume sind beschränkt

Zur Erinnerung

Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind. dann:

M_i sind paarweise disjunkt

Konsequenzen

• wegen (1): Höhe jedes SB ist durch |Q| beschränkt

• wegen (2): Anzahl Kinder pro Knoten kleiner als |Q|

• sogar: Jeder SB über Q hat höchstens |Q| Knoten (Beweis per Induktion über Baumhöhe)

Details der Konstruktion

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NBA und $V = \{1, \dots, 2|Q|\}$. Konstruieren DRA $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P})$:

• Q^d = Menge aller Safra-Bäume über Q, V

• $I^d = \text{Safra-Baum mit einzigem Knoten } I$

• $\Delta^d = \{(S, a, S') \mid S' \text{ wird aus } S \text{ wie folgt konstruiert}\}$

Thomas Schneider Automatentheorie 3: unendliche Wörter 55 Thomas Schneider Automatentheorie 3: unendliche Wörter

Determinismus Charakt. Determinismus Model-Checking Model-Checking Entscheidungsprobl

Konstruktion von S' aus S in 6 Schritten

Sei S Safra-Baum mit Knoten $V' \subseteq V$; sei $a \in \Sigma$

- **1** Beginne mit S; entferne alle Markierungen (!)
- ② Für jeden Knoten v mit Makrozustand M und $M \cap F \neq \emptyset$, füge neues Kind $v' \in V \setminus V'$ mit Markierung $M \cap F$ hinzu (als jüngstes (rechtes) Geschwister aller evtl. vorhandenen Kinder)
- Wende Potenzmengenkonstruktion auf alle Knoten v an: ersetze MZ M durch $\{q \in Q \mid (m, a, q) \in \Delta \text{ für ein } m \in M\}$
- 4 Horizontales Zusammenfassen: Für jeden Knoten v mit MZ M, lösche jeden Zustand q aus M, der im MZ eines älteren Geschwisters vorkommt
- Entferne alle Knoten mit leeren MZen
- **6** Vertikales Zusammenfassen: Für jeden Knoten v, dessen Markierung nur Zustände aus v's Kindern enthält, lösche alle Nachfolger von v und markiere v mit (!)

Erläuterungen zur Konstruktion

• S' ist wieder ein Safra-Baum: Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind, dann:

Automatentheorie 3: unendliche Wörter

"⊂": Schritte 2, 3 "≠": Schritt 6

2 M_i sind paarweise disjunkt

Schritt 4

Model-Checking

Beispiel: siehe Tafel

Automatentheorie 3: unendliche Wörter

Akzeptanzkomponente von \mathcal{A}^d

Thomas Schneider

Korrektheit der Konstruktion: Vorbereitung

$\mathcal{P} = \{(E_v, F_v) \mid v \in V\}$ mit

- E_v = alle Safra-Bäume ohne Knoten v
- F_v = alle Safra-Bäume, in denen v mit (!) markiert ist

 \rightarrow d. h. Run $r = S_0 S_1 S_2 \dots$ von \mathcal{A}^d ist erfolgreich, wenn es einen Knotennamen v gibt, so dass

- alle S_i , bis auf endlich viele, einen Knoten v haben und
- unendlich oft auf v Schritt 6 angewendet wurde, d. h. vorher kamen alle Zustände in v's MZ in v's Kindern vor

Lemma 20 (Lemma von Kőnig)

Jeder unendliche Baum mit endlichem Verzweigungsgrad hat einen unendlichen Pfad.

- ohne Beweis
- endlicher Verzweigungsgrad: jeder Knoten hat endlich viele Kinder
- 1936 von Dénes Kőnig (1884–1944, Mathematiker, Budapest)

Thomas Schneider Automatentheorie 3: unendliche Wörter Thomas Schneider Automatentheorie 3: unendliche Wörter Model-Checking Charakt. Determinismus Model-Checking

Korrektheit der Konstruktion

Vollständigkeit der Konstruktion

Korrektheit:

 \mathcal{A}^d akzeptiert nur Wörter, die \mathcal{A} akzeptiert

Lemma 21

Sei $A = (Q, \Sigma, \Delta, I, F)$ ein NBA und sei $A^d = (Q^d, \Sigma, \Delta^d, I^d, P)$ der DRA, den man nach Safras Konstruktion aus A erhält. Dann gilt $L_{\omega}(\mathcal{A}^d) \subset L_{\omega}(\mathcal{A})$.

Beweis: siehe Tafel.

Vollständigkeit:

 \mathcal{A}^d akzeptiert (mindestens) alle Wörter, die \mathcal{A} akzeptiert

Lemma 22

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NBA und sei $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P})$ der DRA, den man nach Safras Konstruktion aus A erhält. Dann gilt $L_{\omega}(A) \subset L_{\omega}(A^d)$.

Beweis: siehe Tafel.

Automatentheorie 3: unendliche Wörter

Entscheidungsprobl

Model-Checking

• \square

Konsequenz aus Safras Konstruktion

Satz 23 (Satz von McNaughton)

Sei A ein NBA. Dann gibt es einen DRA A^d mit $L_{\omega}(A^d) = L_{\omega}(A)$.

Automatentheorie 3: unendliche Wörter

Beweis. Folgt aus Lemmas 21 und 22.

Folgerung 24

Die Klasse der Büchi-erkennbaren Sprachen ist unter Komplement abgeschlossen.

Über folgende Transformationskette: Beweis.

> NBA für $L \rightarrow DRA$ für L(gemäß Satz 23)

> > DMA für L (gemäß Satz 18)

DMA für \overline{L} (wie gehabt)

NBA für \overline{L} (gemäß Satz 15)

Anmerkungen zur Komplexität

Determinisierung NBA → DRA gemäß Safras Konstruktion

- liefert einen exponentiell größeren DRA
- genauer: wenn der NBA n Zustände hat,
 - gibt es 2ⁿ Makrozustände
 - und $2^{O(n \log n)}$ Safrabäume
 - \rightarrow DRA hat $m := 2^{O(n \log n)}$ Zustände
- Das ist optimal (siehe Roggenbachs Kapitel in LNCS 2500)

Komplementierung beinhaltet auch den Schritt DMA \rightarrow NBA

- liefert einen nochmal exponentiell größeren DBA
- genauer: wenn der DMA m Zustände hat,
 - hat der NBA $O(m \cdot 2^m)$ Zustände
- \sim Resultierender NBA hat $2^{2^{O(n^2)}}$ Zustände
- Alternative Prozedur erfordert nur $2^{O(n \log n)}$ Zustände

Büchi-Aut. Abschlusseig. Model-Checking Abschlusseig. Charakt. Entscheidungsprobl. Model-Checking Charakt Determinismus Entscheidungsprobl. Determinismus

Und nun ...

Vorbetrachtungen

- 2 Grundbegriffe und Büchi-Automaten
- Abschlusseigenschaften
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Betrachten 4 Standardprobleme:

- Leerheitsproblem
- Wortproblem (Wort ist durch NBA gegeben)
- Äquivalenzproblem
- Universalitätsproblem

Beschränken uns auf das Leerheitsproblem – die anderen ...

- lassen sich wie üblich darauf reduzieren
- aber teils mit (doppelt) exponentiellem "Blowup" (Determinisierung, Komplementierung, siehe Folie 64) → höhere, teils nicht optimale Komplexität

Beschränken uns auf NBA, aber Entscheidbarkeit überträgt sich auf die anderen Modelle

Thomas Schneider

Automatentheorie 3: unendliche Wörter Entscheidungsprobl Model-Checking

65

Und nun ...

Automatentheorie 3: unendliche Wörter

Entscheidungsprobl.

Model-Checking

Das Leerheitsproblem

Zur Erinnerung:

Gegeben: NBA \mathcal{A}

Frage: Gilt $L_{\omega}(A) = \emptyset$?

Mengenschreibweise: {NBA $A \mid L_{\omega}(A) = \emptyset$ }

Satz 25

Das Leerheitsproblem für NBAs ist entscheidbar.

Beweis: siehe Tafel.

Komplexität: NL-vollständig (Wegsuche in Graphen)

- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Reaktive Systeme und Verifikation

Reaktive Systeme

- interagieren mit ihrer Umwelt
- terminieren oft nicht
- Beispiele:
 - $\bullet \ \, \mathsf{Betriebs systeme}, \ \, \mathsf{Bankautomaten}, \ \, \mathsf{Flugsicher ungs systeme}, \ \, \ldots$
 - $\bullet \;\; s.\; a. \;\; Philosophen problem, \;\; Konsument-Produzent-Problem$

Verifikation = Prüfen von Eigenschaften eines Systems

- Eingabe-Ausgabe-Verhalten hat hier keine Bedeutung
- Andere Eigenschaften sind wichtig,
 - z. B.: keine Verklemmung (deadlock) bei Nebenläufigkeit

Repräsentation eines Systems

Bestandteile

- Variablen: repräsentieren Werte, die zur Beschreibung des Systems notwendig sind
- Zustände: "Schnappschüsse" des Systems
 Zustand enthält Variablenwerte zu einem bestimmten
 Zeitpunkt
- Transitionen: erlaubte Übergänge zwischen Zuständen

Pfad (Berechnung) in einem System: unendliche Folge von Zuständen entlang der Transitionen

	Thomas Schneider A			rie 3: unendliche Wörte	r	69 Thomas Schneider				Automatentheor	ie 3: unendliche Wörte	r	70	
Bsp.e	Büchi-Aut.	Abschlusseig	. Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	

Transitionsgraph als Kripke-Struktur

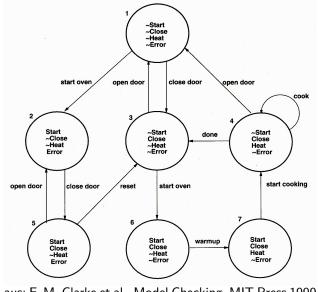
Definition 26

Sei AV eine Menge von Aussagenvariablen. Eine Kripke-Struktur S über AV ist ein Quadrupel $S = (S, S_0, R, L)$, wobei

- S eine endliche nichtleere Menge von Zuständen ist,
- $S_0 \subset S$ die Menge der Anfangszustände ist,
- $R \subseteq S \times S$ eine Übergangsrelation ist, die total ist: $\forall s \in S \exists s' \in S : sRs'$
- $L: S \to 2^{AV}$ eine Funktion ist, die jeden Zustand mit der Menge von Aussagenvariablen markiert, die dort wahr sind.

Ein Pfad in S ist eine endliche Folge $\pi = s_0 s_1 s_2 \dots$ von Zuständen mit $s_0 \in S_0$ und $s_i R s_{i+1}$ für alle $i \ge 0$.

Beispiel 1: Mikrowelle



aus: E. M. Clarke et al., Model Checking, MIT Press 1999

Thomas Schneider Automatentheorie 3: unendliche Wörter 71 Thomas Schneider Automatentheorie 3: unendliche Wörter

Determinismus Model-Checking Determinismus Entscheidungsprobl. Model-Checking

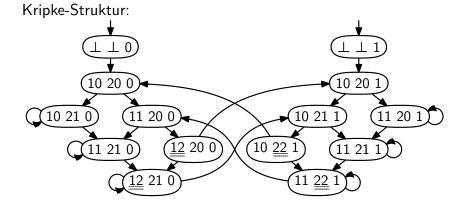
Beispiel 2: nebenläufiges Programm

cobegin $P_0 || P_1$ coend while(true) do P_0 10 wait(turn = 0)11 kritischer Bereich $turn \leftarrow 1$ 12 end while while(true) do P_1 20 wait(turn = 1)21 turn $\leftarrow 0$ kritischer Bereich end while 23

Beispiel 2: nebenläufiges Programm

Variablen in der zugehörigen Kripke-Struktur: v_1, v_2, v_3 mit

- v_1, v_2 : Werte der Programmzähler für P_0, P_1 (einschl. ⊥: Teilprogramm ist nicht aktiv)
- v₃: Werte der gemeinsamen Variable turn

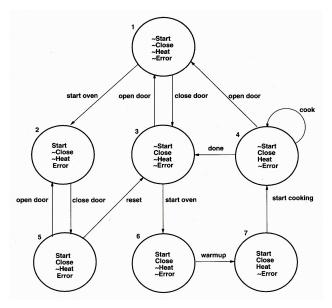


	Thomas Schneid	er	Automatentheor	rie 3: unendliche Wörte	r	73		Thomas Schneid	er	Automatentheor	ie 3: unendliche Wörte	r	74
Bsp.e	Büchi-Aut.	Abschlusseig.	. Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking

Spezifikationen

- ... sind Zusicherungen über die Eigenschaften eines Systems, z. B.:
 - Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben.
 - Wenn die Mikrowelle gestartet wird, fängt sie immer nach endlicher Zeit an zu heizen.
 - Wenn die Mikrowelle gestartet wird, ist es möglich, danach zu heizen.
 - Es kommt nie vor, dass beide Teilprogramme zugleich im kritischen Bereich sind.
 - Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich.
 - Jedes Teilprogramm kann beliebig oft in seinen kritischen Bereich gelangen.

Spezifikationen für das Beispiel Mikrowelle



aus: E. M. Clarke et al., Model Checking, MIT Press 1999

"Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben." 🗶

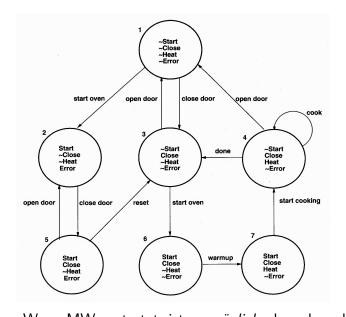
Thomas Schneider

Spezifikationen für das Beispiel Mikrowelle

start oven open door close door open door Start -Close -Heat -Close -Heat -Error Start -Close -Heat -Error Start -Error -Error -Error Start -Error -Error

aus: E. M. Clarke et al., Model Checking, MIT Press 1999

Spezifikationen für das Beispiel Mikrowelle



aus: E. M. Clarke et al., Model Checking, MIT Press 1999

"Wenn MW gestartet, beginnt sie immer nach endl. Zeit zu heizen." 🗶

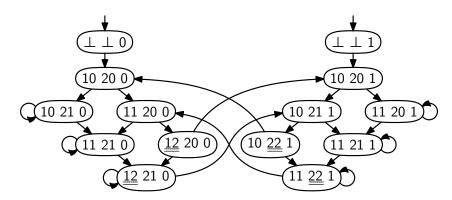
"Wenn MW gestartet, ist es *möglich*, danach zu heizen." ✓

Thomas Schneider Automatentheorie 3: unendliche Wörter 76 Thomas Schneider Automatentheorie 3: unendliche Wörter 76

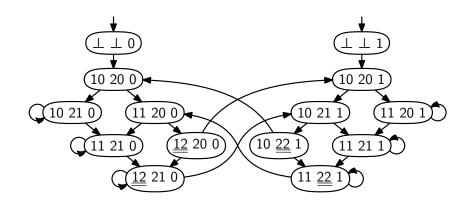
Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Spezifikationen für das Beispiel Nebenläufigkeit

Spezifikationen für das Beispiel Nebenläufigkeit



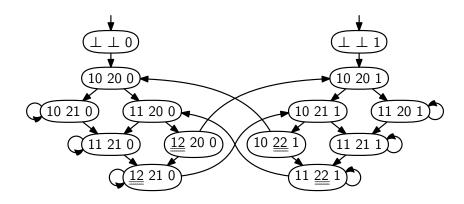
"Es kommt nie vor, dass beide Teilprogramme zugleich im kritischen Bereich sind." ✓



"Jedes P_i kommt beliebig oft in seinen kritischen Bereich." X

Thomas Schneider Automatentheorie 3: unendliche Wörter 77 Thomas Schneider Automatentheorie 3: unendliche Wörter

Spezifikationen für das Beispiel Nebenläufigkeit



"Jedes P_i kann beliebig oft in seinen kritischen Bereich kommen." \checkmark

Model-Checking

... beantwortet die Frage, ob ein gegebenes System eine gegebene Spezifikation erfüllt

Definition 27 (Model-Checking-Problem MCP)

Gegeben ein System $\mathcal S$ und eine Spezifikation $\mathcal E$,

- gilt E für jeden Pfad in S? (universelle Variante)
- gibt es einen Pfad in S, der E erfüllt? (existenzielle Variante)

Frage: Wie kann man Model-Checking

- exakt beschreiben und
- algorithmisch lösen?

Thomas Schneider Automatentheorie 3: unendliche Wörter 77 Thomas Schneider Automatentheorie 3: unendliche Wörter 7

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Antwort: benutze Büchi-Automaten!

Vorgehen

- Stellen System $\mathcal S$ als NBA $\mathcal A_{\mathcal S}$ dar \sim Pfade in $\mathcal S$ sind erfolgreiche Runs von $\mathcal A_{\mathcal S}$
- Stellen Spezifikation E als NBA A_E dar \rightarrow A_E beschreibt die Pfade, die E erfüllen
- \sim Universelles MCP = $_{n}L(A_{S}) \subseteq L(A_{E})$?" Existenzielles MCP = $_{n}L(A_{S}) \cap L(A_{E}) \neq \emptyset$?"

Erweiterung (später)

- intuitivere Beschreibung von E mittels Temporallogik
- ullet Umwandlung von Temporallogik-Formel φ_E in Automaten \mathcal{A}_E

Konstruktion des NBA $\mathcal{A}_{\mathcal{S}}$ für das System \mathcal{S}

Erinnerung: S gegeben als Kripke-Struktur $S = (S, S_0, R, L)$ (Zustände, Anfangszustände, Transitionen, Markierungen)

Zugehöriger Automat $A_S = (Q, \Sigma, \Delta, I, F)$:

- $\Sigma = 2^{AV}$
- $Q = S \oplus \{q_0\}$
- $I = \{q_0\}$
- \bullet F = Q
- $\Delta = \{ (q_0, L(s), s) \mid s \in S_0 \}$ $\cup \{ (s, L(s'), s') \mid (s, s') \in R \}$

Beispiel: siehe Tafel.

Charakt Entscheidungsprobl Model-Checking Determinismus Entscheidungsprobl. Model-Checking

Beschreibung von E durch NBA A_F

Beispiel Mikrowelle (siehe Bild auf Folie 72)

- (a) Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben. •
- (b) Wenn die Mikrowelle gestartet wird, fängt sie nach endlicher Zeit an zu heizen.
- (c) Wenn die Mikrowelle gestartet wird, ist es möglich, danach zu heizen.

Beispiel Nebenläufigkeit

- (d) Es kommt nie vor, dass beide Teilprog. zugleich im kritischen Bereich sind.
- (e) Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich.
- (f) Jedes Teilprogramm kann beliebig oft in seinen kritischen Bereich gelangen.

Verifikation mittels der konstruierten NBAs

Gegeben sind wieder System S und Spezifikation E.

Universelles MCP

- Gilt E für jeden Pfad in S?
- äquivalent: $L(A_S) \subset L(A_E)$?
- äquivalent: $L(A_S) \cap \overline{L(A_F)} = \emptyset$?
- \rightarrow Komplementierung A_E , Produktautomat, Leerheitsproblem
 - Komplexität: PSPACE (expon. Explosion bei Komplementierung)

Existenzielles MCP

- Gibt es einen Pfad in S, der E erfüllt?
- äquivalent: $L(A_S) \cap L(A_E) = \emptyset$?
- → Produktautomat, Leerheitsproblem
 - Komplexität: NL (keine exponentielle Explosion)

Automatentheorie 3: unendliche Wörter Thomas Schneider Automatentheorie 3: unendliche Wörter Model-Checking Model-Checking

Bemerkungen zur Implementierung

- effizienterer Algorithmus zur Lösung des Leerheitsproblems
- "On-the-fly model checking"
 - |S| ist exponentiell in der Anzahl der Variablen State space explosion problem
 - ullet Zustände von $\mathcal{A}_{\mathcal{S}}$ werden während des Leerheitstests nur bei Bedarf erzeugt

• intuitivere Beschreibung der Spezifikation E durch Formel φ_E

Spezifikationen mittels Linearer Temporallogik (LTL)

- Prozedur zur Umwandlung φ_E in \mathcal{A}_E (!) allerdings ist $|A_E|$ exponentiell in $|\varphi_E|$
- dafür Explosion bei Komplementierung vermeiden: wandle $\neg \varphi_F$ in Automaten um
- → beide MCP für LTL sind PSPACE-vollständig

Thomas Schneider Automatentheorie 3: unendliche Wörter 83 Thomas Schneider Automatentheorie 3: unendliche Wörter Büchi-Aut. Abschlusseig Model-Checking Büchi-Aut. Abschlusseig. Entscheidungsprobl Model-Checking Charakt. Determinismus

LTL im Überblick

LTL = Aussagenlogik + Operatoren, die über Pfade sprechen:

F (Future)

 $F\varphi$ bedeutet " φ ist irgendwann in der Zukunft wahr"

G (Global)

 $G\varphi$ bedeutet " φ ist ab jetzt immer wahr"

X (neXt)

 $X\varphi$ bedeutet " φ ist im nächsten Zeitpunkt wahr"

U: (*U*ntil)

 $\varphi U \psi$ bedeutet " ψ ist irgendwann in der Zukunft wahr und bis dahin ist immer φ wahr"

LTL-Syntax

Sei PROP abzählbare Menge von Aussagenvariablen.

Definition 28 (LTL-Formeln)

- Jede Aussagenvariable $p \in PROP$ ist eine LTL-Formel.
- Wenn φ und ψ LTL-Formeln sind, dann sind die folgenden auch LTL-Formeln.

 \bullet $\neg \varphi$

"nicht φ "

• $\varphi \wedge \psi$

" φ und ψ " "in Zukunft irgendwann φ "

 Fφ \bullet $G\varphi$

"in Zukunft immer φ "

Xφ

"im nächsten Zeitpunkt φ "

 $\bullet \varphi U \psi$

"in Zukunft irgendwann ψ ; bis dahin immer φ "

Verwenden die üblichen Abkürzungen $\varphi \vee \psi = \neg(\neg \varphi \wedge \neg \psi),$ $\varphi \to \psi = \neg \varphi \lor \psi, \qquad \varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi)$

Thomas Schneider

Automatentheorie 3: unendliche Wörter

Model-Checking

Automatentheorie 3: unendliche Wörter

Model-Checking

Beispiel-Spezifikationen als LTL-Formeln

Beispiel Mikrowelle (siehe Bild auf Folie 72)

• "Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben."

$$G(e \rightarrow F \neg e)$$

 $(e \in PROP \text{ steht für "Error"})$

 "Wenn die Mikrowelle gestartet wird, fängt sie nach endlicher Zeit an zu heizen."

$$G(s \rightarrow Fh)$$

 $(s, h \in PROP \text{ stehen für "Start" bzw. "Heat"})$

• "Irgendwann ist für genau einen Zeitpunkt die Tür geöffnet."

$$F(c \wedge X(\neg c \wedge Xc))$$

 $(c \in PROP \text{ steht für "Close"})$

• "Irgendwann ist für genau einen Zeitpunkt die Tür geöffnet, und bis dahin ist sie geschlossen."

$$c U (\neg c \wedge Xc)$$

Beispiel-Spezifikationen als LTL-Formeln

Beispiel Nebenläufigkeit

Thomas Schneider

 Es kommt nie vor. dass beide Teilprog. zugleich im kritischen Bereich sind.

$$G \neg (p_{12} \land p_{22}) \quad (p_i \in \mathsf{PROP} \; \mathsf{stehen} \; \mathsf{für} \; \mathsf{"Programmz\"{a}hler} \; \mathsf{in} \; \mathsf{Zeile} \; i")$$

• Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich. $GFp_{12} \wedge GFp_{22}$

Automatentheorie 3: unendliche Wörter

LTL-Semantik

Pfad: Abbildung $s : \mathbb{N} \to 2^{\mathsf{PROP}}$ schreiben $s_0 s_1 s_2 \dots$ statt $s(0) s(1) s(2) \dots$

Definition 29

Sei φ eine LTL-Formel, s ein Pfad und $i \in \mathbb{N}$.

Das Erfülltsein von φ in s, i $(s, i \models \varphi)$ ist wie folgt definiert.

- $s, i \models p$, falls $p \in s_i$, für alle $p \in PROP$
- $s, i \models \neg \psi$, falls $s, i \not\models \psi$
- $s, i \models \varphi \land \psi$, falls $s, i \models \varphi$ und $s, i \models \psi$
- $s, i \models F\varphi$, falls $s, j \models \varphi$ für ein $j \geqslant i$
- $s, i \models G\varphi$, falls $s, j \models \varphi$ für alle $j \geqslant i$
- $s, i \models X\varphi$, falls $s, i+1 \models \varphi$
- $s, i \models \varphi \ U \ \psi$, falls $s, j \models \psi$ für ein $j \geqslant i$ und $s, k \models \varphi$ für alle k mit $i \leqslant k < j$

Beispiele

- $s, i \models p$, falls $p \in s_i$, für alle $p \in PROP$
- $s, i \models \neg \psi$, falls $s, i \not\models \psi$
- $s, i \models \varphi \land \psi$, falls $s, i \models \varphi$ und $s, i \models \psi$
- $s, i \models F\varphi$, falls $s, j \models \varphi$ für ein $j \geqslant i$
- $s, i \models G\varphi$, falls $s, j \models \varphi$ für alle $j \geqslant i$
- $s, i \models X\varphi$, falls $s, i+1 \models \varphi$
- $s, i \models \varphi \ U \ \psi$, falls $s, j \models \psi$ für ein $j \geqslant i$ und $s, k \models \varphi$ für alle k mit $i \leqslant k < j$

Siehe Tafel.

Thomas Schneider Automatentheorie 3: unendliche Wörter 89 Thomas Schneider Automatentheorie 3: unendliche Wörter 90

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Model-Checking mit LTL-Formeln

Zur Erinnerung:

Definition 27: Model-Checking-Problem MCP

Gegeben ein System ${\mathcal S}$ und eine Spezifikation E,

- gilt E für jeden Pfad in S? (universelle Variante)
- gibt es einen Pfad in S, der E erfüllt? (existenzielle Variante)

Model-Checking mit LTL-Formeln

Für LTL:

(jedem Pfad $s_0s_1s_2...$ in einer Kripke-Struktur $\mathcal{S}=(S,S_0,R,L)$ entspricht ein LTL-Pfad $s_0's_1's_2'...$ mit $s_i'=L(s_i)$)

Definition 30 (Model-Checking-Problem)

Gegeben Kripke-Struktur $S = (S, S_0, R, L)$ und LTL-Formel φ ,

- gilt $s, 0 \models \varphi$ für alle Pfade s, die in einem $s_0 \in S_0$ starten? (universelle Variante)
- gibt es Pfad s, der in einem $s_0 \in S_0$ startet, mit $s, 0 \models \varphi$? (existenzielle Variante)
- ✓ Exakte Beschreibung des Model-Checking-Problems
- ► Algorithmische Lösung?

MCP weiterhin mittels Büchi-Automaten lösen!

Vorgehen wie gehabt:

- $\bullet \ \, \text{Wandle Kripke-Struktur } \mathcal{S} \ \text{in NBA} \ \mathcal{A}_{\mathcal{S}} \ \text{um} \\ \sim \ \, \text{Pfade in } \mathcal{S} \ \text{sind erfolgreiche Runs von } \mathcal{A}_{\mathcal{S}}$
- Wandeln LTL-Formel φ_E in NBA \mathcal{A}_E um $\longrightarrow \mathcal{A}_E$ beschreibt Pfade, die E erfüllen
- \rightarrow Universelles MCP = " $L(A_S) \subseteq L(A_E)$?" Existenzielles MCP = " $L(A_S) \cap L(A_E) \neq \emptyset$?"

Frage: Wie wandeln wir φ_E in A_E um?

Umwandlung von LTL-Formeln in Automaten (Überblick)

- ullet Wandeln $arphi_E$ in verallgemeinerten Büchi-Automaten (GNBA) um
- $\mathcal{A}_{\omega_F} = (Q, \Sigma, \Delta, I, \mathcal{F}) \text{ mit } \mathcal{F} \subseteq 2^Q$
 - $r=q_0q_1q_2\dots$ ist erfolgreich: $\mathsf{Inf}(r)\cap F
 eq \emptyset$ für alle $F\in \mathcal{F}$
 - GNBAs und NBAs sind äquivalent
- Im Folgenden grobe Vorgehensweise

Vorbetrachtungen

- Genügt, die Operatoren \neg, \land, X, U zu betrachten (die anderen kann man mit diesen ausdrücken)
- ullet Sei $\operatorname{cl}(\varphi_E)$ die Menge aller Teilformeln von φ_E und derer Negationen
- $\Sigma = 2^{PROP}$

	Thomas Schneider Automatentheorie 3: unendliche Wörter			r	93	Thomas Schneider			Automatentheorie 3: unendliche Wörter			94	
Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking	Bsp.e	Büchi-Aut.	Abschlusseig.	Charakt.	Determinismus	Entscheidungsprobl.	Model-Checking

Intuitionen

Erweiterung von Pfaden

- Betrachten Pfade $s = s_0 s_1 s_2 \dots$ mit $s_i \subseteq PROP$
- Erweitern jedes s_i mit den $\psi \in cl(\varphi_E)$, für die $s, i \models \psi$ gilt
- Resultat: Folge $\overline{s} = t_0 t_1 t_2 \dots$ mit $t_i \subseteq cl(\varphi_E)$

Bestandteile des GNBA \mathcal{A}_{φ_E}

- Zustände: $\approx t_i$
- $\overline{s} = t_0 t_1 t_2 \dots$ wird ein Run von \mathcal{A}_{φ_E} für $s_0 s_1 s_2 \dots$ sein
- Run \overline{s} wird erfolgreich sein gdw. $s, 0 \models \varphi_E$
- Kodieren Bedeutung der logischen Operatoren in
 - Zustände $(\neg, \land, \text{ teilweise } U)$
 - Überführungsrelation (X, teilweise U)
 - Akzeptanzbedingung (teilweise U)

Zustandsmenge des GNBA $\mathcal{A}_{arphi_{\mathit{E}}}$

- $Q = \text{Menge aller elementaren Formelmengen } t \subseteq \text{cl}(\varphi_E)$:
- t ist konsistent bzgl. Aussagenlogik, d. h. für alle $\psi_1 \wedge \psi_2 \in \operatorname{cl}(\varphi_E)$ und $\psi \in \operatorname{cl}(\varphi_E)$:
 - $\psi_1 \wedge \psi_2 \in t$ gdw. $\psi_1 \in t$ und $\psi_2 \in t$
 - wenn $\psi \in t$, dann $\neg \psi \notin t$
- 2 t ist lokal konsistent bzgl. des U-Operators, d. h. für alle ψ_1 U $\psi_2 \in \operatorname{cl}(\varphi_E)$:
 - ullet wenn $\psi_2 \in t$, dann $\psi_1 \ U \ \psi_2 \in t$
 - wenn $\psi_1 \ U \ \psi_2 \in t$ und $\psi_2 \notin t$, dann $\psi_1 \in t$
- **3** t ist maximal, d. h. für alle $\psi \in \operatorname{cl}(\varphi_E)$: wenn $\psi \notin t$, dann $\neg \psi \in t$

Beispiel: $a U (\neg a \land b)$, siehe Tafel

Überführungsrelation des GNBA $\mathcal{A}_{\varphi_{E}}$

Anfangszustände und Akzeptanzkomponente von $\mathcal{A}_{arphi_{E}}$

- Betrachten Tripel (t, s, t')mit $t, t' \in Q$ (elem. FM) und $s \in \Sigma$ $(\Sigma = 2^{PROP})$
- $\bullet \ (t,s,t') \in \Delta \ \mathrm{wenn}$
 - $s = t \cap PROP$
 - für alle $X\psi \in cl(\varphi_E)$: $X\psi \in t$ gdw. $\psi \in t'$
 - für alle ψ_1 U $\psi_2 \in \operatorname{cl}(\varphi_E)$: ψ_1 U $\psi_2 \in t$ gdw. $\psi_2 \in t$ oder $(\psi_1 \in t \text{ und } \psi_1 \text{ } U \text{ } \psi_2 \in t')$ ("Aufschieben" von ψ_1 U ψ_2)

- $\mathcal{F} = \{ M_{\psi_1 U \psi_2} \mid \psi_1 \ U \ \psi_2 \in \operatorname{cl}(\varphi_E) \}$ mit

$$M_{\psi_1 \cup \psi_2} = \{ t \in Q \mid \psi_1 \cup \psi_2 \notin t \text{ oder } \psi_2 \in t \}$$

Intuition:

Ein $t \in M_{\psi_1 U \psi_2}$ kommt unendlich oft vor gdw.

 $\psi_1~U~\psi_2$ wird immer nur höchstens endlich lange "aufgeschoben"

Beispiel: Xa, siehe Tafel

Beispiel: aUb, siehe Übung

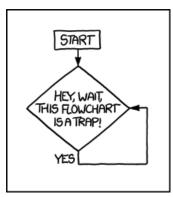
Thomas Schneider Automatentheorie 3: unendliche Wörter 97 Thomas Schneider Automatentheorie 3: unendliche Wörter 98

Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking Bsp.e Büchi-Aut. Abschlusseig. Charakt. Determinismus Entscheidungsprobl. Model-Checking

Abschließende Betrachtungen

Damit sind wir am Ende dieses Kapitels.

- |Q| ist exponentiell in $|\varphi_E|$
- Dafür beim universellen MCP auf Komplementierung \mathcal{A}_{φ_E} verzichten:
- Wandle $\neg \varphi_{\it E}$ in Automaten um
- → beide MCP-Varianten in PSPACE
 - beide MCP-Varianten sind PSPACE-vollständig



Quelle: http://xkcd.com/1195 (Lizenz CC BY-NC 2.5)

Vielen Dank.

Thomas Schneider Automatentheorie 3: unendliche Wörter 99 Thomas Schneider Automatentheorie 3: unendliche Wörter

Abschlusseig. Determinismus Entscheidungsprobl Model-Checking Abschlusseig. Determinismus Model-Checking Entscheidungsprobl.

Literatur für diesen Teil (1)

Automata on Infinite Objects.

In J. van Leeuwen (Hrsg.):

Handbook of Theoretical Computer Science.

Volume B: Formal Models and Sematics.

Elsevier, 1990, S. 133-192.

SUB. Zentrale: a inf 400 ad/465-2

Wolfgang Thomas.

Languages, automata, and logic.

In G. Rozenberg and A. Salomaa (Hrsg.:)

Handbook of Formal Languages. Volume 3: Beyond Words.

Springer, 1997, S. 389-455.

SUB, Zentrale: a inf 330/168-3

Literatur für diesen Teil (2)

Markus Roggenbach.

Determinization of Büchi Automata.

In E. Grädel, W. Thomas, T. Wilke (Hrsg.):

Automata, Logics, and Infinite Games.

LNCS 2500, Springer, 2002, S. 43-60.

Erklärt anschaulich Safras Konstruktion.

http://www.cs.tau.ac.il/~rabinoa/Lncs2500.zip

Auch erhältlich auf Anfrage in der BB Mathematik im MZH: 19h inf 001 k/100-2500

Meghyn Bienvenu.

Automata on Infinite Words and Trees.

Vorlesungsskript, Uni Bremen, WS 2009/10.

Kapitel 2.

http://www.informatik.uni-bremen.de/tdki/lehre/ws09/ automata/automata-notes.pdf

Thomas Schneider

Abschlusseig.

Automatentheorie 3: unendliche Wörter

Entscheidungsprobl

Model-Checking

101

Thomas Schneider

Automatentheorie 3: unendliche Wörter

102

Literatur für diesen Teil (3)

Christel Baier, Joost-Pieter Katoen.

Principles of Model Checking.

MIT Press 2008.

Abschnitt 4.3 "Automata on Infinite Words"

Abschnitt 5.2 "Automata-Based LTL Model Checking"

SUB, Zentrale: a inf 440 ver/782, a inf 440 ver/782a

Edmund M. Clarke, Orna Grumberg, Doron A. Peled.

Model Checking.

MIT Press 1999.

Abschnitt 2 "Modeling Systems" bis Mitte S. 14,

Abschnitt 2.2.3 +2.3 ",Concurrent Programs" und ",Example . . . ",

Abschnitt 3 "Temporal Logics",

Abschnitt 9.1 "Automata on Finite and Infinite Words".

SUB, Zentrale: a inf 440 ver/780(6), a inf 440 ver/780(6)a