Automatentheorie und ihre Anwendungen Übungsblatt 3

Abgabe am 13.5. zu Beginn der Übung

1. (10%) Begründe, dass der im Beweis von Satz 8 auf Folie 36 konstruierte NEBA die Sprache L erkennt:

Sei ℓ ein Σ -Baum, in dem jede Variable in höchstens einem Blatt vorkommt. Sei $\mathcal{A}_{\ell} = \{Q, \Sigma, \Delta, F\}$ mit:

$$Q = \{q_K \mid K \text{ ist ein Teilbaum von } \ell\} \uplus \{q_0\}$$

$$F = \{q_\ell\}$$

$$\Delta = \{ a(\underbrace{q_0, \dots, q_0}_{m}) \to q_0 \mid a \in \Sigma_m, \ m \geqslant 0 \}$$

$$\bigcup \left\{ a(q_{T_1}, \dots, q_{T_m}) \to q_{a(T_1, \dots, T_m)} \mid a(T_1, \dots, T_m) \text{ ist Teilbaum von } \ell \right\} \\
\cup \left\{ a(q_0, \dots, q_0, q_\ell, q_0, \dots, q_0) \to q_\ell \mid a \in \Sigma_m, \ m \geqslant 1, \ i = 0, \dots, m \right\}$$

Zeige, dass $L(\mathcal{A}_{\ell}) = \{T \mid T \text{ schließt } \ell \text{ ein}\}$ gilt.

2. (20%) Sei $\Sigma^{(n)} = \{\text{and}/2, \text{ or}/2, \text{ neg}/1, x_1/0, \ldots, x_n/0\}$. Jeder Baum über $\Sigma^{(n)}$ entspricht einer Booleschen Formel mit den Aussagevariablen x_1, \ldots, x_n . Eine solche Formel ist *erfüllbar*, wenn es eine Belegung von x_1, \ldots, x_n gibt, unter der die Formel zu "wahr" auswertet.

Konstruiere einen DEBA, der die Menge aller erfüllbaren Booleschen Formeln mit den Aussagevariablen x_1, \ldots, x_n erkennt.

- 3. $(2 \cdot 15\% = 30\%)$ Zeige, dass folgende Baumsprachen über dem r-Alphabet $\Sigma = \{a/2, b/0, c/0\}$ nicht erkennbar sind. Verwende das Pumping-Lemma für a) und den Satz von Myhill-Nerode für b).
 - a) $\{T \mid \text{in } T \text{ kommen gleich viele } b$'s und c's vor $\}$
 - b) $\{T = (P, t) \mid t(\varepsilon) = a \text{ und } T_1 = T_2\}$
- **4.** $(4 \cdot 10\% = 40\%)$ Sei $\Sigma = \{f/2, g/1, a/0, b/0\}$. Gib nichtdeterministische endliche *Top-down-*Baumautomaten an, die folgende Baumsprachen erkennen.
 - a) die Menge aller Bäume mit gerader Höhe, die nicht f enthalten
 - b) die Menge aller Bäume, die a und b enthalten
 - c) die Menge aller Bäume T=(P,t) mit $t(\varepsilon)=f,t(1)=t(2)=g$
 - d) die Menge aller Bäume, die einen Teilbaum der Form f(a,b) enthalten

Bitte wenden.

- 5. (Zusatzaufgabe, bis zu 15%) Hier geht es um Abschlusseigenschaften der Klasse $\mathcal L$ der von deterministischen Top-down-Baumautomaten erkannten Sprachen.
 - a) Zeige, dass \mathcal{L} unter Durchschnitt abgeschlossen ist.
 - b) Zeige, dass \mathcal{L} nicht unter Vereinigung abgeschlossen ist. Hinweis. Betrachte Sprachen von Bäumen, in denen nicht alle Blätter mit demselben Symbol markiert sind.
 - c) Zeige nun mithilfe von a) und b), dass \mathcal{L} nicht unter Komplement abgeschlossen ist.