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Preface

This manual contains the documentation of the libfsmtest. This library

has been programmed in C++. Its classes contain algorithms for instanti-

ating, evaluating, transforming, and creating test suites from finite state

machines (FSM) representing Mealy Automata. The underlying the-

ory has been summarised in the lecture notes [14]. We will give additional

references where needed.

The libfsmtest class library is a re-factored, novel implementation of

its predecessor fsmlib-cpp1, an open source library whose maintenance is

now discontinued. The new libfsmtest is open source as well2, but it

di�ers from the fsmlib-cpp with respect to the following aspects.

� libfsmtest is licensed under the MIT license https://opensource.

org/licenses/MIT.

� The main classes of the libfsmtest class library have been reduced to

methods for evaluating FSMs, simulating them step by step or with

pre-de�ned input traces, and for checking whether given input/output

traces are contained in the FSM's language.

� The creation of FSMs from di�erent �le formats, as well as their trans-

formation and random creation, has been moved to factory methods.

� The test generation algorithms are now implemented in separate vis-

itors [4], facilitating the addition of new algorithms without having

to change the main classes.

1https://github.com/agbs-uni-bremen/fsmlib-cpp.git
2https://bitbucket.org/JanPeleska/libfsmtest
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The main objective of this re-design was to simplify the library API for

users and to facilitate library extension and maintenance. In comparison

to other existing libraries supporting FSM-based testing, the libfsmtest

has the following unique selling points.

� It supports both complete and partial FSMs, and both deterministic

and non-deterministic FSMs.

� It provides test generation algorithms for di�erent variants of confor-

mance relations, such as language equivalence, safety-equivalence [9]

and several variants of reduction.

� It provides ready-to-use main programs for test generation with all

the available methods and for running test suites generated from a

`reference FSM' against `implementation FSMs'. The latter program

corresponds to an FSM model checker.

� It provides a test harness framework which supports the execution

of test suites generated from FSMs against software under test pro-

grammed as C++ class libraries.
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Chapter 1

Download and Installation

The libfsmtest class library can be downloaded from bitbucket.org,

using command

1 git clone https:// bitbucket.org/JanPeleska/libfsmtest.git

For producing the binary code of the library, including the executables,

the cmake tool1 is required and needs to be installed �rst, if it is not avail-

able on your platform. The required CMakeLists.txt have already been

prepared in the libfsmtest repository.

The README.md �le explains in detail how the cmake con�guration, com-

pilation, and linking work under Linux, MacOSX, and Windows.

1https://cmake.org
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Chapter 2

Library Overview

2.1 Top-level Directory

The top-level directory libfsmtest/ of the libfsmtest class library is

structured as follows.

1. Directory doc/ contains this manual, named libfsmtest.pdf.

2. Directory resources/ contains sample FSMs, encoded in di�erent �le

formats.

3. Directory src/ contains the source code.

2.2 Source Directory src/

The source directory src/ contains the complete libfsmtest source code,

classes and main programs. It is structured as follows.

1. Directory libfsmtest/ contains all classes, both cpp-�les and header

�les.

2. Directory usage-demo/ contains main program �le usage-demo.cpp.

This �le contains many small procedures, each showing how to use a

speci�c feature of the libfsmtest classes. If the examples shown in

this documenation do not su�ce, or if you wish to create your own
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code by copying from existing examples, this is the place to go. The

�le names used in this documentation refer to �les that actually exist

in the libfsmtest/resources directory. In program usage-demo,

these �les are referenced with their absolute path

RESOURCEPATH + <filename>

The #define-value of RESOURCEPATH is determined while building

libfsmtest using cmake.

3. Directory generator/ contains the generator main program

generator.cpp. This program uses the libfsmtest class library to

generate test suites. The reference FSMs to be used and the test

generation methods to be applied are provided as command line ar-

guments.

4. Directory checker/ contains the checker main program checker.cpp.

It takes an implementation FSM �le name and a test suite �le name

as command line arguments and runs the test suite against this FSM.

5. Directory harness/ contains the main program of the test harness,

called harness.cpp. The harness needs a wrapper to re�ne input

data to the system under test (SUT) and abstract SUT outputs back

to events of the FSM output alphabet. Such a wrapper can be im-

plemented by inserting code into the source frame sut wrapper.cpp,

also contained in this directory. In sub-directory example/ an exam-

ple is shown, explaining how to con�gure the wrapper and run the

harness with a test suite against a C++ application library.

2.3 Source Directory src/libfsmtest

The directory containing the libfsmtest class library has the following

sub-structure.

1. Directory creators/ contains factory methods for creating FSMs

from �les in various formats. Moreover, creator classes in subdirec-
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tory creators/randoms contains generators of random FSMs. Fi-

nally, subdirectory creators/transformers contains FSM transfor-

mations.1

2. Directory fsm/ contains the main classes for FSMs and their basic

evaluation and simulation methods. The root class is Fsm, sub-classed

by Ofsm for observable (nondeterministic) FSMs, sub-classed by Dfsm

(deterministic FSMs).

3. Directory visitors/ contains visitors implementing the di�erent

test generation methods provided by the libfsmtest. The vir-

tual visit-methods are pre-de�ned in header �le FsmVisitor.hpp

contained in this directory. The concrete method visitors for

test generation algorithms, however, will usually subclass from

TestGenerationVisitor.hpp (also contained in this directory), be-

cause this class extends the FsmVisitor by operations used by most

concrete test case generation visitors. The latter are named after

the method they implement, such as HMethod.hpp, HMethod.cpp. To

study an example before adding you own test generation visitors, see

the W-Method visitor WVisitor.hpp, .cpp.

A second type of visitors is intended for writing FSM instances

to �les in di�erent format. These visitors will subclass from

ToFileVisitor.hpp.

4. Directory testsuite/ contains the main class TestSuite.hpp, .cpp

for creating test suites, together with auxiliary classes for representing

traces in linear or tree structure.

1For example, a transformation of an arbitrary nondeterministic FSM into an observ-

able FSM.
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Chapter 3

FSM Creation

Though the main classes Fsm, Ofsm, and Dfsm have their own constructors,

these are used only indirectly via factory methods. The libfsmtest pro-

vides factory methods for creating FSMs by reading them from various �le

formats, by transformation of existing FSMs, and by random generation.

The available creator methods are described in the subsequent sections.

Every creation method inherits from the abstract class FsmCreator, see

header �le

src/libfsmtest/creators/FsmCreator.hpp

If you wish to program your own FSM creation method, you should also

create a concrete class inheriting from FsmCreator.

3.1 FSM Creation from Files

3.1.1 Raw File Format

The most versatile format for reading FSMs from �le is the so-called raw

format.

� It allows for speci�cation of deterministic or nondeterministic FSMs.

In the nondeterministic case, the FSM may be observable or unob-
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servable. Both deterministic and nondeterministic FSMs can be com-

pletely speci�ed or partial. 1

� It is possible to specify larger input alphabets, where not every input

is processed by the FSM.

� It is possible to specify larger output alphabets, where the FSM pro-

duces only a subset of the output alphabet.

Additionally, if FSMs are the result of another automated generation pro-

cess, the raw format is easier to generate automatically than the other

formats accepted by the generator.

By convention, FSM de�nition �les in raw format carry the �le extension

.fsm. Each line of an FSM de�nition �le speci�es one transition by means

of four non-negative numbers

<pre-state> <input> <output> <post-state>

The interpretation of one transition line is: \Starting in state <pre-state>,

the FSM may transit with input <input> to state <post-state>,

producing output <output>." The states are numbered in range

0, 1, 2, . . . , (NumberOfStates − 1). The inputs are numbered in range

0, 1, 2, . . . , (SizeOfInputAlphabet− 1). The outputs are numbered in range

0, 1, 2, . . . , (SizeOfOutputAlphabet− 1).

For every state, all outgoing transitions must be listed in consecutive

lines. The initial FSM state is speci�ed by the <pre-state> of the �rst line

in the �le. Therefore the pre-state is not necessarily the one with number 0.

This is practical when producing di�erent FSMs from the same initial FSM

by changing the initial state, but leaving all other speci�cations unchanged.

In such a case, the block of lines starting with the new initial state is just

moved to the beginning of the �le.

Optionally, the .fsm-�le can be complemented by three �les de�ning

a presentation layer; this layer speci�es the external names of states,

input events, and output events. The �rst �le associates external state

names with internal state numbers. The name of the .fsm-�le without

that extension is usually treated as the FSM-Name.

1Please look up the de�nitions in [14], if you are not familiar with these terms.
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<FSM-Name>.state The state �les are usually named by the FSM-Name

with �le extension .state. The �le contents consists of a single text

column with NumberOfStates entries, such as

state0

state1

state2

...

This associates name \state0" with state number 0, name \state1"

with state number 1 and so on. In external FSM representations,

these names will be used as state names.

<FSM-Name>.in The input �les are usually named by the FSM-Name with

�le extension .in. The �le contents consists of a single text column

with SizeOfInputAlphabet entries, such as

in0

in1

in2

...

This associates name \in0" with input number 0, name \in1" with

input number 1 and so on. In external FSM representations, these

names will be used as input names.

<FSM-Name>.out The output �les are usually named by the FSM-Name

with �le extension .out. The �le contents consists of a single text

column with SizeOfOutputAlphabet entries, such as

out0

out1

out2

...
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This associates name \out0" with output number 0, name \out1"

with output number 1 and so on. In external FSM representations,

these names will be used as output names.

Door_Up(0)  e2/null   e3/null    e4/null   

Door_closing(4)

e1/a1

Door_Down(1)  e2/null    e3/null    e4/null   

Door_opening(5)

e1/a2

Door_stopped_going_down(2)  e2/null    e3/null    e4/null   

e1/a1

Door_stopped_going_up(3)  e2/null    e3/null    e4/null   

e1/a2

e2/a3e1/a3

 e3/null   

e4/a4

e3/a3

e1/a3

 e2/null    e4/null   

Figure 3.1: GraphViz representation of DFSM speci�ed in raw format with

the �les shown below.

For example, the state machine depicted in Fig. 3.1 is speci�ed in raw

format as follows.

fsm-file. The state machine with its transitions is speci�ed by

0 0 1 4

0 1 0 0

0 2 0 0

0 3 0 0

1 0 2 5

1 1 0 1

1 2 0 1

1 3 0 1
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2 0 1 4

2 1 0 2

2 2 0 2

2 3 0 2

3 0 2 5

3 1 0 3

3 2 0 3

3 3 0 3

4 0 3 2

4 1 3 1

4 2 0 4

4 3 4 5

5 0 3 3

5 1 0 5

5 2 3 0

5 3 0 5

state-file. The state �le is speci�ed by

Door_Up

Door_Down

Door_stopped_going_down

Door_stopped_going_up

Door_closing

Door_opening

in-file. The input �le is

e1

e2

e3

e4

out-file. The output �le is

null

a1

a2

a3

a4

The FSM creator using raw format is implemented as class

FsmFromFileCreator with header �le

src/creators/FsmFromRawCreator.hpp
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Listing 3.1 shows how to create an FSM from a raw input �le, together

with the three �les for the presentation layer.

Listing 3.1: Create a FSM from raw format �les.

1 #include "Fsm.hpp"

2 #include "FsmFromRawCreator.hpp"

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 int main(int argc , char* argv []) {

8

9 FsmFromRawCreator creator("nonObservable.fsm",

10 "nonObservable.state",

11 "nonObservable.in",

12 "nonObservable.out",

13 "MY_NONOBSERVABLE_FSM");

14

15 unique_ptr <Fsm > fsm = creator.createFsm ();

16

17 // . . .

18

19 }

All classes implementing the factory methods from header

�le FsmCreator.hpp need to provide one creator method

std::unique ptr<Fsm> createFsm().

Note that the factory methods decide internally, whether to create in-

stances of class Fsm or instances of the sub-classes Ofsm or Dfsm. The

creation result is always a unique pointer to Fsm. Virtual functions and

polymorphism ensure that the proper methods are called. For example,

the call bool b = fsm->isMinimal(); will use Gill's Pk-table algorithm [5]

when the FSM is deterministic, a nondeterministic variant thereof [14] if

the machine is observable, and it will throw an exception if the FSM is

non-observable.
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3.1.2 CSV File Format for FSMs

FSMs can also be modelled using CSV-format, exported from tools like

Excel or LibreO�ce. Fig. 3.2 shows a DFSM table for the Garage Door

Controller example described below in Chapter 5. The rules for �lling out

such a FSM transition table are as follows.

1. The leftmost/uppermost �eld (A,1) is empty.

2. The �rst column, starting with (A,2), contains the state names, start-

ing with the initial state in (A,2).

3. The �rst row, starting with (B,1), contains the identi�ers of the input

alphabet.

4. (a) For a state s and input x, �eld (s, x) has syntax s ′/y. s ′ is the

post state of the transition from state s on input x, and y is

the corresponding output. s ′ must be a valid state identi�er

occurring in the �rst column A.

(b) There can be multiple outgoing transitions for state s and

input x. Then, �eld (s, x) contains a comma-separated list

s′1/y1, . . . , s
′
n/yn of the above syntax to specify more than one

transition. For s′i and yi, the same conditions as above apply.

5. All identi�ers for states, inputs, and outputs conform to C-variable

syntax: start with a character or an underscore, only characters, un-

derscores, or numbers may follow, no spaces. These identi�ers are

used to construct the presentation layer: they represent the exter-

nal names for states, inputs, and outputs. Internal consecutive non-

negative numbers for these will be created internally.

6. If a table �eld for some state s on some input x is empty, the resulting

FSM will be partial.

7. The CSV format needs semicolon “;” as separator. This is

important when exporting from a formatted tabular �le format (such

as .xlsx or .ods) to CSV.
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Figure 3.2: Tabular format for modelling DFSMs.

An example of an admissible model CSV-format looks as follows, it

corresponds to the DFSM transition table shown in Fig. 3.2.

;e1;e2;e3;e4

Door_Up;Door_closing/a1;;;

Door_Down;Door_opening/a2;;;

Door_stopped_going_down;Door_closing/a1;;;

Door_stopped_going_up;Door_opening/a2;;;

Door_closing;Door_stopped_going_down/a3;Door_Down/a3;;Door_opening/a4

Door_opening;Door_stopped_going_up/a3;;Door_Up/a3;

The CSV creator is implemented as class FsmFromCsvCreator with

header �le

src/creators/FsmFromCsvCreator.hpp

Listing 3.2 shows how to create a FSM from a CSV �le.
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Listing 3.2: Create a FSM from a CSV �le.

1 #include "Dfsm.hpp"

2 #include "FsmFromCsvCreator.hpp"

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8

9 FsmFromCsvCreator creator("garage -door -controller.csv");

10 unique_ptr <Fsm > fsm = creator.createFsm ();

11

12 }

13



3.1.3 Reading FSMs from File
With Automated Format Identification

The two FSM-from-�le generators described above have been abstracted in

class

FsmFromFileCreator

contained in �les

src/libfsmtest/creators/FsmFromFileCreator.hpp, .cpp

An instance of FsmFromFileCreator �rst identi�es the �le type provided by

the user and then performs the FSM instantiation using the FSM-from-�le

creators described above. This allows for simpler code in programs using

the libfsmtest. In particular, programs reading FSMs from di�erent �le

formats need not require users to specify the format explicitly or add �le

identi�cation code in the programs.

Listing 3.3: Create an FSM from �le with automated format identi�cation.

1 #include "FsmFromFileCreator.hpp"

2 #include ". . . "

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8

9 // First parameter of FsmFromFileCreator constructor:

10 // basename of the file(s) to be opened

11 // Secod (optional) parameter: FSM name to be used.

12 FsmFromFileCreator creator("garage -door -controller",

13 "GDC");

14 unique_ptr <Fsm > fsm = creator.createFsm ();

15

16 // ... now continue working with fsm ...

17

18 }

Consider the example in Listing 3.3. An instance of

FsmFromFileCreator is created by providing just the basename

14



"garage-door-controller" of the �le. The instance will then pro-

ceed as follows in the call to method createFsm.

1. First, it is checked whether a �le with the given basename and exten-

sion .fsm exists. If this is the case, the FSM will be instantiated with

the help of class FsmFromRawCreator, using the raw format. If .in,

.out, .state �les with the same basename exist as well, they will

be used to create the FSM's presentation layer. If not, a presentation

layer using just non-negative numbers for inputs, outputs, and states

will be created internally.

2. If (1.) does not apply, the instance of FsmFromFileCreator looks

for a �le with the given basename and extension .csv. If such a �le

exists, an instance of FsmFromCsvCreator will be internally created,

and the FSM will be instantiated from the CSV �le.

3. Else, if �le names are provided including the extension, the raw format

is expected to be contained in a �le with extension .fsm, and the CSV

format is expected to be contained in a �le with extension .csv. If

an unknown or no extension is provided, the FsmFromFileCreator

instance tries to guess the �le type from the �le content.

Recall from the description of the three FSM-from-�le creators, that

FSM �les with incomplete transition information will lead to the instan-

tiation of partial FSMs. In Section 3.2.1, the option to perform auto-

completion, that is, to create complete FSMs from partial speci�cations, is

described. There, a third optional parameter of the FsmFromFileCreator-

constructor is described which allows for automated application of an auto-

completion transformation.
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3.2 FSM Creation by Transformation

All FSM transformation classes reside in directory

src/libfsmtest/creators/transformers.

3.2.1 Auto-Completion Transformers

When specifying partial FSMs, inputs are enabled or disabled in a state-

dependent way. If an input is enabled in a state we also say that it is

de�ned in that state, otherwise we say that it is unde�ned in that state.

There are di�erent interpretations of inputs that are unde�ned in some

state2.

1. The speci�cation model is incomplete, and it is unknown what should

happen for the unde�ned inputs in the respective states.

2. The unde�ned inputs cannot occur in the respective states (for ex-

ample, the input corresponds to an input button of a graphical user

interface which is not visible in the respective state).

3. The unde�nedness of the input stands for this input is ignored in

this state, so it's just a shorthand notation. This corresponds to a

self loop transition labelled by this input and a null output.

4. The unde�nedness of the input stands for this input is not allowed

in this state, and its occurrence will cause an error output and

a transition into an error state which is never left again. This is

another shorthand notation. All inputs occurring when the FSM is

in the error state cause a null-output.

For the interpretations 3 and 4, two so-called auto-completion trans-

formers have been provided by classes

� ToAutoCompleteWithSelfLoopTransformer and

2A comprehensive discussion of these interpretations can be found in [15].
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� ToAutoCompleteWithErrorStateTransformer,

both implemented in �les

src/libfsmtest/creators/transformers/ToAutoCompletedTransformer.hpp

src/libfsmtest/creators/transformers/ToAutoCompletedTransformer.cpp

In Fig. 3.4, it is shown how the transformers are instantiated and invoked.

Listing 3.4: Use of the auto-completion transformers.

1 #include "creators/transformers/ToAutoCompletedTransformer.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... read partial FSM from file ,

9 // unique pointer fsm ...

10

11 // Transform fsm to completely specified FSM , using

12 // the self -loop auto -completion.

13 // As external presentation of the {\tt null} output ,

14 // use string "_null". Type directive ’auto’ means that

15 // the new machine is again of type unique_ptr <Fsm >.

16 ToAutoCompleteWithSelfLoopTransformer selfLooper(fsm.get(), "_null");

17 auto selfLoopCompletedFsm = selfLooper.createFsm ();

18

19 // Transform fsm to completely specified FSM , using

20 // the auto -completion with transition to an error state.

21 // As external presentation of the {\tt null} output ,

22 // use string "_null". For the error output , use "_error ".

23 // As error state name , use "ERROR"

24 ToAutoCompleteWithErrorStateTransformer

25 errorStater(fsm.get(), "_error", "_null", "ERROR");

26 auto errorStateCompletedFsm = errorStater.createFsm ();

27

28 // Continue working with completely specified FSMs selfLoopCompletedFsm

29 // and errorStateCompletedFsm

30 // . . .

31

32 }

Quite often, it is already clear when reading an FSM from a �le that an

auto-completion should be performed. Therefore, the FsmFromFileCreator
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o�ers the option to provide such a transformer when instantiating an

FsmFromFileCreator object. This is shown in Listing 3.5.

Listing 3.5: Use of the auto-completion transformers.

1 #include "..."

2

3 using namespace std;

4 using namespace libfsmtest;

5

6 void main(int argc , char* argv []) {

7

8 // We know that file garage -door -controller.csv contains a

9 // partial FSM definition , and we want the FSM to be

10 // auto -completed with self -loops and null -outputs.

11 // To this end , an instance of ToAutoCompleteWithSelfLoopTransformer

12 // is provided to creator as third parameter.

13 // The instance of ToAutoCompleteWithSelfLoopTransformer

14 // gets a nullptr for the FSM , since this FSM first

15 // has to be read from file.

16 FsmFromFileCreator

17 creator("garage -door -controller.csv",

18 "garage -door -controller",

19 make_unique <ToAutoCompleteWithSelfLoopTransformer >

20 (nullptr , "null"));

21 unique_ptr <Fsm > fsm = creator.createFsm ();

22

23 // ... continue working with fsm ...

24

25 }
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3.2.2 Transformation to Prime Machines

Recall that a prime machine is an FSM that is initially connected, ob-

servable, and minimised.

Transformation to the prime machine. Quite often, it is desirable
to transform a given arbitrary FSM into an initially connected, observ-
able, and minimised FSM in one step. This task is performed by class
ToPrimeTransformer in �les

src/libfsmtest/creators/transformers/ToPrimeTransformer.hpp

src/libfsmtest/creators/transformers/ToPrimeTransformer.cpp

This transformer converts the given FSM according to the following

steps.

1. If necessary, the FSM is transformed into an initially connected one.

2. If necessary, the resulting machine is transformed into an observable

FSM.

3. The resulting machine is minimised.

These steps are performed by class ToPrimeTransformer through the indi-

vidual transformers described in the paragraphs below.

Listing. 3.6 shows how to use this transformation.
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Listing 3.6: Transformation to prime machine.

1 #include "creators/transformers/ToPrimeTransformer.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... read partial FSM from file ,

9 // unique pointer fsm ...

10

11 // Define the transformer to prime FSM ,

12 // providing the original FSM to the constructor

13 ToPrimeTransformer prime(fsm.get());

14 // Perform the transformation and obtain unique pointer to

15 // the prime FSM

16 auto primeFsm = prime.createFsm ();

17

18 // Continue working with the prime FSM

19 // . . .

20

21 }

Transformation to initially connected machine. Recall that an FSM
is initially connected if all states can be reached from the initial states
by repeated application of the transition relation. The transfomer imple-
mented by class ToInitiallyConnectedTransformer in �les

src/libfsmtest/creators/transformers/ToInitiallyConnectedTransformer.hpp

src/libfsmtest/creators/transformers/ToInitiallyConnectedTransformer.cpp

performs this transformation task.

Listing. 3.7 shows how to use this transformation.
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Listing 3.7: Transformation to an initially connected FSM.

1 #include "creators/transformers/ToPrimeTransformer.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... read partial FSM from file ,

9 // unique pointer fsm ...

10

11 // Define the transformer to initially connected FSM ,

12 // providing the original FSM to the constructor

13 ToInitiallyConnectedTransformer ict(fsm.get());

14 // Perform the transformation and obtain unique pointer to

15 // the initially connected FSM

16 auto primeFsm = prime.createFsm ();

17

18 // Continue working with the initially connected FSM

19 // . . .

20

21 }

Transformation to observableFSMs. Any FSM can be transformed
into a language-equivalent observable one [14].3 To this end, class
ToObservableTransformer in �les

src/libfsmtest/creators/transformers/ToObservableTransformer.hpp

src/libfsmtest/creators/transformers/ToObservableTransformer.cpp

implements the standard algorithm for the transformation of arbitrary (par-

tial or comletely speci�ed) FSM into observable ones with the same lan-

guage. The transformer will throw an exception if the FSM is not initially

connected. If the FSM is already observable, a copy will be returned by

operation createFsm() (see Listing 3.8

Listing 3.8 shows how to use this transformation.

3The algorithm is applicable to both completely speci�ed and partial machines. It is

interesting to note, however, that in case of partial FSMs, the transformed FSM is not

necessarily quasi-equivalent to the original FSM [7], and not necessarily a strong reduction

of the original FSM [15].
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Listing 3.8: Transformation to an observable FSM.

1 #include "creators/transformers/ToPrimeTransformer.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... read partial FSM from file ,

9 // unique pointer fsm ...

10

11 // Define the transformer to observable FSM ,

12 // providing the original FSM to the constructor

13 ToObservableTransformer obs(fsm.get());

14 // Perform the necessary transformations and obtain

15 // the unique pointer to the observable FSM

16 auto fsmObs = obs.createFsm ();

17

18 // Continue working with the observable FSM

19 // . . .

20

21 }

Minimising observable, initially connected machines. For minimis-
ing observable, initially connected machines, the transformer of class
ToMinimisedTransformer is used. It is implemented in �les

src/libfsmtest/creators/transformers/ToMinimisedTransformer.hpp, .cpp

This transformer throws exceptions if the FSM to be transformed is not

initially connected or not observable.

Listing 3.9 shows how to use this transformation.
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Listing 3.9: Transformation to minimised FSM.

1 #include "creators/transformers/ToPrimeTransformer.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... read partial FSM from file ,

9 // unique pointer fsm ...

10

11 // Define the transformer to minimised FSM ,

12 // providing the original FSM to the constructor

13 ToMinimisedTransformer mintrans(fsm.get());

14 // Perform the necessary transformations and obtain

15 // the unique pointer to the minimsed FSM

16 auto fsmMin = mintrans.createFsm ();

17

18 // Continue working with the minimised FSM

19 // . . .

20

21 }
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3.3 Random Creation and Mutation of FSMs

There are many use cases for randomly generated FSMs. All classes for

random FSM creation and mutation of existing FSMs reside in directory

src/libfsmtest/creators/randoms.

Every class for random creation of FSMs inherits from the class

RandomFsmCreator, which takes care of the initialisation of a presentation

layer; see header �le

src/libfsmtest/creators/randoms/RandomFsmCreator.hpp.

To implement other methods for random creation, this �le should be inher-

ited in a new concrete class. Classes for random mutation of FSMs should

inherit the already discussed Transformer class: a basic concept of the

libfsmtest class library is to never change an existing FSM, but to trans-

form it into another one. Therefore, mutations are created by transforming

the existing FSM into a di�erent one.

3.3.1 Creation of Random Completely Specified
FSMs.

Recall that a FSM is completely specified if there exists an outgoing

transition for every possible input in every state. FSMs, OFSMs, and

DFSMs can be completely speci�ed.

Random Completely Specified FSM The class to create random com-
pletely speci�ed FSMs can be found in �les

src/libfsmtest/creators/randoms/RandomCompletelySpecifiedFsm.hpp, .cpp

For a given numbers of states, inputs and outputs the creator will then

generate a completely speci�ed FSM. During the generation it is also as-

serted that the FSM generated is initially connected. For each state, the

FSM will have at least one, at most three outgoing transitions for each

input. Listing 3.10 shows how to use this creator.
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Listing 3.10: Create a Random Completely Speci�ed FSM.

1 #include "RandomCompletelySpecifiedFsmCreator.hpp"

2 #include ". . . "

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8

9 // First parameter of RandomCompletelySpecifiedFsmCreator constructor:

10 // Number of states the FSM will have.

11 // Second parameter: Number of inputs the alphabet will have.

12 // Third parameter: Number of outputs the alphabet will have.

13 // Fourth (optional) parameter: FSM name to be used.

14 RandomCompletelySpecifiedFsmCreator creator(5, 7, 4, "random");

15 unique_ptr <Fsm > fsm = creator.createFsm ();

16

17 // ... now continue working with fsm ...

18

19 }

If it is required to produce an observable, but potentially nondetermin-

istic FSM at random, the machine is created as shown in Listing 3.10, but

then transformed into an observable one, using the transformer to observ-

able FSMs described in Section 3.2. Using FSM method isObervable(), it

should be checked whether such a transformation is needed, since the FSM

generated at random may already be observable. Note, however, that the

transformed OFSM will generally not have the same number of states as

requested in the random creation.

Random Completely Specified DFSM. The class to create random
completely speci�ed DFSMs can be found in �les

src/libfsmtest/creators/randoms/RandomCompletelySpecifiedDfsm.hpp, .cpp

For a given numbers of states, inputs and outputs the creator will then

generate a completely speci�ed DFSM. Each state will have exactly one

outgoing transition for each input. Listing 3.11 shows how to use this

creator. Recall that DFSMs are automatically observable.
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Listing 3.11: Create a Random Completely Speci�ed FSM.

1 #include "RandomCompletelySpecifiedDfsmCreator.hpp"

2 #include ". . . "

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8

9 // First parameter of RandomCompletelySpecifiedDfsmCreator constructor:

10 // Number of states the DFSM will have.

11 // Second parameter: Number of inputs the alphabet will have.

12 // Third parameter: Number of outputs the alphabet will have.

13 // Fourth (optional) parameter: DFSM name to be used.

14 RandomCompletelySpecifiedDfsmCreator creator(5, 7, 4, "random");

15 unique_ptr <Fsm > fsm = creator.createFsm ();

16

17 // ... now continue working with dfsm ...

18

19 }

3.3.2 Random Removal of Transitions

The class to randomly remove transitions from FSMs can be found in �les

src/libfsmtest/creators/randoms/RandomTransitionRemoval.hpp, .cpp

Given a number of transitions to remove, this transformer will randomly

choose a state that has at least one transition, then randomly choose one of

those transitions and remove it. The transformer will stop and return the

altered FSM once the number of transitions to remove has been reached,

or there are no transitions left to remove. Listing 3.11 shows how to use

this transformer.
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Listing 3.12: Transformation to remove random transitions of an FSM.

1 #include "creators/randoms/RandomTransitionRemoval.hpp"

2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc , char* argv []) {

8 // ... create or retrieve FSM

9 // unique pointer fsm ...

10

11 // Define the transformer to remove random transitions ,

12 // providing the original FSM to the constructor

13 // as well as the number of transition to remove

14 // and an (optional) suffix to append to the name.

15 RandomTransitionRemoval remover(fsm.get(), 5);

16 // Perform the necessary transformations and obtain

17 // the unique pointer to the altered FSM

18 auto fsmRm = remover.createFsm ();

19

20 // Continue working with the altered FSM

21 // . . .

22

23 }
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Chapter 4

Test Suite Generation

4.1 Test Generation Frame, Test Generation

Method, and Test Suite

To generate test suites using di�erent methods (like W-Method, H-Method,

etc.), three re-usable concepts have been implemented in libfsmtest.

� A test generation frame is instantiated to handle the test suite

generation task in a way that is independent on the speci�c method.

� Test generation methods are always implemented as FSM-visitors.

The test generation frame receives a pointer to the test method to be

used as a parameter of its constructor.

� The test generation frame provides an operation to activate the test

generation process. This produces a test suite which can be pro-

cessed further in the program or written to disk.

Consider Listing 4.1 to inspect how these concepts are applied in prac-

tise.

28



Listing 4.1: Application of test generation frame, method, and suite.

1 #include "..."

2

3 using namespace std;

4 using namespace libfsmtest;

5

6 int main(int argc , char* argv []) {

7

8 // Create FSM from file

9 FsmFromFileCreator creator("f.fsm","f");

10 auto fsm = creator.createFsm ();

11

12 // Create test generation frame:

13 // "SUITE -W-0" is the name of the test suite.

14 // The FSM is moved into the generation frame ,

15 // since it serves there as the reference model

16 // to create test cases from.

17 // As generation method , an instance of the WMethod

18 // is provided. This instance needs the maximal number

19 // of additional states the implementation might contain.

20 int numAddStates = 0;

21 TestGenerationFrame genFrame("SUITE -W-0",

22 move(fsm),

23 make_unique <WMethod >( numAddStates));

24

25 // Generate the test suite and write it to file

26 genFrame.generateTestSuite ();

27 genFrame.writeToFile ();

28 }

When method generateTestSuite() is invoked (line 26), the test gen-

eration frame genFrame created in this example will activate the test gen-

eration internally according to the visitor pattern: the FSM-visitor in-

stance of class WMethod is provided as parameter in an accept(...visitor

instance...) call on the reference FSM. This is all hidden from users of

libfsmtest, but must be studied before creating and adding your own test

generation methods to libfsmtest.

The e�ect of the genFrame.writeToFile() call is as follows.

1. The test suite consisting of a number of input traces is written into

a text �le named as the test suite with extension .txt. The input

events are represented in external form, as speci�ed in the FSM's

presentation layer. For the example in Listing 4.1, the demonstration
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program usage-demo (see Chapter 2) produces the following test suite

in �le SUITE-W-0.txt. Each line represents one test case speci�ed by

the associated inputs to be exercised on the system under test.

1 e1, e1 , e1

2 e1, e1 , e2

3 e1, e2 , e1 , e1

4 e1, e2 , e1 , e2

5 e1, e2 , e2 , e1

6 e1, e2 , e2 , e2

7 e1, e2 , e3 , e1

8 e1, e2 , e3 , e2

9 e1, e2 , e4 , e1

10 e1, e2 , e4 , e2

11 e1, e3 , e1

12 e1, e3 , e2

13 e1, e4 , e1 , e1

14 e1, e4 , e1 , e2

15 e1, e4 , e2 , e1

16 e1, e4 , e2 , e2

17 e1, e4 , e3 , e1

18 e1, e4 , e3 , e2

19 e1, e4 , e4 , e1

20 e1, e4 , e4 , e2

21 e2, e1

22 e2, e2

23 e3, e1

24 e3, e2

25 e4, e1

26 e4, e2

2. The reference FSM is written in raw format (see Section 3.1.1)

to �les <FSM-name>.fsm, <FSM-name>.in, <FSM-name>.out, and

<FSM-name>.state. These FSM �les, together with the test cases

�le, need to be provided to the test harness described in Chapter 5,

when running the generated suite against a software under test. The

harness will use the reference FSM as a test oracle.

4.2 Available Test Generation Methods

In the current version, the following generation methods listed in Table 4.1

have been provided, more are yet to come in the near future. All methods

are implemented in �les located in

src/libfsmtest/visitors
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Each method may pose requirements for admissible reference FSMs to ful-

�ll. These requirements are listed in Table 4.2. If the method is called with

a reference FSM that violates one of the method's application requirements,

the implementing visitor will throw an exception.

Table 4.1: Test generation methods currently available in libfsmtest.

Method Class Name Files References

W-Method WMethod WMethod.hpp, .cpp [1], [18], [14,

Section 4.6]

WP-Method WPMethod WPMethod.hpp, .cpp [11], [14, Sec-

tion 4.8.1]

H-Method HMethod HMethod.hpp, .cpp [3], [14, Sec-

tion 4.7]

SPYH-Method SPYHMethod SPYHMethod.hpp, .cpp [16]

T-Method TMethod TMethod.hpp, .cpp [13], [14, Sec-

tion 4.3]

Safety-complete H-

Method

SHMethod SHMethod.hpp, .cpp [9], [8]

Classical (non-

adaptive) state

counting method

ClassicalState-

CountingMethod

ClassicalState-

CountingMethod.hpp,

.cpp

[6]

Strong State

Counting Method

StrongState-

CountingMethod

StrongStateCounting-

Method.hpp, .cpp

[15]
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Table 4.2: Requirements for the test generation methods currently available

in libfsmtest.

Method Requirements

W-Method Requires the existence of a characterisation set. This is guaran-

teed for completely speci�ed reference FSMs.

WP-Method Requires the existence of a characterisation set and state identi�-

cation sets. This is guaranteed for completely speci�ed reference

FSMs.

H-Method Requires harmonized traces. This is guaranteed for deterministic

or completely speci�ed reference FSMs.

SPYH-Method Requires a completely speci�ed and deterministic reference FSM.

T-Method Requires a completely speci�ed reference FSM.

Safety-complete H-

Method

Requires harmonized traces. This is guaranteed for deterministic

or completely speci�ed reference FSMs.

Classical (non-

adaptive) state

counting method

Requires a completely speci�ed reference FSM.

Strong State

Counting Method

Reference FSMs are required to be observable, as the general

approach to make any FSM observable does not preserve strong

reduction.

When using a speci�c method, the test generation frame (see lines 21|

23 in Listing 4.1) gets this method's class name as type parameter in the

1 make_unique < _type_ >(numAddStates)

instantiation command. For example, when the H-Method should be used,

the generation frame in lines 21|23 of Listing 4.1 is created with statement

1 TestGenerationFrame

2 genFrame("SUITE -H-0",// Any test suite name which makes

3 // clear that the H-Method has been used

4 move(fsm),

5 make_unique <HMethod >( numAddStates));
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4.3 Test Generation Methods Using

Abstraction

In the context of property-oriented testing [12], we are no longer fo-

cused on verifying a conformance relation between reference model and

implementation. Instead, it has to be tested whether the SUT ful�ls cer-

tain properties that are also ful�lled by the reference model. Properties are

conditions about inputs, outputs, and their causal ordering. In practical

applications, properties are often equivalent to, or derived from require-

ments to be ful�lled by the implementation. The most general way to

specify properties is by means of a temporal logic such as LTL [17]. This,

however, is currently not yet supported by libfsmtest.

A slightly less general, but still quite powerful way is to specify prop-

erties by means of FSM abstractions. The theory behind this has been

investigated in [8, 9]. Note that it is applicable to deterministic, completely

speci�ed FSMs only. We introduce the { quite intuitive { concept here by

means of an example.

Example 1. Consider the completely speci�ed DFSM A shown in

Fig. 4.1 with input alphabet ΣI = {c1, . . . , c6} and output alphabet ΣO =

{d0, . . . , d4}. Suppose we wish to test whether the implementation satis�es

the following property which is obviously ful�lled by A.

Property 1. If the inputs are always in range {c1, c2, c3} then

the outputs will always be in range {d0, d1}. (*)

Expressed in LTL, this property is speci�ed by

G(c1 ∨ c2 ∨ c3) ⇒ G(d0 ∨ d1),

but we will not need this for the FSM abstraction approach. Instead, we

specify an abstracted FSM α(A) as follows:

1. The input alphabet of α(A) equals that of A, that is, {c1, . . . , c6},

2. the output alphabet of α(A) is {e0, e1}, where e0 stands for \A-output

is in {d0, d1}" and e1 stands for \A-output is not in {d0, d1}",
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3. the states of α(A) and the initial state are the same as in A, and

4. the transition relation α(R) of α(A) is obtained from the transition

relation R of A as

α(R) = {(s, x, e0, s
′) | ∃y ∈ {d0, d1} � (s, x, y, s

′) ∈ R} ∪
{(s, x, e1, s

′) | ∃y ∈ {d2, d3, d4} � (s, x, y, s
′) ∈ R}.

Intuitively speaking, α(A) has the same transition graph topology as A,

and the transitions are labelled by the same inputs as in A. The outputs,

however, are abstracted to the new values e0, e1, depending on whether

the corresponding A-output is in {d0, d1} or not. This abstraction machine

α(A) is shown in Fig. 4.2.

Since the abstracted FSM has fewer outputs, it distinguishes fewer states

than A: indeed, the minimised machine of α(A) only has two states, as

shown in Fig. 4.3. Obviously, α(A) ful�ls the abstracted property

Property 1a. If the inputs are always in range {c1, c2, c3} then

the output will always be e0. (**)

Now the theory developed in [8, 9] states that we can apply the Safety-

complete H-Method (SH-Method) to derive an exhaustive test suite

which is guaranteed to fail on an implementation violating property (*),

because the abstraction FSM consistently abstracts this property to the

one speci�ed in (**). The SH-Method di�ers from the H-Method in the

fact that distinguishing traces γ are appended to certain traces α,β al-

ready contained in the test suite only if the states reached by α and β,

respectively, are also distinguishable in the abstracted FSM. The \normal"

H method appends γ to α and β already if these reach states that are

distinguishable in A1.

As a consequence, the SH-Method may result in signi�cantly fewer test

cases than the H-Method. For the FSM example A discussed here, the

Safety-H-Method and the conventional H-Method produce the following

1States q, q ′ that are distinguishable in α(A) are by construction also distinguishable

in A, but not every pair of states distinguishable in A is distinguishable in α(A).
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numbers of test cases, depending on the maximal value a of additional

states assumed for the implementation.

a = 0 a = 1 a = 2 a = 3

SH-Method test suite size 21 126 756 4536

H-Method test suite size 28 158 982 5888

Ratio 0.75 0.79 0.77 0.77

Further examples are presented in [8, 9]. �

s0 s1

s2

s3

s4

c3/d1

c1, c2/d0

c4,
c5,
c6/
d2

c4 , c5 , c6/d
2

c5, c6/d3 c1, c2, c3, c4/d2

c6/d4 c1, c2, c3, c4, c5/d3

c1, c2/d0 c3/d1

c1 , c2 , c3 , c4/d
2

c5/d3

c6/d4

Figure 4.1: FSM A with di�erent regions: once state s2 has been reached,

the FSM will only visit states in {s2, s3, s4}; it will never return to s0 or s1.
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s0 s1

s2

s3

s4

c3/e0

c1, c2/e0

c4,
c5,
c6/
e1

c4 , c5 , c6/e
1

c5, c6/e1 c1, c2, c3, c4/e1

c6/e1 c1, c2, c3, c4, c5/e1

c1, c2/e0 c3/e0

c1 , c2 , c3 , c4/e
1

c5/e1

c6/e1

Figure 4.2: FSM abstraction α(A) of the original FSM A shown in Fig. 4.1.

{s0, s1} {s2, s3, s4}

c1, c2, c3/e0

c4, c5, c6/e1

c1, c2, c3, c4, c5, c6/e1

Figure 4.3: Minimised FSM associated with α(A) from Fig. 4.2.

The abstraction concept described above is implemented by the SH-

Method (class SHMethod). When using abstraction machines, the test gen-

eration frame is created with an additional parameter:
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1 // ... read reference FSM and abstraction FSM ...

2 // referenceFsm is a unique pointer to the reference FSM.

3 // abstractionFsm is a unique pointer to the abstraction FSM.

4 TestGenerationFrame

5 genFrame("SAFETY -H-METHOD -FSBRTSX",

6 move(referenceFsm),

7 make_unique <SHMethod >( numAdditionalStates),

8 move(abstractionFsm));

9

10 // Generate the test suite and write it to file

11 genFrame.generateTestSuite ();

12 genFrame.writeToFile ();

Observe that the SH-Method is exhaustive, but not sound. This means

that an implementation can fail a test suite even though it correctly im-

plements the property for which the abstraction FSM has been created. In

this case, the test suite has uncovered a violation of language equivalence,

which we consider as a good thing, because in principle, the SUT should

really be equivalent to the reference model, though we are currently only

interested in a certain property. Test suites generated by the SH-Method

will never fail for implementations that are language equivalent to the ref-

erence model. In [8] it has been shown for a speci�c type of properties that

it is possible to create complete (i.e. exhaustive and sound) test suites that

only fail if the speci�ed property is violated. This insight, however, is of

theoretical value only, because these test suites may become larger than

suites establishing language equivalence.

The fact that two FSMs are required for the SH-Method deserves an

explanation. In principle, it would be possible to use the abstracted model

itself as reference machine. However, the di�erence a between the number

of states in the minimised reference machine and the potential number of

states in the minimised DFSM representing the implementation behaviour

would be larger than for the original reference machine. The test suite

size, however, grows exponentially in a. Therefore, it is better to use the

original machine (A in the example above) with a smaller value of a.

Furthermore, note that it is not always the case that utilisation of an

abstraction FSM will reduce the test suite size in comparison to testing for

language equivalence. The following heuristics is applicable to decide this.

� The Safety-H-Method never produces more test cases then the H-

Method.
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� If the prime machine of the FSM abstraction still has the same size

as the prime machine of the reference model, then no reduction is to

be expected.

� If all states of the reference model's prime machine can be distin-

guished by very few very short traces, then the test case reduction

to be achieved by the Safety-H-Method can be expected to be quite

small, even if the prime machine of the FSM abstraction has fewer

states than that of the reference model.

� If the reference FSM contains a region that is of no relevance for the

property to be checked, and if this region can never be left once en-

tered, the test suite size reduction achieved by the SH-Method grows

with the size of this region.

� The ratio \number of test cases generated by SH-Method / number of

test cases generated by H-Method" does not change signi�cantly with

the number a of potential additional states in the implementation.

In any case, the test suites can be calculated beforehand, and if their

size is nearly identical, it is more advisable to test for language equivalence,

since this guarantees that all properties ful�lled by the reference model are

also ful�lled by the implementation.

Finally, note that the FSM abstraction and the resulting test suite cre-

ated by the SH-Method are not only applicable to a single property, but

to all properties captured by the same abstraction FSM. This fact is well-

known from the �eld of model checking. If a Kripke structure has a labelling

function L mapping concrete states s to sets L(s) ⊆ AP of atomic proposi-

tions that are ful�lled in this state, then the resulting Kripke structure can

be used for property checking of all temporal formulas (LTL, CTL, CTL*)

over atomic propositions from AP [2].

Example 2. Consider the following property of A from Example 1 which

is captured by the same FSM abstraction α(A).

Property 2. After an output in {d2, d3, d4} has been produced,

there will never be another output from {d0, d1}.
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Using LTL, this property would be expressed as

G
(
(d2 ∨ d3 ∨ d4) ⇒ G(¬d0 ∧ ¬d1)

)
.

This property is encoded in α(A) as well, since it can be expressed by

Property 2a. After output e1 has been produced, there will

never be another output e0.

The test suite created by the SH-Method for Property 1 from Example 1

is also exhaustive for Property 2. �
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Chapter 5

Using Generator, Checker, and
Test Harness – the Workflow

5.1 A Sample Test Campaign

Throughout this chapter, we work with a simple model-based testing cam-

paign, using an example originally introduced by Paul C. Jorgensen in [10].

5.1.1 Reference Model Description

The garage door controller (GDC) is a computer managing the up and

down movement of a garage door via an electric motor, as shown in the

overview diagram in Fig. 5.1. The GDC outputs commands a1, a2, a3,

a4 to the motor, initiating down movement, up movement, stopping the

motor, and reversing its down movement into up movement, respectively.

As inputs, the GDC receives a command \button pressed" (e1) from a re-

mote control device, and two events \door reaches position down" (e2) and

\door reaches position up" (e3) from two door position sensors. Addition-

ally, a safety device is integrated by means of a light sensor which sends

an event \light beam crossed" (e4) when something moves underneath the

garage door while the door is closing.
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Garage Door 
Controller

Garage Door 
Motor

Remote Control 
Device

Light Sensor

Garage Door 
Mechanics

e1

a1

a2

a3

a4

mechanical 
interaction  
up/down/stopped

e4

Door Position Sensor

e1, e2

Input Description Output Description

e1 Event  
“Remote Control Button Pressed” a1 Command 

“Start down movement”

e2 Event 
“Door reaches down position” a2 Command 

“Start up movement”

e3 Event 
“Door reaches up position” a3 Command 

“Stop movement”

e4 Event 
“Light beam crossed” a4 Command 

“Reverse down movement to up”

Figure 5.1: Garage door controller and its operational environment.

The expected behaviour of the GDC is modelled by the FSM in Fig. 5.2.

In the initial state Door Up, the door is expected to be in the UP position,

and the \button pressed" event e1 from the remote control triggers a \Start

down movement" command a1 to the motor. The GDC transits to state

Door closing. In this state, an input e4 from the light sensor leads to an a4

command to the motor, with the e�ect that the down movement of the door

is reversed to up movement. This leads to state Door opening. During down

movement in state Door closing, another occurrence of the e1-event leads to

a \Stop movement" command a3 to the motor, and the controller transits

to state Door stopped going down. From there, the downward movement is

resumed (output a1), as soon as another e1-command is given.
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Figure 5.2: Behaviour of the garage door controller, modelled by a DFSM.

When the door sensor signals that the door has reached the down po-

sition (e2), the motor is stopped with command a3, and the controller

transits into state Door down. From this state, another e1-event triggers

the analogous actions for moving the door up, until the UP position is

reached. During the UP-movement, inputs from the light sensor do not

have any e�ect.

In Fig. 5.3, the same DFSM is modelled by means of a transition table.

The missing transitions in each state have the \self-loop-with null out-

puts" interpretation, as explained in Section 3.2.1. Therefore, the DFSM

is meant to be completely speci�ed. When reading the DFSM from in-

put �les where the self-loop transitions are missing, the auto completion

transformer ToAutoCompleteWithSelfLoopTransformer introduced in Sec-

tion 3.2.1 needs to be applied.
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Figure 5.3: Tabular format for modelling DFSMs.

Note that the DFSM in Fig. 5.2 is not minimal; it has been represented

in this form to optimise its readability. The equivalent minimised machine

is shown in Fig. 5.4. This has been constructed using the prime machine

transformer described in Section 3.2.2. The output graph shown in Fig. 5.4

has been created by using the ToDotFileVisitor described in Chapter 6.

This produces �les in the so-called .dot-format, from which the GraphViz1

tool creates graph representations.

In main program �le usage demo.cpp, these transformations have been

programmed in procedure demo transformToPrimeMachineGdc().

1http://www.graphviz.org
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{ Door_Up(0),Door_stopped_going_down(2) }(0)   e4/null    e3/null    e2/null  

{ Door_closing(4) }(2)

e1/a1 e1/a3

  e3/null  

{ Door_Down(1),Door_stopped_going_up(3) }(1)

e2/a3 { Door_opening(5) }(3)

e4/a4

  e4/null    e3/null    e2/null  

e1/a2

e3/a3

e1/a3

  e4/null    e2/null  

Figure 5.4: Minimised, auto-completed DFSM, equivalent to the GDC

model from Fig. 5.2.

5.1.2 GDC System Under Test

A sample implementation in C++ is given in the FSM Library, directory

src/harness/example, in �le gdclib.cpp; the public operation interfaces

are speci�ed in gdclib.hpp as follows.
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1 typedef enum f

2 e1 ,

3 e2 ,

4 e3 ,

5 e4

6 g gdc inpu t s t ;

7

8 typedef enum f

9 nop ,

10 a1 ,

11 a2 ,

12 a3 ,

13 a4

14 g gdc output s t ;

15

16 extern void gd c r e s e t ( ) ;

17 extern gdc output s t gdc ( gdc inpu t s t x ) ;

The GDC expects its inputs in enumeration format gdc_inputs_t and

returns actions to the motor in format gdc_outputs_t. The implementa-

tion in gdclib.cpp follows the state machine programming paradigm and

is straightforward, so that no further comments are needed.

In Section 5.4 it is shown how test suites generated from the GDC model

discussed in Section 5.1.1 can be executed against this C++ application,

using the test harness provided by libfsmtest.
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5.2 Using the Test Generator

Users only interested in generating test suites with the existing methods

available in the libfsmtest class library do not need to write their own

programs with instances of test generation frame and test generation vis-

itors, as described in Chapter 4. Instead, they can invoke the program

generator which is created from the library and source �le

src/generator/generator.cpp

when building the libfsmtest class library2.

The generator program is invoked from its directory as follows

1 . / genera to r [<opt ions >] n

2 <t e s t s u i t e name> n

3 <Path to r e f e r e n c e model> n

4 [<Path to ab s t r a c t i on model>]

Parameter <test suite name> speci�es the name of the test suite to be

generated. On termination of the generator, the test cases �le containing

the input sequences to be exercised on the system under test is then named

1 <t e s t s u i t e name>. txt

and stored in the directory from where generator has been invoked.

Parameter <Path to reference model> gives the path and basename

of the reference model. The generator uses the FsmFromFileCreator de-

scribed in Section 3.1.3 internally, so �le extensions and �le types are de-

termined automatically.

Optional parameter <Path to abstraction model> gives the path and

basename of the abstraction model. This is only used when applying the

safety-complete H method (see Section 4.3).

The generator produces a test suite according to the following options.

1. If no options are provided, the W-Method is applied with 0 additional

states assumed for the implementation (see variable numAddStates in

Listing 4.1).

2Recall from README.md that the executables reside in sub-directories of the build direc-

tories build.Debug, build.Release, or xcodebuild.Debug. For example, the generator

program has path build.Release/generator/generator.
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2. -a<number> sets the value of additional states to be assumed for the

implementation to <number>. This option is used in combination with

the options selecting the test generation method described below.

3. -cself speci�es that an auto completion transformation should be

applied on the FSM input �les with self loops and null outputs, as

described in Section 3.2.1. This option is used in combination with

the options selecting the test generation method described below.

4. -cerror speci�es that an auto completion transformation should be

applied on the FSM input �les with transition to an error state and

error output, as described in Section 3.2.1. This option is used in

combination with the options selecting the test generation method

described below.

5. -null <null string> speci�es the name of the null output, as used

in an auto-completed FSM's presentation layer. This option is only

useful if one of the options -cself of -cerror have been provided as

well. If this option is not provided, the default value null will be

chosen for the null output.

6. -errorout <error output string> speci�es the name of the error

output, as used in an auto-completed FSM's presentation layer. This

option is only useful if the option -cerror has been provided as well.

If this option is not provided, the default value error will be chosen

for the error output.

7. -errorstate <error state string> speci�es the name of the error

state, as used in an auto-completed FSM's presentation layer. This

option is only useful if the option -cerror has been provided as well.

If this option is not provided, the default value ERROR will be chosen

for the error output.

The following options select the test generation method to be used; only

one of them may be chosen when invoking the generator.

1. -w { selection of the W-method
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2. -wp { selection of the Wp-method

3. -h { selection of the H-method

4. -spyh { selection of the SPYH method

5. -csc { selection of the classical state counting method

6. -ssc { selection of the strong state counting method

7. -sh { selection of the safety-complete H-method.

This is the only option requiring the additional parameter

<Path to abstraction model>.

Example 3. For generating a test suite for the garage door controller

(GDC) described in Section 5.1, we �rst note that raw �le speci�cations of

the GDC exist in the resources/ directory, �les

garage.fsm, garage.in, garage.out, garage.state

The fsm-�le contains all transitions for a complete DFSM, so no auto-

completion directives are required when calling the generator. Assume that

we wish to use the H-Method for test suite generation under the hypothesis

that the software under test has at most 2 extra states.3 The name of the

test suite should be ‘‘SUITE-GDC-H-2’’. Activating the generator from its

build directory, say,

libfsmtest/build.Release/generator/

requires command

1 . / genera to r −h −a2 "SUITE-GDC-H-2" . . / . . / r e s ou r c e s / garage

On termination, the output

3More precisely, we assume that the unknown minimised DFSM representing the true

behaviour of the software under test has at most 2 additional states in comparison to the

minimised GDC reference model.

48



Test generation completed.

Number of test cases: 277

Total length : 1493

Test case file : SUITE-GDC-H-2.txt

is written to the console. The test case �le contains 277 lines, each line

representing the inputs for one test case. The "Total length" is number

of input events summed up over all test cases in the suite.

The generator creates the following �les in the directory from where it

has been activated:

1. File SUITE-GDC-H-2.txt containing the test cases. Its �rst lines look

like this (recall that e1, e2, ... are inputs to the GDC, as described

Section 5.1):

e1, e1, e1, e1, e1

e1, e1, e1, e2, e1

. . .

e1, e2, e1, e1, e1, e1

e1, e2, e1, e1, e1, e2

e1, e2, e1, e1, e2, e1

e1, e2, e1, e1, e3, e1

. . .

2. Files

garage.fsm, garage.in, garage.out, garage.state

because these represent the reference FSM which is part of the test

suite, where it serves as the test oracle.

When using the generated test suite in the checker or test harness, described

in Section 5.3 and Section 5.4, respectively, these �les have to be supplied

to the respective tool. �
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5.3 Using the Checker

Users who intend to apply a test suite to a given FSM do not need to

write their own programs to do so. Instead, they can invoke the program

checker which is implemented in the source �le

src/checker/checker.cpp

and generated when building the libfsmtest. Currently this checker sup-

ports test suite application with respect to testing for language equivalence.

The checker program is invoked from its directory as follows:

./checker [options]

<Path to the test suite>

<Path to the reference model>

<Path to the FSM to test>

The parameter <Path to the test suite> speci�es the �le where the test

suite to be applied is read from. For reference on test suite generation see

Section 5.2.

Parameter <Path to the reference model> gives the path and base-

name of the reference model. The checker uses the FsmFromFileCreator

described in Section 3.1.3 internally, so �le extensions and �le types are

determined automatically.

The path and basename of the model to apply the test suite to has to

be given as the parameter <Path to the FSM to test>. As with <Path

to the reference model>, the checker uses the FsmFromFileCreator, so

the �le extensions and �le types are determined automatically.

With these three mandatory parameters, the checker tries to read all

given necessary �les and throws an exception if any of those are not avail-

able4.

If all �les could be read successfully, a �nal check ensures that both

the reference FSM and the FSM to test have the same input and output

4Note that the current implementation will warn about an unsupported �le format if

any of the given FSMs could not be read, even if that is due to missing �les.
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alphabets5.

Possible options for the checker are the options -cself, -cerror, -null,

-errorout and -errorstate as described in Section 5.2. These options

control whether, which and how an auto completion transformer shall be

applied to the SUT model before checking it.

When all parameters have been parsed successfully, the input sequences

in the test suite will be evaluated on both the reference FSM and the FSM

to test. For both FSMs and for each input sequence in the test suite the set

of produced output traces is determined, and di�erences in these sets are

examined. For each output sequence produced by one of the FSMs that is

not produced by the other FSM in response to the same input sequence,

the checker determines the output sequence with the longest common pre�x

and prints both sequences.

FAILURE: SUT implements unspecified output trace 0,0,2,2

for input trace 0,0,1,1

Closest match diverges at step 4: 1

FAILURE: SUT does not implement output trace 0,2,1,1

for input trace 0,1,1,1

Closest match diverges at step 3: 2,2

(Expected: 1,1)

FAILURE: SUT implements unspecified output trace 0,2,2,2

for input trace 0,1,1,1

Closest match diverges at step 3: 1,1

FAILURE: SUT does not implement output trace 1,0,2,0,2

for input trace 1,0,1,0,1

However, if the sets of output sequences produced by both machines agree

for all input sequences in the test suite, the checker notes this as PASS and

exits.

Example 4. For checking an implementation of the garage door controller

(GDC) described in Section 5.1, we note again that raw �le speci�cations

of the GDC exist in the resources/ directory, �les

5The current implementation even requires both the input and output alphabet pairs

to de�ne the symbols in the same order.
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garage.fsm, garage.in, garage.out, garage.state

Furthermore, we will use the test suite generated in Section 5.2,

‘‘SUITE-GDC-H-2‘‘ to check a mutated implementation. To generate this

mutation we copy the GDC FSM �les, rename the copies to

garage-mutant.fsm, garage-mutant.in,

garage-mutant.out, garage-mutant.state

and modify the garage-mutant.fsm �le. In this example, we remove

the transition from the state Door stopped going down to the state

Door closing and change the output on the self-loop of Door Up triggered

by input e3 from null to a3.

Assuming the current working directory contains the checker executable

and that the garage, garage-mutant and test suite �les are in the directory

/tmp, we invoke the checker as follows

1 . / checker /tmp/SUITE−GDC−H−2 /tmp/ garage /tmp/garage−mutant

On termination, the checker prints numerous lines beginning with

FAILURE:, as the SUT clearly is not equal to the GDC but in the fault

domain. The �rst lines read as follows:

1 FAILURE: SUT does not implement output t r a c e "a1,a3,a1,a3,a1"

for input t r a c e "e1,e1,e1,e1,e1"

2 Clos e s t match d iv e r g e s at s tep 3 : ""

3 ( Expected : "a1,a3,a1" )

4 FAILURE: SUT implements un sp e c i f i e d output t r a c e "a1,a3" for

input t r a c e "e1,e1,e1,e1,e1"

5 Clos e s t match d iv e r g e s at s tep 3 : "a1,a3,a1"

The �rst failure here shows the missing transition: When executing the

input sequence e1,e1,e1, we expect the output sequence a1,a3,a1. How-

ever, due to the missing transition in the mutant, the mutants execution

stops after the second input. The closest match mentioned by the checker

is the sequence with the sequence produced by the SUT with the longest

pre�x common with the expected output sequence. Beginning at step 3,

i.e. after the second e1 input, the SUT produces an empty trace, which

is indicated by the second line. The third line shows the output sequence

that was expected at that position.
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The second failure shows the same fault but from the other perspective:

The SUT produces an unexpected output sequence a1,a3 and the closest

match is the output sequence in the set of expected output sequences that

shares the longest pre�x with the produced sequence.

Further down the list of failures, we see the following lines:

1 FAILURE: SUT does not implement output t r a c e "a1,a4,a3,null,a1,

a3" for input t r a c e "e1,e4,e3,e3,e1,e1"

2 Clos e s t match d iv e r g e s at s tep 4 : "a3,a1,a3"

3 ( Expected : "null,a1,a3" )

4 FAILURE: SUT implements un sp e c i f i e d output t r a c e "a1,a4,a3,a3,a1

,a3" for input t r a c e "e1,e4,e3,e3,e1,e1"

5 Clos e s t match d iv e r g e s at s tep 4 : "null,a1,a3"

These re
ect the mutated output: The expected output at that position

in the execution sequence would have been the output null, whereas the

SUT produces the output a3. �
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5.4 Using the Test Harness

A test harness is a program which exercises a given test suite on a software

under test (SUT). The libfsmtest class library comes with a test harness

which allows to execute test suites generated by means of one of the FSM-

based methods described above against a C++ library consisting of one or

more operations to be tested. The re-usable test harness requires input

re�nement (each input alphabet value of the test case needs to be mapped

to a concrete SUT operation call with input parameter values and presets

of attributes) and output abstraction (the e�ect of each operation call on

return value, reference parameters and attributes needs to be abstracted to

the corresponding value of the reference FSM's output alphabet).

To support this, the test harness operates with a SUT wrapper. This is

a C++-source frame to be completed for each test campaign, o�ering a func-

tion with �xed signature std::string sut(const std::string& x) to the

test harness for calling the SUT. For each input to be exercised on the SUT

in a test step, the test harness calls sut(x), where x is the input alphabet

value as string. The wrapper maps x to concrete input data (parameters

and attributes) of the SUT and calls the associated SUT operation. The

SUT response is abstracted by the wrapper to an output alphabet value

which is returned as string from call sut(x) to the harness. The harness

checks SUT reactions by simulating the test suite's reference FSM in back-

to-back fashion and comparing outputs. In Fig. 5.5, the interplay between

harness, wrapper and SUT is depicted.

The harness is contained in libfsmtest as �le

libfsmtest/src/harness/harness.cpp

It needs to be compiled and linked with the SUT, but there should be no

need in general to make any adaptations in this �le.
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Test Harness

harness

SUT Wrapper Software Under Test

void sut_init()

void sut_reset()

const string sut(const string& x)

provides

provides

providesuses

uses

uses

t0 sw_under_test(t1 x1, t2 x2, …)

uses provides

SUT reset actions

performs

SUT initialisation actions

performs

Figure 5.5: Test harness, SUT wrapper, and software under test.

The wrapper source frame is provided by �le

libfsmtest/src/harness/sut_wrapper.cpp

This �le needs to be edited; the source frame is shown in Listing 5.1. As

can be seen in the source frame, the following code needs to be included.

1. Include-directives to SUT-speci�c header �les, so that the software

under test can be invoked from the wrapper, and the attributes to be

preset can be accessed (line 4 in Listing 5.1).

2. Data structures (typically maps) of functions for input re�nement

and output abstraction need to be inserted (line 10 in Listing 5.1).
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3. The SUT has to be initialised in the body of function void

sut init(). If the SUT software does not consist of a static class, it

is usually required to instantiate SUT objects here and make pointers

to these objects available in the global wrapper data.

4. The body of function void sut reset() needs to be �lled in. The

code to be inserted here should re-initialise the SUT, so that a new

test case can be applied to the SUT residing again in its initial state.

5. The body of the function const string sut(const string& input)

needs to be provided. Here, the input data re�nement is per-

formed and the associated SUT operation is called. The returned

data and changed attributes are abstracted to the return string

fsmOutputEvent and returned to the calling harness.
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Listing 5.1: SUT wrapper source frame.

1 #include <s t r i ng>

2

3 // Include header files of library to be tested

4 // #include "..."

5

6 /** Helper data structures and functions for

7 * SUT test wrapper */

8 // ...

9 us ing namespace std ;

10 void s u t i n i t ( ) f

11 // initialise wrapper data structures

12 // for mapping FSM inputs to SUT inputs

13 // and vice versa

14 // ...

15 // Initialise SUT, if required , by calling

16 // initialisation functions or initialising

17 // global SUT variables

18 // ...

19 g

20

21 void s u t r e s e t ( ) f

22 // Insert code suitable for resetting SUT into

23 // its initial state

24 // ...

25 g

26

27 const s t r i n g sut ( const s t r i n g& input ) f

28 s t r i n g fsmOutputEvent ;

29 // Transform FSM input event passed as string

30 // ’input’ to SUT input variable settings and

31 // global variables settings

32 // ...

33 // Call the SUT function addressed by the FSM input event

34 // with the input parameter values defined before

35 // ...

36 // Convert the return value, the (in-)out-parameter values,

37 // and the global SUT variables to the FSM output event

38 // represented as string fsmOutputEvent

39 // ...

40 // return output event in string representation

41 return fsmOutputEvent ;
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Example 5. In directory

libfsmtest/src/harness/example

an example test suite has been provided for testing the garage door con-

troller (GDC) code which is contained there in �les gdclib.cpp, .hpp.

The reference DFSM is the result of a generator call (see Section 5.2) and

resides in �les GDC.fsm, .in, .out, .state. The test cases are contained

in SUITE-GDC.txt.

The SUT wrapper for this test application is shown in Listing 5.2. In

lines 10|15, this wrapper applies a particularly simple, but frequently ap-

plicable variant of input re�nement and output abstraction. To analyse

this, recall from the GDC software interface speci�ed in Section 5.1.2 that

inputs to the GDC are speci�ed as enumeration values e1,...,e4 and out-

puts by enumeration values nop,a1,...,a4. The test harness uses inputs

encoded by the presentation layer of the reference DFSM (see �le GDC.in).

This encoding uses strings "e1",...,"e4". As a consequence, input re-

�nement simply requires a mapping of input alphabet strings to associated

enumeration values. This is realised in lines 10|12 as map fsmIn2gdcIn.

Conversely, the GDC software return values nop,a1,...,a4 need to be

mapped to output alphabet values of the reference DFSM (�le GDC.out)

which has the string values "null", "a1",...,"a4". This is realised by

map gdcOut2fsmOut in lines 13|15.

With these mappings at hand, the implementation of the sut() wrap-

per function shown in lines 23|34 is straightforward: the input alpha-

bet value input is transformed by means of map fsmIn2gdcIn into an

enumeration value which is used as input argument of the SUT function

gdc(). The return value y of this SUT call is transformed by means of

map gdcOut2fsmOut into a string of the DFSM output alphabet and used

as return value of the wrapper function sut().

58



Listing 5.2: SUT wrapper for the garage door controller example.

1 #include <s t r i ng>

2 #include <map>

3 us ing namespace std ;

4 // Include header files of library to be tested

5 #include "gdclib.hpp"

6 /**

7 * Helper data structures and functions for

8 * SUT test wrapper

9 */

10 map<s t r i ng , gdc input s t> fsmIn2gdcIn = f

11 f"e1" , e1 g , f"e2" , e2 g , f"e3" , e3 g , f"e4" , e4g

12 g ;

13 map<gdc outputs t , s t r i ng> gdcOut2fsmOut = f

14 fnop , "null"g , fa1 , "a1"g , fa2 , "a2"g , fa3 , "a3"g , fa4 , "a4"g

15 g ;

16 us ing namespace std ;

17 void s u t i n i t ( ) f

18 gd c r e s e t ( ) ;

19 g

20 void s u t r e s e t ( ) f

21 gd c r e s e t ( ) ;

22 g

23 const s t r i n g sut ( const s t r i n g& input ) f

24 s t r i n g fsmOutputEvent ;

25 map<s t r i ng , gdc input s t > : : i t e r a t o r

26 i npu t I t e = fsmIn2gdcIn . f i nd ( input ) ;

27 i f ( i npu t I t e == fsmIn2gdcIn . end ( ) ) return fsmOutputEvent ;

28 gdc output s t y = gdc ( input I te−>second ) ;

29 map<gdc outputs t , s t r i ng > : : i t e r a t o r

30 output I te = gdcOut2fsmOut . f i nd (y ) ;

31 i f ( output I te == gdcOut2fsmOut . end ( ) ) return

fsmOutputEvent ;

32 fsmOutputEvent = outputIte−>second ;

33 return fsmOutputEvent ;

34 g
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Using the harness/example sub-directory as working directory, the har-

ness is now compiled and linked together with wrapper and SUT using

command

1 c++ −std=c++17 −o harness n

2 −I . / −I . . / . . / l i b f sm t e s t n

3 � . cpp . . / harness . cpp

4 . . / . . / . . / bu i ld . Re lease / l i b f sm t e s t / l i b f sm t e s t . a − l c++

Command c++ is a link to the C++ compiler. The -std option indicates

that C++ 2017 syntax is admissible (some compilers use an older C++ stan-

dard if this option is missing; this might lead to compile errors). Options

-I... indicate where to look for C++ header �les. In line 3 all cpp-�les

in the local directory (wrapper and SUT code) are referenced, as well as

the harness source code residing in the directory above. In line 4, the

libfsmtest library and the C++ standard library are made available to the

other object �les. As a result of the compilation and linking process, the ex-

ecutable harness is created which can be invoked with di�erent test suites

and reference DFSMs to be executed against the GDC software under test.

For the SUITE-GDC.txt test cases, the execution command is

1 . / harness SUITE−GDC GDC

which leads to result

1 PASS : e1/a1 , e1/a3 , e1/a1

2 PASS : e1/a1 , e2/a3 , e1/a2 , e1/a3

3 PASS : e1/a1 , e2/a3 , e1/a2 , e2/ nu l l

4 PASS : e1/a1 , e2/a3 , e2/ nul l , e1/a2

5 PASS : e1/a1 , e2/a3 , e3/ nul l , e1/a2

6 PASS : e1/a1 , e2/a3 , e4/ nul l , e1/a2

7 PASS : e1/a1 , e3/ nul l , e1/a3

8 PASS : e1/a1 , e3/ nul l , e2/a3

9 PASS : e1/a1 , e4/a4 , e1/a3 , e1/a2

10 PASS : e1/a1 , e4/a4 , e2/ nul l , e1/a3

11 PASS : e1/a1 , e4/a4 , e2/ nul l , e2/ nu l l

12 PASS : e1/a1 , e4/a4 , e3/a3 , e1/a1

13 PASS : e1/a1 , e4/a4 , e4/ nul l , e1/a3

14 PASS : e1/a1 , e4/a4 , e4/ nul l , e2/ nu l l

15 PASS : e2/ nul l , e1/a1

16 PASS : e3/ nul l , e1/a1

17 PASS : e4/ nul l , e1/a1
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written to the console.

Readers are invited to experiment with di�erent SUT implementations,

fault injections into the gdclib.cpp implementation, and di�erent model

variants. He or she should keep in mind that some fault injections may

increase the number of states in the minimised DFSM corresponding to

the true behaviour of the software under test. If this is suspected, the

parameter -a <additional states> has to be used for test generation with

a suitable estimate (see Section 5.2). Otherwise it is not guaranteed that

the test suite will uncover every violation of language equivalence between

implementation and reference model. �

Note that the current version of the test harness only checks for language

equivalence with deterministic reference FSMs and deterministic imple-

mentations. Nondeterminism and reduction testing, as well as support of

other conformance relations (quasi reduction and strong reduction) will be

included in future versions of the harness.

61



Chapter 6

Visitors for Saving FSMs to
Disk

The libfsmtest class library o�ers three ways to store FSM instances to

disk:

� Raw �le format described in Section 3.1.1.

� CSV format described in Section 3.1.2.

� GraphViz format (also called \dot format") to be visualised by

GraphViz1.

To store an FSM instance in raw format, class ToFsmFileVisitor with

�les

src/libfsmtest/visitors/ToFsmFileVisitor.hpp, .cpp

is used. To store an FSM instance in CSV format, class ToCsvFileVisitor

with �les

src/libfsmtest/visitors/ToCsvFileVisitor.hpp, .cpp

is used. To store an FSM instance in GraphViz format, class

ToDotFileVisitor with �les

1https://graphviz.org
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src/libfsmtest/visitors/ToDotFileVisitor.hpp, .cpp

is used. All visitors get the �lename as input parameter of their constructor.

Listing 6.1 shows how to apply these visitors.

Listing 6.1: Write an FSM to disk in three di�erent formats format.

1 #include "..."

2

3 us ing namespace std ;

4 us ing namespace l i b f sm t e s t ;

5

6 int main ( int argc , char� argv [ ] ) f

7

8 // read and transform FSMs

9 // ...

10

11 // Write FSM pointed to by unique pointer ’fsm’

12 // in raw format to disk.

13 // We use the FSM name as base name. The visitor creates

14 // 4 files (extensions .fsm, .in, .out, .state) with this

15 // basename.

16 ToFsmFileVis itor v i s i t o r ( fsm−>getName ( ) ) ;

17 fsm−>accept ( v i s i t o r ) ;

18 v i s i t o r . wr i teToFi l e ( ) ;

19

20 // Write FSM pointed to by unique pointer ’fsm’ in

21 // CSV format to disk. Again, we use the FSM name

22 // as file basename

23 ToCsvFi l eVis i tor csv ( fsm−>getName ( ) ) ;

24 fsm−>accept ( csv ) ;

25 csv . wr i teToFi l e ( ) ;

26

27 // Write FSM pointed to by unique pointer ’fsm’ in

28 // GraphViz format to disk

29 ToDotFi l eVi s i tor dot ( fsm−>getName ( )+".dot" ) ;

30 fsm−>accept ( dot ) ;

31 dot . wr i teToFi l e ( ) ;

32

33 g
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