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Preface

This manual contains the documentation of the 1ibfsmtest. This library
has been programmed in C*™". Its classes contain algorithms for instanti-
ating, evaluating, transforming, and creating test suites from finite state
machines (FSM) representing Mealy Automata. The underlying the-
ory has been summarised in the lecture notes [14]. We will give additional
references where needed.

The 1ibfsmtest class library is a re-factored, novel implementation of
its predecessor fsmlib-cpp’, an open source library whose maintenance is
now discontinued. The new libfsmtest is open source as well?, but it
differs from the fsmlib-cpp with respect to the following aspects.

e libfsmtest is licensed under the MIT license https://opensource.
org/licenses/MIT.

e The main classes of the 1ibfsmtest class library have been reduced to
methods for evaluating FSMs, simulating them step by step or with
pre-defined input traces, and for checking whether given input/output
traces are contained in the FSM’s language.

e The creation of FSMs from different file formats, as well as their trans-
formation and random creation, has been moved to factory methods.

e The test generation algorithms are now implemented in separate vis-
itors [4], facilitating the addition of new algorithms without having
to change the main classes.

lhttps://github.com/agbs-uni-bremen/fsmlib-cpp.git
’https://bitbucket.org/JanPeleska/libfsmtest
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The main objective of this re-design was to simplify the library API for
users and to facilitate library extension and maintenance. In comparison
to other existing libraries supporting FSM-based testing, the 1libfsmtest
has the following unique selling points.

e It supports both complete and partial FSMs, and both deterministic
and non-deterministic FSMs.

e It provides test generation algorithms for different variants of confor-
mance relations, such as language equivalence, safety-equivalence [9]
and several variants of reduction.

e It provides ready-to-use main programs for test generation with all
the available methods and for running test suites generated from a
‘reference FSM’ against ‘implementation FSMs’. The latter program
corresponds to an FSM model checker.

e It provides a test harness framework which supports the execution
of test suites generated from FSMs against software under test pro-
grammed as C™ class libraries.

il
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Chapter 1

Download and Installation

The libfsmtest class library can be downloaded from bitbucket.org,
using command

1 git clone https://bitbucket.org/JanPeleska/libfsmtest.git

For producing the binary code of the library, including the executables,
the cmake tool® is required and needs to be installed first, if it is not avail-
able on your platform. The required CMakeLists.txt have already been
prepared in the libfsmtest repository.

The README . md file explains in detail how the cmake configuration, com-
pilation, and linking work under Linux, MacOSX, and Windows.

https://cmake.org


https://cmake.org

Chapter 2

Library Overview

2.1 Top-level Directory

The top-level directory libfsmtest/ of the libfsmtest class library is
structured as follows.

1. Directory doc/ contains this manual, named libfsmtest.pdf.

2. Directory resources/ contains sample FSMs, encoded in different file
formats.

3. Directory src/ contains the source code.

2.2  Source Directory src/

The source directory src/ contains the complete 1ibfsmtest source code,
classes and main programs. It is structured as follows.

1. Directory libfsmtest/ contains all classes, both cpp-files and header
files.

2. Directory usage-demo/ contains main program file usage-demo. cpp.
This file contains many small procedures, each showing how to use a
specific feature of the libfsmtest classes. If the examples shown in
this documenation do not suffice, or if you wish to create your own



code by copying from existing examples, this is the place to go. The
file names used in this documentation refer to files that actually exist
in the libfsmtest/resources directory. In program usage-demo,
these files are referenced with their absolute path

RESOURCEPATH + <filename>

The #define-value of RESOURCEPATH is determined while building
libfsmtest using cmake.

3. Directory generator/ contains the generator main program
generator.cpp. This program uses the 1ibfsmtest class library to
generate test suites. The reference FSMs to be used and the test
generation methods to be applied are provided as command line ar-
guments.

4. Directory checker/ contains the checker main program checker. cpp.
It takes an implementation FSM file name and a test suite file name
as command line arguments and runs the test suite against this FSM.

5. Directory harness/ contains the main program of the test harness,
called harness.cpp. The harness needs a wrapper to refine input
data to the system under test (SUT) and abstract SUT outputs back
to events of the FSM output alphabet. Such a wrapper can be im-
plemented by inserting code into the source frame sut_wrapper. cpp,
also contained in this directory. In sub-directory example/ an exam-
ple is shown, explaining how to configure the wrapper and run the
harness with a test suite against a C™" application library.

2.3 Source Directory src/libfsmtest

The directory containing the libfsmtest class library has the following
sub-structure.

1. Directory creators/ contains factory methods for creating FSMs
from files in various formats. Moreover, creator classes in subdirec-



tory creators/randoms contains generators of random FSMs. Fi-
nally, subdirectory creators/transformers contains FSM transfor-
mations.?

2. Directory fsm/ contains the main classes for FSMs and their basic
evaluation and simulation methods. The root class is Fsm, sub-classed
by 0fsm for observable (nondeterministic) FSMs, sub-classed by Dfsm
(deterministic FSMs).

3. Directory visitors/ contains visitors implementing the different
test generation methods provided by the libfsmtest. The vir-
tual visit-methods are pre-defined in header file FsmVisitor.hpp
contained in this directory. The concrete method visitors for
test generation algorithms, however, will usually subclass from
TestGenerationVisitor.hpp (also contained in this directory), be-
cause this class extends the FsmVisitor by operations used by most
concrete test case generation visitors. The latter are named after
the method they implement, such as HMethod.hpp, HMethod. cpp. To
study an example before adding you own test generation visitors, see
the W-Method visitor WVisitor.hpp, .cpp.

A second type of visitors is intended for writing FSM instances
to files in different format. These visitors will subclass from
ToFileVisitor.hpp.

4. Directory testsuite/ contains the main class TestSuite.hpp, .cpp
for creating test suites, together with auxiliary classes for representing
traces in linear or tree structure.

!For example, a transformation of an arbitrary nondeterministic FSM into an observ-
able FSM.



Chapter 3

FSM Creation

Though the main classes Fsm, Ofsm, and Dfsm have their own constructors,
these are used only indirectly via factory methods. The libfsmtest pro-
vides factory methods for creating FSMs by reading them from various file
formats, by transformation of existing FSMs, and by random generation.
The available creator methods are described in the subsequent sections.
Every creation method inherits from the abstract class FsmCreator, see
header file

src/libfsmtest/creators/FsmCreator.hpp

If you wish to program your own FSM creation method, you should also
create a concrete class inheriting from FsmCreator.

3.1 FSM Creation from Files

3.1.1 Raw File Format

The most versatile format for reading FSMs from file is the so-called raw
format.

e It allows for specification of deterministic or nondeterministic FSMs.
In the nondeterministic case, the FSM may be observable or unob-



servable. Both deterministic and nondeterministic FSMs can be com-
pletely specified or partial. ?

e It is possible to specify larger input alphabets, where not every input
is processed by the FSM.

e It is possible to specify larger output alphabets, where the FSM pro-
duces only a subset of the output alphabet.

Additionally, if FSMs are the result of another automated generation pro-
cess, the raw format is easier to generate automatically than the other
formats accepted by the generator.

By convention, FSM definition files in raw format carry the file extension
.fsm. Each line of an FSM definition file specifies one transition by means
of four non-negative numbers

<pre-state> <input> <output> <post-state>

The interpretation of one transition line is: “Starting in state <pre-state>,
the FSM may transit with input <input> to state <post-state>,
producing output <output>.” The states are numbered in range
0,1,2,...,(NumberOfStates — 1). The inputs are numbered in range
0,1,2,...,(SizeOflnput Alphabet — 1). The outputs are numbered in range
0,1,2,...,(SizeOfOutput Alphabet — 1).

For every state, all outgoing transitions must be listed in consecutive
lines. The initial FSM state is specified by the <pre-state> of the first line
in the file. Therefore the pre-state is not necessarily the one with number 0.
This is practical when producing different FSMs from the same initial FSM
by changing the initial state, but leaving all other specifications unchanged.
In such a case, the block of lines starting with the new initial state is just
moved to the beginning of the file.

Optionally, the .fsm-file can be complemented by three files defining
a presentation layer; this layer specifies the external names of states,
input events, and output events. The first file associates external state
names with internal state numbers. The name of the .fsm-file without
that extension is usually treated as the FSM-Name.

!Please look up the definitions in [14], if you are not familiar with these terms.
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<FSM-Name>.state The state files are usually named by the FSM-Name
with file extension .state. The file contents consists of a single text
column with NumberOfStates entries, such as

statel
statel
state?2

This associates name “state0” with state number 0, name “statel”
with state number 1 and so on. In external FSM representations,
these names will be used as state names.

<FSM-Name>.in The input files are usually named by the FSM-Name with
file extension .in. The file contents consists of a single text column
with SizeOflnputAlphabet entries, such as

in0
inl
in2

This associates name “in0” with input number 0, name “in1” with
input number 1 and so on. In external FSM representations, these
names will be used as input names.

<FSM-Name>.out The output files are usually named by the FSM-Name
with file extension .out. The file contents consists of a single text
column with SizeOfOutputAlphabet entries, such as

out0
outl
out2



This associates name “out0” with output number 0, name “outi1”
with output number 1 and so on. In external FSM representations,
these names will be used as output names.

oor_closing(4) 3 > e3/null

.

Door_stopped_going_down(2) = e2/nui— ea3/nutt> e4/null Door_Down(1) g e2/muit—> e3/nul

Figure 3.1: GraphViz representation of DFSM specified in raw format with
the files shown below.

For example, the state machine depicted in Fig. 3.1 is specified in raw
format as follows.

fsm-file. The state machine with its transitions is specified by

R P~ P, P, O O O O
W N -, O W NN+~ O

O O O N O O O =
B R P, 01O O O b



2014
2102
2202
2302
3025
3103
3203
3303
4032
4131
4204
4345
5033
5105
5230
5305

state-file. The state file is specified by

Door_Up

Door_Down
Door_stopped_going_down
Door_stopped_going_up
Door_closing
Door_opening

in-file. The input file is out-file. The output file is
el null
e2 al
e3 a2
ed a3
ad

The FSM creator using raw format is implemented as class
FsmFromFileCreator with header file

src/creators/FsmFromRawCreator.hpp
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Listing 3.1 shows how to create an FSM from a raw input file, together
with the three files for the presentation layer.

Listing 3.1: Create a FSM from raw format files.

#include "Fsm.hpp"
#include "FsmFromRawCreator.hpp"
using namespace std;
using namespace libfsmtest;
int main(int argc, char* argv[]) {
FsmFromRawCreator creator ("nonObservable.fsm",
"nonObservable.state",
"nonObservable.in",
"nonObservable.out",
"MY_NONOBSERVABLE_FSM");
unique_ptr<Fsm> fsm = creator.createFsm();
/] .
}

All classes implementing the factory methods from header
file FsmCreator.hpp mneed to provide one creator method
std: :unique ptr<Fsm> createFsm().

Note that the factory methods decide internally, whether to create in-
stances of class Fsm or instances of the sub-classes Ofsm or Dfsm. The
creation result is always a unique pointer to Fsm. Virtual functions and
polymorphism ensure that the proper methods are called. For example,
the callbool b = fsm->isMinimal () ; will use Gill’s Pk-table algorithm [5]
when the FSM is deterministic, a nondeterministic variant thereof [14] if
the machine is observable, and it will throw an exception if the FSM is
non-observable.

10



3.1.2 CSV File Format for FSMs

FSMs can also be modelled using CSV-format, exported from tools like
Excel or LibreOffice. Fig. 3.2 shows a DFSM table for the Garage Door
Controller example described below in Chapter 5. The rules for filling out
such a F'SM transition table are as follows.

1.

2.

The leftmost /uppermost field (A,1) is empty.

The first column, starting with (A,2), contains the state names, start-
ing with the initial state in (A,2).

The first row, starting with (B,1), contains the identifiers of the input
alphabet.

(a) For a state s and input x, field (s,x) has syntax s’/y. s’ is the
post state of the transition from state s on input x, and y is
the corresponding output. s’ must be a valid state identifier
occurring in the first column A.

(b) There can be multiple outgoing transitions for state s and
input x. Then, field (s,x) contains a comma-separated list
s1/Yty ..., S5 /yn of the above syntax to specify more than one
transition. For s{ and y;, the same conditions as above apply.

. All identifiers for states, inputs, and outputs conform to C-variable

syntax: start with a character or an underscore, only characters, un-
derscores, or numbers may follow, no spaces. These identifiers are
used to construct the presentation layer: they represent the exter-
nal names for states, inputs, and outputs. Internal consecutive non-
negative numbers for these will be created internally.

If a table field for some state s on some input x is empty, the resulting
FSM will be partial.

The CSV format needs semicolon *“;” as separator. This is
important when exporting from a formatted tabular file format (such
as .xlsx or .ods) to CSV.

11



A B C D E

al el e2 e3 ed

2 |Door_Up Door_closing/al

3 Door_Down Door_opening/a2

4 |Door_stopped_going_down Door_closing/al

5 Door_stopped_going_up Door_opening/a2

6 Door_closing Door_stopped_going_down/a3 Door_Down/a3 Door_opening/a4
7 |Door_opening Door_stopped_going_up/a3 Door_Up/a3

Figure 3.2: Tabular format for modelling DFSMs.

An example of an admissible model CSV-format looks as follows, it
corresponds to the DFSM transition table shown in Fig. 3.2.

;el;e2;e3;e4d

Door_Up;Door_closing/al;;;

Door_Down;Door_opening/a2;;;
Door_stopped_going_down;Door_closing/al;;;
Door_stopped_going_up;Door_opening/a2;;;
Door_closing;Door_stopped_going_down/a3;Door_Down/a3; ;Door_opening/a4
Door_opening;Door_stopped_going_up/a3; ;Door_Up/a3;

The CSV creator is implemented as class FsmFromCsvCreator with
header file

src/creators/FsmFromCsvCreator. hpp

Listing 3.2 shows how to create a FSM from a CSV file.

12



Listing 3.2: Create a FSM from a CSV file.

#include "Dfsm.hpp"
#include "FsmFromCsvCreator.hpp"

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {

FsmFromCsvCreator creator ("garage-door-controller.csv");
unique_ptr<Fsm> fsm = creator.createFsm();

13



3.1.3 Reading FSMs from File
With Automated Format Identification

The two FSM-from-file generators described above have been abstracted in
class

FsmFromFileCreator
contained in files
src/libfsmtest/creators/FsmFromFileCreator.hpp, .cpp

An instance of FsmFromFileCreator first identifies the file type provided by
the user and then performs the FSM instantiation using the FSM-from-file
creators described above. This allows for simpler code in programs using
the 1ibfsmtest. In particular, programs reading FSMs from different file
formats need not require users to specify the format explicitly or add file
identification code in the programs.

Listing 3.3: Create an FSM from file with automated format identification.

#include "FsmFromFileCreator.hpp"
#include ". . . "

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {

// First parameter of FsmFromFileCreator constructor:

// basename of the file(s) to be opened

// Secod (optional) parameter: FSM name to be used.

FsmFromFileCreator creator ("garage-door-controller",
"GDC") ;

unique_ptr<Fsm> fsm = creator.createFsm();

// ... now continue working with fsm ...

Consider the example in Listing 3.3. An instance of
FsmFromFileCreator 1is created by providing just the basename

14



"garage-door-controller" of the file. The instance will then pro-
ceed as follows in the call to method createFsm.

1. First, it is checked whether a file with the given basename and exten-
sion .fsm exists. If this is the case, the FSM will be instantiated with
the help of class FsmFromRawCreator, using the raw format. If .in,
.out, .state files with the same basename exist as well, they will
be used to create the FSM’s presentation layer. If not, a presentation
layer using just non-negative numbers for inputs, outputs, and states
will be created internally.

2. If (1.) does not apply, the instance of FsmFromFileCreator looks
for a file with the given basename and extension .csv. If such a file
exists, an instance of FsmFromCsvCreator will be internally created,
and the FSM will be instantiated from the CSV file.

3. Else, if file names are provided including the extension, the raw format
is expected to be contained in a file with extension . fsm, and the CSV
format is expected to be contained in a file with extension .csv. If
an unknown or no extension is provided, the FsmFromFileCreator
instance tries to guess the file type from the file content.

Recall from the description of the three FSM-from-file creators, that
FSM files with incomplete transition information will lead to the instan-
tiation of partial FSMs. In Section 3.2.1, the option to perform auto-
completion, that is, to create complete FSMs from partial specifications, is
described. There, a third optional parameter of the FsmFromFileCreator-
constructor is described which allows for automated application of an auto-
completion transformation.

15



3.2 FSM Creation by Transformation

All FSM transformation classes reside in directory

src/libfsmtest/creators/transformers.

3.2.1 Auto-Completion Transformers

When specifying partial FSMs, inputs are enabled or disabled in a state-
dependent way. If an input is enabled in a state we also say that it is
defined in that state, otherwise we say that it is undefined in that state.
There are different interpretations of inputs that are undefined in some
state?.

1. The specification model is incomplete, and it is unknown what should
happen for the undefined inputs in the respective states.

2. The undefined inputs cannot occur in the respective states (for ex-
ample, the input corresponds to an input button of a graphical user
interface which is not visible in the respective state).

3. The undefinedness of the input stands for this input is ignored in
this state, so it’s just a shorthand notation. This corresponds to a
self loop transition labelled by this input and a null output.

4. The undefinedness of the input stands for this input s not allowed
in this state, and its occurrence will cause an error output and
a transition into an error state which 1s never left again. This is
another shorthand notation. All inputs occurring when the FSM is
in the error state cause a null-output.

For the interpretations 3 and 4, two so-called auto-completion trans-
formers have been provided by classes

e ToAutoCompleteWithSelfLoopTransformer and

2A comprehensive discussion of these interpretations can be found in [15].

16



e ToAutoCompleteWithErrorStateTransformer,
both implemented in files

src/libfsmtest/creators/transformers/ToAutoCompletedTransformer.hpp
src/libfsmtest/creators/transformers/ToAutoCompletedTransformer. cpp

In Fig. 3.4, it is shown how the transformers are instantiated and invoked.

Listing 3.4: Use of the auto-completion transformers.

1 #include "creators/transformers/ToAutoCompletedTransformer.hpp"
2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc, charx argv[]) {

8 // read partial FSM from file,

9 // unique pointer fsm

10

11 // Transform fsm to completely specified FSM, using

12 // the self-loop auto-completion.

13 // As external presentation of the {\tt null} output,

14 // use string "_null". Type directive ’auto’ means that

15 // the new machine is again of type unique_ptr<Fsm>.

16 ToAutoCompleteWithSelfLoopTransformer selflLooper(fsm.get(), "_null");
17 auto selfLoopCompletedFsm = selflLooper.createFsm();

18

19 // Transform fsm to completely specified FSM, using

20 // the auto-completion with transition to an error state.

21 // As external presentation of the {\tt null} output,

22 // use string " _null". For the error output, use "_error".

23 // As error state name, use "ERROR"

24 ToAutoCompleteWithErrorStateTransformer

25 errorStater (fsm.get (), "_error", "_null", "ERROR");
26 auto errorStateCompletedFsm = errorStater.createFsm();

27

28 // Continue working with completely specified FSMs selfLoopCompletedFsm
29 // and errorStateCompletedFsm

30 //

31

32 }

Quite often, it is already clear when reading an FSM from a file that an
auto-completion should be performed. Therefore, the FsmFromFileCreator

17



offers the option to provide such a transformer when instantiating an
FsmFromFileCreator object. This is shown in Listing 3.5.

o
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Listing 3.5: Use of the auto-completion transformers.

#include "..."

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {

We know that file garage-door-controller.csv contains a

partial FSM definition, and we want the FSM to be

auto-completed with self-loops and null-outputs.

To this end, an instance of ToAutoCompleteWithSelfLoopTransformer
is provided to creator as third parameter.

The instance of ToAutoCompleteWithSelfLoopTransformer

gets a nullptr for the FSM, since this FSM first

has to be read from file.

FsmFromFileCreator

creator ("garage -door-controller.csv",
"garage-door-controller",
make_unique<ToAutoCompleteWithSelfLoopTransformer >
(nullptr, "null"));

unique_ptr<Fsm> fsm = creator.createFsm();

/7

continue working with fsm
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3.2.2 Transformation to Prime Machines
Recall that a prime machine is an FSM that is initially connected, ob-

servable, and minimised.

Transformation to the prime machine. Quite often, it is desirable
to transform a given arbitrary FSM into an initially connected, observ-
able, and minimised FSM in one step. This task is performed by class
ToPrimeTransformer in files

src/libfsmtest/creators/transformers/ToPrimeTransformer.hpp
src/libfsmtest/creators/transformers/ToPrimeTransformer. cpp

This transformer converts the given FSM according to the following
steps.

1. If necessary, the FSM is transformed into an initially connected one.

2. If necessary, the resulting machine is transformed into an observable
FSM.

3. The resulting machine is minimised.

These steps are performed by class ToPrimeTransformer through the indi-
vidual transformers described in the paragraphs below.
Listing. 3.6 shows how to use this transformation.
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Listing 3.6: Transformation to prime machine.

#include "creators/transformers/ToPrimeTransformer.hpp"

#include "..."

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {
// ... read partial FSM from file,
// unique pointer fsm

// Define the transformer to prime FSM,

// providing the original FSM to the constructor
ToPrimeTransformer prime(fsm.get());

// Perform the transformation and obtain unique pointer to
// the prime FSM

auto primeFsm = prime.createFsm();

// Continue working with the prime FSM
//

Transformation to initially connected machine. Recall that an FSM
is initially connected if all states can be reached from the initial states
by repeated application of the transition relation. The transfomer imple-
mented by class ToInitiallyConnectedTransformer in files

src/libfsmtest/creators/transformers/ToInitiallyConnectedTransformer.hpp
src/libfsmtest/creators/transformers/ToInitiallyConnectedTransformer.cpp

performs this transformation task.
Listing. 3.7 shows how to use this transformation.
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Listing 3.7: Transformation to an initially connected FSM.

#include "creators/transformers/ToPrimeTransformer.hpp"

#include "..."

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {
// ... read partial FSM from file,
// unique pointer fsm

// Define the transformer to initially connected FSM,

// providing the original FSM to the constructor
ToInitiallyConnectedTransformer ict(fsm.get());

// Perform the transformation and obtain unique pointer to
// the initially connected FSM

auto primeFsm = prime.createFsm();

// Continue working with the initially connected FSM
//

Transformation to observableFSMs. Any FSM can be transformed
into a language-equivalent observable one [14].> To this end, class
ToObservableTransformer in files

src/libfsmtest/creators/transformers/ToObservableTransformer.hpp
src/libfsmtest/creators/transformers/ToObservableTransformer.cpp

implements the standard algorithm for the transformation of arbitrary (par-
tial or comletely specified) FSM into observable ones with the same lan-
guage. The transformer will throw an exception if the FSM is not initially
connected. If the FSM is already observable, a copy will be returned by
operation createFsm() (see Listing 3.8

Listing 3.8 shows how to use this transformation.

3The algorithm is applicable to both completely specified and partial machines. It is
interesting to note, however, that in case of partial FSMs, the transformed FSM is not
necessarily quasi-equivalent to the original FSM [7], and not necessarily a strong reduction
of the original FSM [15].
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Listing 3.8: Transformation to an observable FSM.

#include "creators/transformers/ToPrimeTransformer.hpp"

#include "..."

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {
// ... read partial FSM from file,
// unique pointer fsm

// Define the transformer to observable FSM,

// providing the original FSM to the constructor
ToObservableTransformer obs(fsm.get());

// Perform the necessary transformations and obtain
// the unique pointer to the observable FSM

auto fsmObs = obs.createFsm();

// Continue working with the observable FSM
//

Minimising observable, initially connected machines. For minimis-
ing observable, initially connected machines, the transformer of class
ToMinimisedTransformer is used. It is implemented in files

src/libfsmtest/creators/transformers/ToMinimisedTransformer.hpp, .cpp

This transformer throws exceptions if the FSM to be transformed is not
initially connected or not observable.
Listing 3.9 shows how to use this transformation.
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Listing 3.9: Transformation to minimised FSM.

#include "creators/transformers/ToPrimeTransformer.hpp"
#include "..."
using namespace std;
using namespace libfsmtest;
void main(int argc, char* argv[]) {
// ... read partial FSM from file,
// unique pointer fsm
// Define the transformer to minimised FSM,
// providing the original FSM to the constructor
ToMinimisedTransformer mintrans(fsm.get ());
// Perform the necessary transformations and obtain
// the unique pointer to the minimsed FSM
auto fsmMin = mintrans.createFsm();
// Continue working with the minimised FSM
//
¥

23



3.3 Random Creation and Mutation of FSMs

There are many use cases for randomly generated FSMs. All classes for
random FSM creation and mutation of existing FSMs reside in directory

src/libfsmtest/creators/randoms.

Every class for random creation of FSMs inherits from the class
RandomFsmCreator, which takes care of the initialisation of a presentation
layer; see header file

src/libfsmtest/creators/randoms/RandomFsmCreator. hpp.

To implement other methods for random creation, this file should be inher-
ited in a new concrete class. Classes for random mutation of FSMs should
inherit the already discussed Transformer class: a basic concept of the
libfsmtest class library is to never change an existing FSM, but to trans-
form it into another one. Therefore, mutations are created by transforming
the existing FSM into a different one.

3.3.1 Creation of Random Completely Specified
FSMs.

Recall that a FSM is completely specified if there exists an outgoing
transition for every possible input in every state. FSMs, OFSMs, and
DFSMs can be completely specified.

Random Completely Specified FSM The class to create random com-
pletely specified FSMs can be found in files

src/libfsmtest/creators/randoms/RandomCompletelySpecifiedFsm.hpp, .cpp

For a given numbers of states, inputs and outputs the creator will then
generate a completely specified FSM. During the generation it is also as-
serted that the FSM generated is initially connected. For each state, the
FSM will have at least one, at most three outgoing transitions for each
input. Listing 3.10 shows how to use this creator.
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Listing 3.10: Create a Random Completely Specified FSM.

#include "RandomCompletelySpecifiedFsmCreator.hpp"

#include ". . . "

using namespace std;
using namespace libfsmtest;

void main(int argc, char* argv[]) {

// First parameter of RandomCompletelySpecifiedFsmCreator constructor:
// Number of states the FSM will have.

// Second parameter: Number of inputs the alphabet will have.

// Third parameter: Number of outputs the alphabet will have.

// Fourth (optional) parameter: FSM name to be used.
RandomCompletelySpecifiedFsmCreator creator(5, 7, 4, "random");
unique_ptr<Fsm> fsm = creator.createFsm();

// ... now continue working with fsm

If it is required to produce an observable, but potentially nondetermin-
istic FSM at random, the machine is created as shown in Listing 3.10, but
then transformed into an observable one, using the transformer to observ-
able FSMs described in Section 3.2. Using FSM method isObervable(), it
should be checked whether such a transformation is needed, since the FSM
generated at random may already be observable. Note, however, that the
transformed OFSM will generally not have the same number of states as
requested in the random creation.

Random Completely Specified DFSM. The class to create random
completely specified DFSMs can be found in files

src/libfsmtest/creators/randoms/RandomCompletelySpecifiedDfsm.hpp, .cpp

For a given numbers of states, inputs and outputs the creator will then
generate a completely specified DFSM. Each state will have exactly one
outgoing transition for each input. Listing 3.11 shows how to use this
creator. Recall that DFSMs are automatically observable.
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Listing 3.11: Create a Random Completely Specified FSM.

#include "RandomCompletelySpecifiedDfsmCreator.hpp"

#include

" "

using namespace std;

using namespace libfsmtest;

void main(int argc, char* argv[]) {

//
//
//
//

First parameter of RandomCompletelySpecifiedDfsmCreator constructor:
Number of states the DFSM will have.

Second parameter: Number of inputs the alphabet will have.

Third parameter: Number of outputs the alphabet will have.

// Fourth (optional) parameter: DFSM name to be used.
RandomCompletelySpecifiedDfsmCreator creator(5, 7, 4, "random");
unique_ptr<Fsm> fsm = creator.createFsm();

// now continue working with dfsm

3.3.2 Random Removal of Transitions

The class to randomly remove transitions from FSMs can be found in files

src/libfsmtest/creators/randoms/RandomTransitionRemoval.hpp, .cpp

Given a number of transitions to remove, this transformer will randomly
choose a state that has at least one transition, then randomly choose one of
those transitions and remove it. The transformer will stop and return the
altered FSM once the number of transitions to remove has been reached,
or there are no transitions left to remove. Listing 3.11 shows how to use

this transformer.
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Listing 3.12: Transformation to remove random transitions of an FSM.

1 #include "creators/randoms/RandomTransitionRemoval.hpp"
2 #include "..."

3

4 using namespace std;

5 using namespace libfsmtest;

6

7 void main(int argc, charx argv[]) {

8 // ... create or retrieve FSM

9 // unique pointer fsm

10

11 // Define the transformer to remove random transitions,
12 // providing the original FSM to the constructor

13 // as well as the number of transition to remove

14 // and an (optional) suffix to append to the name.
15 RandomTransitionRemoval remover (fsm.get (),

16 // Perform the necessary transformations and obtain
17 // the unique pointer to the altered FSM

18 auto fsmRm = remover.createFsm();

19

20 // Continue working with the altered FSM

21 //

22

23 }

27



Chapter 4

Test Suite Generation

4.1 Test Generation Frame, Test Generation
Method, and Test Suite

To generate test suites using different methods (like W-Method, H-Method,
etc.), three re-usable concepts have been implemented in 1ibfsmtest.

e A test generation frame is instantiated to handle the test suite
generation task in a way that is independent on the specific method.

e Test generation methods are always implemented as FSM-visitors.
The test generation frame receives a pointer to the test method to be
used as a parameter of its constructor.

e The test generation frame provides an operation to activate the test
generation process. This produces a test suite which can be pro-
cessed further in the program or written to disk.

Consider Listing 4.1 to inspect how these concepts are applied in prac-
tise.
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Listing 4.1: Application of test generation frame, method, and suite.

#include "..."

using namespace std;
using namespace libfsmtest;

int main(int argc, char*x argv[]) {

//

Create FSM from file

FsmFromFileCreator creator ("f.fsm","f");
auto fsm = creator.createFsm();

//
//
//
//
//
//
//
//

Create test generation frame:

"SUITE-W-0" is the name of the test suite.

The FSM is moved into the generation frame,

since it serves there as the reference model

to create test cases from.

As generation method, an instance of the WMethod

is provided. This instance needs the maximal number

of additional states the implementation might contain.

int numAddStates = 0;
TestGenerationFrame genFrame ("SUITE-W-0",

//

move (fsm) ,
make_unique <WMethod >(numAddStates));

Generate the test suite and write it to file

genFrame.generateTestSuite () ;
genFrame.writeToFile ();

When method generateTestSuite() is invoked (line 26), the test gen-
eration frame genFrame created in this example will activate the test gen-
eration internally according to the visitor pattern: the FSM-visitor in-
stance of class WMethod is provided as parameter in an accept(...visitor
instance...) call on the reference FSM. This is all hidden from users of
libfsmtest, but must be studied before creating and adding your own test
generation methods to 1ibfsmtest.

The effect of the genFrame.writeToFile() call is as follows.

1.

The test suite consisting of a number of input traces is written into
a text file named as the test suite with extension .txt. The input
events are represented in external form, as specified in the FSM’s
presentation layer. For the example in Listing 4.1, the demonstration
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program usage-demo (see Chapter 2) produces the following test suite
in file SUITE-W-0.txt. Each line represents one test case specified by
the associated inputs to be exercised on the system under test.

1 el, el, el
2 el, el, e2
3 el, e2, el, el
4 el, e2, el, e2
5 el, e2, e2, el
6 el, e2, e2, e2
7 el, e2, e3, el
8 el, e2, e3, e2
9 el, e2, e4, el
10 el, e2, e4, e2
11 el, e3, el
12 el, e3, e2

-
w

el, e4, el, el
el, e4, el, e2
el, e4, e2, el
el, e4, e2, e2
el, e4, e3, el
el, e4, e3, e2
el, e4, e4d, el
el, e4, e4, e2

N =
S © ® N O o

21 e2, el
22 e2, e2
23 e3, el
24 e3, e2
25 e4, el
26 e4, e2

2. The reference FSM is written in raw format (see Section 3.1.1)
to files <FSM-name>.fsm, <FSM-name>.in, <FSM-name>.out, and
<FSM-name>.state. These FSM files, together with the test cases
file, need to be provided to the test harness described in Chapter 5,
when running the generated suite against a software under test. The
harness will use the reference FSM as a test oracle.

4.2 Available Test Generation Methods

In the current version, the following generation methods listed in Table 4.1
have been provided, more are yet to come in the near future. All methods
are implemented in files located in

src/libfsmtest/visitors
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Each method may pose requirements for admissible reference FSMs to ful-
fill. These requirements are listed in Table 4.2. If the method is called with
a reference FSM that violates one of the method’s application requirements,

the implementing visitor will throw an exception.

Table 4.1: Test generation methods currently available in 1ibfsmtest.

’ Method Class Name ‘ Files ‘ References ‘

W-Method WMethod WMethod.hpp, .cpp [1], [18], [14,
Section 4.6]

WP-Method WPMethod WPMethod.hpp, .cpp [11], [14, Sec-
tion 4.8.1]

H-Method HMethod HMethod.hpp, .cpp [3], [14, Sec-
tion 4.7]

SPYH-Method SPYHMethod SPYHMethod.hpp, .cpp | [16]

T-Method TMethod TMethod.hpp, .cpp [13], [14, Sec-
tion 4.3]

Safety-complete H- | SHMethod SHMethod.hpp, .cpp [9], [8]

Method

Classical (non- | ClassicalState- | ClassicalState- [6]

adaptive) state | CountingMethod CountingMethod.hpp,

counting method .cpp

Strong State | StrongState- StrongStateCounting- [15]

Counting Method CountingMethod Method.hpp, .cpp
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Table 4.2: Requirements for the test generation methods currently available
in 1ibfsmtest.

Method Requirements

W-Method Requires the existence of a characterisation set. This is guaran-
teed for completely specified reference FSMs.

WP-Method Requires the existence of a characterisation set and state identifi-
cation sets. This is guaranteed for completely specified reference
FSMs.

H-Method Requires harmonized traces. This is guaranteed for deterministic
or completely specified reference FSMs.

SPYH-Method Requires a completely specified and deterministic reference FSM.

T-Method Requires a completely specified reference FSM.

Safety-complete H- | Requires harmonized traces. This is guaranteed for deterministic

Method or completely specified reference FSMs.

Classical (non- | Requires a completely specified reference FSM.

adaptive) state
counting method

Strong State | Reference FSMs are required to be observable, as the general
Counting Method approach to make any FSM observable does not preserve strong
reduction.

When using a specific method, the test generation frame (see lines 21—
23 in Listing 4.1) gets this method’s class name as type parameter in the

1 make_unique< _type_ >(numAddStates)

instantiation command. For example, when the H-Method should be used,
the generation frame in lines 21—23 of Listing 4.1 is created with statement

1 TestGenerationFrame

2 genFrame ("SUITE-H-0",// Any test suite name which makes

3 // clear that the H-Method has been used
4 move (fsm) ,

5 make_unique <HMethod >(numAddStates));
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4.3 Test Generation Methods Using
Abstraction

In the context of property-oriented testing [12], we are no longer fo-
cused on verifying a conformance relation between reference model and
implementation. Instead, it has to be tested whether the SUT fulfils cer-
tain properties that are also fulfilled by the reference model. Properties are
conditions about inputs, outputs, and their causal ordering. In practical
applications, properties are often equivalent to, or derived from require-
ments to be fulfilled by the implementation. The most general way to
specify properties is by means of a temporal logic such as LTL [17]. This,
however, is currently not yet supported by libfsmtest.

A slightly less general, but still quite powerful way is to specify prop-
erties by means of FSM abstractions. The theory behind this has been
investigated in [8, 9]. Note that it is applicable to deterministic, completely
specified FSMs only. We introduce the — quite intuitive — concept here by
means of an example.

Example 1. Consider the completely specified DFSM A shown in
Fig. 4.1 with input alphabet X; = {cy,...,cs} and output alphabet Xy =
{do,...,ds}. Suppose we wish to test whether the implementation satisfies
the following property which is obviously fulfilled by A.

Property 1. If the inputs are always in range {ci,c;,c3} then
the outputs will always be in range {do, d; }. (*)

Expressed in LTL, this property is specified by
G(c1 Ve Ves) = Gldo V di),y

but we will not need this for the FSM abstraction approach. Instead, we
specify an abstracted FSM «(A) as follows:

1. The input alphabet of x(A) equals that of A, that is, {ci,...,cs},

2. the output alphabet of x(A) is {ey, e}, where e, stands for “A-output
is in {do, d1}” and e; stands for “A-output is not in {d,, d;}”,
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3. the states of ®(A) and the initial state are the same as in A, and

4. the transition relation «(R) of «(A) is obtained from the transition
relation R of A as

x(R) = {(s,x,eq,s") | Iy €{do, d1}. (s,x,y,s’) € R}U
{(s,x,er,s") | Iy € {da, d3,d4}. (s,%x,y,s’) € R}

Intuitively speaking, «(A) has the same transition graph topology as A,
and the transitions are labelled by the same inputs as in A. The outputs,
however, are abstracted to the new values ey, e;, depending on whether
the corresponding A-output is in {dy, d;} or not. This abstraction machine
«(A) is shown in Fig. 4.2.

Since the abstracted FSM has fewer outputs, it distinguishes fewer states
than A: indeed, the minimised machine of «(A) only has two states, as
shown in Fig. 4.3. Obviously, «(A) fulfils the abstracted property

Property 1a. If the inputs are always in range {c;, c;,c3} then
the output will always be e,. (**)

Now the theory developed in [8, 9] states that we can apply the Safety-
complete H-Method (SH-Method) to derive an exhaustive test suite
which is guaranteed to fail on an implementation violating property (*),
because the abstraction FSM consistently abstracts this property to the
one specified in (**). The SH-Method differs from the H-Method in the
fact that distinguishing traces y are appended to certain traces «,f3 al-
ready contained in the test suite only if the states reached by « and f3,
respectively, are also distinguishable in the abstracted FSM. The “normal”
H method appends y to « and (3 already if these reach states that are
distinguishable in Al

As a consequence, the SH-Method may result in significantly fewer test
cases than the H-Method. For the FSM example A discussed here, the
Safety-H-Method and the conventional H-Method produce the following

1States q,q’ that are distinguishable in «(A) are by construction also distinguishable
in A, but not every pair of states distinguishable in A is distinguishable in «(A).
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numbers of test cases, depending on the maximal value a of additional
states assumed for the implementation.

’ Ha:O‘a:Ha:Z‘a:S‘

SH-Method test suite size 21 126 756 | 4536
H-Method test suite size 28 158 982 | 5888
| Ratio | 075] 079] 077 0.77 |
Further examples are presented in [8, 9]. O
Ce/ds

Ce/ds | | C1yC2,C3,C4yC5/d3

@ cs/d;3

CcsyCe/ds | | C1,C2yC3,Ca/d

cr,¢2/do c1,¢2/do c3/d;

Figure 4.1: FSM A with different regions: once state s, has been reached,
the FSM will only visit states in {s;, s3, s4}; it will never return to sy or s;.
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Ce/ €

Ce/€1| | C1yC2,C3,C4yC5/€1

e

Cs,C¢/€1| | C1,C2yC3yCa/e1

c1,C2/€o c1,C2/€0 c3/eo

Figure 4.2: FSM abstraction «(A) of the original FSM A shown in Fig. 4.1.

C4) CS) C6/el
{soys1} {s2,53, 84}

C1,Ca,C3/€0 C1, €2, €3, C4, C5, Cs/ €1

Figure 4.3: Minimised FSM associated with «(A) from Fig. 4.2.

The abstraction concept described above is implemented by the SH-
Method (class SHMethod). When using abstraction machines, the test gen-
eration frame is created with an additional parameter:
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// ... read reference FSM and abstraction FSM ...

// referenceFsm is a unique pointer to the reference FSM.

// abstractionFsm is a unique pointer to the abstraction FSM.

TestGenerationFrame

genFrame ("SAFETY -H-METHOD -FSBRTSX",

move (referenceFsm),
make_unique <SHMethod >(numAdditionalStates),
move (abstractionFsm)) ;

// Generate the test suite and write it to file
genFrame.generateTestSuite () ;
genFrame.writeToFile () ;

Observe that the SH-Method is exhaustive, but not sound. This means
that an implementation can fail a test suite even though it correctly im-
plements the property for which the abstraction FSM has been created. In
this case, the test suite has uncovered a violation of language equivalence,
which we consider as a good thing, because in principle, the SUT should
really be equivalent to the reference model, though we are currently only
interested in a certain property. Test suites generated by the SH-Method
will never fail for implementations that are language equivalent to the ref-
erence model. In [8] it has been shown for a specific type of properties that
it is possible to create complete (i.e. exhaustive and sound) test suites that
only fail if the specified property is violated. This insight, however, is of
theoretical value only, because these test suites may become larger than
suites establishing language equivalence.

The fact that two FSMs are required for the SH-Method deserves an
explanation. In principle, it would be possible to use the abstracted model
itself as reference machine. However, the difference a between the number
of states in the minimised reference machine and the potential number of
states in the minimised DFSM representing the implementation behaviour
would be larger than for the original reference machine. The test suite
size, however, grows exponentially in a. Therefore, it is better to use the
original machine (A in the example above) with a smaller value of a.

Furthermore, note that it is not always the case that utilisation of an
abstraction FSM will reduce the test suite size in comparison to testing for
language equivalence. The following heuristics is applicable to decide this.

e The Safety-H-Method never produces more test cases then the H-
Method.
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e If the prime machine of the FSM abstraction still has the same size
as the prime machine of the reference model, then no reduction is to
be expected.

e If all states of the reference model’s prime machine can be distin-
guished by very few very short traces, then the test case reduction
to be achieved by the Safety-H-Method can be expected to be quite
small, even if the prime machine of the FSM abstraction has fewer
states than that of the reference model.

e If the reference FSM contains a region that is of no relevance for the
property to be checked, and if this region can never be left once en-
tered, the test suite size reduction achieved by the SH-Method grows
with the size of this region.

e The ratio “number of test cases generated by SH-Method / number of
test cases generated by H-Method” does not change significantly with
the number a of potential additional states in the implementation.

In any case, the test suites can be calculated beforehand, and if their
size is nearly identical, it is more advisable to test for language equivalence,
since this guarantees that all properties fulfilled by the reference model are
also fulfilled by the implementation.

Finally, note that the FSM abstraction and the resulting test suite cre-
ated by the SH-Method are not only applicable to a single property, but
to all properties captured by the same abstraction FSM. This fact is well-
known from the field of model checking. If a Kripke structure has a labelling
function L mapping concrete states s to sets L(s) C AP of atomic proposi-
tions that are fulfilled in this state, then the resulting Kripke structure can
be used for property checking of all temporal formulas (LTL, CTL, CTL*)
over atomic propositions from AP [2].

Example 2. Consider the following property of A from Example 1 which
is captured by the same FSM abstraction «(A).

Property 2. After an output in {d,, d3, d4} has been produced,
there will never be another output from {dy, d;}.
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Using LTL, this property would be expressed as
G((dz V d3 Vv d4) = G(_‘do VAN _‘d1 ))
This property is encoded in «(A) as well, since it can be expressed by

Property 2a. After output e; has been produced, there will
never be another output e,.

The test suite created by the SH-Method for Property 1 from Example 1
is also exhaustive for Property 2. O
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Chapter 5

Using Generator, Checker, and
Test Harness — the Workflow

5.1 A Sample Test Campaign

Throughout this chapter, we work with a simple model-based testing cam-
paign, using an example originally introduced by Paul C. Jorgensen in [10].

5.1.1 Reference Model Description

The garage door controller (GDC') is a computer managing the up and
down movement of a garage door via an electric motor, as shown in the
overview diagram in Fig. 5.1. The GDC outputs commands al, a2, a3,
a4 to the motor, initiating down movement, up movement, stopping the
motor, and reversing its down movement into up movement, respectively.
As inputs, the GDC receives a command “button pressed” (e1) from a re-
mote control device, and two events “door reaches position down” (e2) and
“door reaches position up” (e3) from two door position sensors. Addition-
ally, a safety device is integrated by means of a light sensor which sends
an event “light beam crossed” (e4) when something moves underneath the
garage door while the door is closing.
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Description Output Description

o1 Event a1 Command
“Remote Control Button Pressed” “Start down movement”
o Event a2 Command
Remote Control “Door reaches down position” “Start up movement”
Device Event Command
e3 “ P a3 “ »
Door reaches up position Stop movement
o4 Event a4 Command
“Light beam crossed” “Reverse down movement to up”
el
el, e2
Door Position Sensor

al

mechanical
a2 interaction
Garage Door Garage Door  |up/down/stopped Garage Door
Controller a3 Motor Mechanics

a4

Light Sensor
e4

Figure 5.1: Garage door controller and its operational environment.

The expected behaviour of the GDC is modelled by the FSM in Fig. 5.2.
In the initial state Door_Up, the door is expected to be in the UP position,
and the “button pressed” event el from the remote control triggers a “Start
down movement” command al to the motor. The GDC transits to state
Door _closing. In this state, an input e4 from the light sensor leads to an a4
command to the motor, with the effect that the down movement of the door
is reversed to up movement. This leads to state Door_opening. During down
movement in state Door_closing, another occurrence of the el-event leads to
a “Stop movement” command a3 to the motor, and the controller transits
to state Door_stopped_going_down. From there, the downward movement is
resumed (output al), as soon as another el-command is given.
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Door_Up

el/al e3 /a3

el/a3 el/a2

e2 /a3 el /a2
Door_stopped_going_up

‘ Door_stopped_going_down

Door_Down

Figure 5.2: Behaviour of the garage door controller, modelled by a DFSM.

When the door sensor signals that the door has reached the down po-
sition (e2), the motor is stopped with command a3, and the controller
transits into state Door_down. From this state, another el-event triggers
the analogous actions for moving the door up, until the UP position is
reached. During the UP-movement, inputs from the light sensor do not
have any effect.

In Fig. 5.3, the same DFSM is modelled by means of a transition table.

The missing transitions in each state have the “self-loop-with null out-
puts” interpretation, as explained in Section 3.2.1. Therefore, the DFSM
is meant to be completely specified. When reading the DFSM from in-
put files where the self-loop transitions are missing, the auto completion
transformer ToAutoCompleteWithSelfLoopTransformer introduced in Sec-
tion 3.2.1 needs to be applied.
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A B C D E

al el e2 e3 ed

2 |Door_Up Door_closing/al

3 Door_Down Door_opening/a2

4 |Door_stopped_going_down Door_closing/al

5 Door_stopped_going_up Door_opening/a2

6 Door_closing Door_stopped_going_down/a3 Door_Down/a3 Door_opening/a4
7 |Door_opening Door_stopped_going_up/a3 Door_Up/a3

Figure 5.3: Tabular format for modelling DFSMs.

Note that the DFSM in Fig. 5.2 is not minimal; it has been represented
in this form to optimise its readability. The equivalent minimised machine
is shown in Fig. 5.4. This has been constructed using the prime machine
transformer described in Section 3.2.2. The output graph shown in Fig. 5.4
has been created by using the ToDotFileVisitor described in Chapter 6.
This produces files in the so-called .dot-format, from which the GraphViz*
tool creates graph representations.

In main program file usage_demo.cpp, these transformations have been
programmed in procedure demo_transformToPrimeMachineGdc().

lhttp://www.graphviz.org
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{ Door_Up(0),Door_stopped_going_down(2) }(0) e2/null

{ Door_closing(4) }(2) 2> e3/null

{ Door_Down(1),Door_stopped_going_up(3) }1) e e2/null

Figure 5.4: Minimised, auto-completed DFSM, equivalent to the GDC
model from Fig. 5.2.

5.1.2 GDC System Under Test

A sample implementation in C*" is given in the FSM Library, directory
src/harness/example, in file gdclib. cpp; the public operation interfaces
are specified in gdclib.hpp as follows.
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typedef enum {
el,
e2,
ed,
ed
} gdc.inputs_t;

typedef enum {
nop7
al,
a2,
a3,
a4
} gdc_outputs_t;

extern void gdc_reset();
extern gdc_outputs_t gdc(gdc_inputs_.t x);

The GDC expects its inputs in enumeration format gdc_inputs_t and
returns actions to the motor in format gdc_outputs_t. The implementa-
tion in gdclib.cpp follows the state machine programming paradigm and
is straightforward, so that no further comments are needed.

In Section 5.4 it is shown how test suites generated from the GDC model
discussed in Section 5.1.1 can be executed against this C™" application,
using the test harness provided by libfsmtest.
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5.2 Using the Test Generator

Users only interested in generating test suites with the existing methods
available in the libfsmtest class library do not need to write their own
programs with instances of test generation frame and test generation vis-
itors, as described in Chapter 4. Instead, they can invoke the program
generator which is created from the library and source file

src/generator/generator.cpp

when building the libfsmtest class library?.
The generator program is invoked from its directory as follows
./ generator [<options>] \
<test suite name> \

<Path to reference model> \
[<Path to abstraction model>]

Parameter <test suite name> specifies the name of the test suite to be
generated. On termination of the generator, the test cases file containing
the input sequences to be exercised on the system under test is then named

<test suite name>.txt

and stored in the directory from where generator has been invoked.

Parameter <Path to reference model> gives the path and basename
of the reference model. The generator uses the FsmFromFileCreator de-
scribed in Section 3.1.3 internally, so file extensions and file types are de-
termined automatically.

Optional parameter <Path to abstraction model> gives the path and
basename of the abstraction model. This is only used when applying the
safety-complete H method (see Section 4.3).

The generator produces a test suite according to the following options.

1. If no options are provided, the W-Method is applied with 0 additional
states assumed for the implementation (see variable numAddStates in
Listing 4.1).

2Recall from README . md that the executables reside in sub-directories of the build direc-
tories build.Debug, build.Release, or xcodebuild.Debug. For example, the generator
program has path build.Release/generator/generator.
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2. —a<number> sets the value of additional states to be assumed for the
implementation to <number>. This option is used in combination with
the options selecting the test generation method described below.

3. -cself specifies that an auto completion transformation should be
applied on the FSM input files with self loops and null outputs, as
described in Section 3.2.1. This option is used in combination with
the options selecting the test generation method described below.

4. -cerror specifies that an auto completion transformation should be
applied on the FSM input files with transition to an error state and
error output, as described in Section 3.2.1. This option is used in
combination with the options selecting the test generation method
described below.

5. -null <null string> specifies the name of the null output, as used
in an auto-completed FSM’s presentation layer. This option is only
useful if one of the options -cself of —cerror have been provided as
well. If this option is not provided, the default value null will be
chosen for the null output.

6. —errorout <error output string> specifies the name of the error
output, as used in an auto-completed FSM’s presentation layer. This
option is only useful if the option -cerror has been provided as well.
If this option is not provided, the default value _error will be chosen
for the error output.

7. —errorstate <error state string> specifies the name of the error
state, as used in an auto-completed FSM’s presentation layer. This
option is only useful if the option -cerror has been provided as well.
If this option is not provided, the default value ERROR will be chosen
for the error output.

The following options select the test generation method to be used; only
one of them may be chosen when invoking the generator.

1. -w — selection of the W-method
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2. -wp — selection of the Wp-method

3. -h — selection of the H-method

4. -spyh — selection of the SPYH method

5. -csc — selection of the classical state counting method
6. -ssc — selection of the strong state counting method

7. —sh — selection of the safety-complete H-method.
This is the only option requiring the additional parameter
<Path to abstraction model>.

Example 3. For generating a test suite for the garage door controller
(GDC) described in Section 5.1, we first note that raw file specifications of
the GDC exist in the resources/ directory, files

garage.fsm, garage.in, garage.out, garage.state

The fsm-file contains all transitions for a complete DFSM, so no auto-
completion directives are required when calling the generator. Assume that
we wish to use the H-Method for test suite generation under the hypothesis
that the software under test has at most 2 extra states.®> The name of the
test suite should be ¢ ‘SUITE-GDC-H-2’°’. Activating the generator from its
build directory, say,

libfsmtest/build.Release/generator/

requires command

./ generator —h —a2 "SUITE-GDC-H-2" ../../resources/garage

On termination, the output

SMore precisely, we assume that the unknown minimised DFSM representing the true
behaviour of the software under test has at most 2 additional states in comparison to the
minimised GDC reference model.
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Test generation completed.
277

Number of test cases:
: 1493
: SUITE-GDC-H-2.txt

Total length
Test case file

is written to the console. The test case file contains 277 lines, each line
representing the inputs for one test case. The "Total length" is number
of input events summed up over all test cases in the suite.

The generator creates the following files in the directory from where it

has been activated:

1. File SUITE-GDC-H-2.txt containing the test cases. Its first lines look

like this (recall that el, e2, . are inputs to the GDC, as described

Section 5.1):

el, el, el, el,
el, el, el, e2,

el, e2, el, el,
el, e2, el, el,
el, e2, el, el,
el, e2, el, el,

2. Files

garage.fsm, garage.in, garage.out, garage.state

el
el

el,
el,
e2,
e3,

el
e2
el
el

because these represent the reference FSM which is part of the test

suite, where it serves as the test oracle.

When using the generated test suite in the checker or test harness, described
in Section 5.3 and Section 5.4, respectively, these files have to be supplied

to the respective tool.
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5.3 Using the Checker

Users who intend to apply a test suite to a given FSM do not need to
write their own programs to do so. Instead, they can invoke the program
checker which is implemented in the source file

src/checker/checker. cpp

and generated when building the 1ibfsmtest. Currently this checker sup-
ports test suite application with respect to testing for language equivalence.
The checker program is invoked from its directory as follows:

./checker [options]
<Path to the test suite>
<Path to the reference model>
<Path to the FSM to test>

The parameter <Path to the test suite> specifies the file where the test
suite to be applied is read from. For reference on test suite generation see
Section 5.2.

Parameter <Path to the reference model> gives the path and base-
name of the reference model. The checker uses the FsmFromFileCreator
described in Section 3.1.3 internally, so file extensions and file types are
determined automatically.

The path and basename of the model to apply the test suite to has to
be given as the parameter <Path to the FSM to test>. As with <Path
to the reference model>, the checker uses the FsmFromFileCreator, 50
the file extensions and file types are determined automatically.

With these three mandatory parameters, the checker tries to read all
given necessary files and throws an exception if any of those are not avail-
able*.

If all files could be read successfully, a final check ensures that both
the reference FSM and the FSM to test have the same input and output

4Note that the current implementation will warn about an unsupported file format if
any of the given FSMs could not be read, even if that is due to missing files.
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alphabets®.

Possible options for the checker are the options -cself, -cerror, -null,
-errorout and -errorstate as described in Section 5.2. These options
control whether, which and how an auto completion transformer shall be
applied to the SUT model before checking it.

When all parameters have been parsed successfully, the input sequences
in the test suite will be evaluated on both the reference FSM and the FSM
to test. For both FSMs and for each input sequence in the test suite the set
of produced output traces is determined, and differences in these sets are
examined. For each output sequence produced by one of the FSMs that is
not produced by the other FSM in response to the same input sequence,
the checker determines the output sequence with the longest common prefix
and prints both sequences.

FAILURE: SUT implements unspecified output trace 0,0,2,2
for input trace 0,0,1,1
Closest match diverges at step 4: 1

FAILURE: SUT does not implement output trace 0,2,1,1
for input trace 0,1,1,1
Closest match diverges at step 3: 2,2
(Expected: 1,1)

FAILURE: SUT implements unspecified output trace 0,2,2,2
for input trace 0,1,1,1
Closest match diverges at step 3: 1,1

FAILURE: SUT does not implement output trace 1,0,2,0,2
for input trace 1,0,1,0,1

However, if the sets of output sequences produced by both machines agree
for all input sequences in the test suite, the checker notes this as PASS and
exits.

Example 4. For checking an implementation of the garage door controller
(GDC) described in Section 5.1, we note again that raw file specifications
of the GDC exist in the resources/ directory, files

5The current implementation even requires both the input and output alphabet pairs
to define the symbols in the same order.
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garage.fsm, garage.in, garage.out, garage.state

Furthermore, we will use the test suite generated in Section 5.2,
¢ “SUITE-GDC-H-2‘ ¢ to check a mutated implementation. To generate this
mutation we copy the GDC FSM files, rename the copies to

garage-mutant.fsm, garage-mutant.in,
garage-mutant.out, garage-mutant.state

and modify the garage-mutant.fsm file. In this example, we remove
the transition from the state Door_stopped_going down to the state
Door_closing and change the output on the self-loop of Door Up triggered
by input e3 from null to a3.

Assuming the current working directory contains the checker executable
and that the garage, garage-mutant and test suite files are in the directory
/tmp, we invoke the checker as follows

./ checker /tmp/SUITE-GDG-H—2 /tmp/garage /tmp/garage—mutant

On termination, the checker prints numerous lines beginning with
FAILURE:, as the SUT clearly is not equal to the GDC but in the fault
domain. The first lines read as follows:
FAILURE: SUT does not implement output trace "al,a3,al,a3,al"
for input trace "el,el,el,el,el"
Closest match diverges at step 3: ""
(Expected: "al,a3,al")
FAILURE: SUT implements unspecified output trace "al,a3" for
input trace "el,el,el,el,el"
Closest match diverges at step 3: "al,a3,al"
The first failure here shows the missing transition: When executing the
input sequence el,el,el, we expect the output sequence a1,a3,al. How-
ever, due to the missing transition in the mutant, the mutants execution
stops after the second input. The closest match mentioned by the checker
is the sequence with the sequence produced by the SUT with the longest
prefix common with the expected output sequence. Beginning at step 3,
i.e. after the second el input, the SUT produces an empty trace, which
is indicated by the second line. The third line shows the output sequence
that was expected at that position.
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The second failure shows the same fault but from the other perspective:
The SUT produces an unexpected output sequence al,a3 and the closest
match is the output sequence in the set of expected output sequences that
shares the longest prefix with the produced sequence.

Further down the list of failures, we see the following lines:

1 FAILURE: SUT does not implement output trace "al,a4,a3,null,al,
a3" for input trace "el,e4,e3,e3,el,el"

2 Closest match diverges at step 4: "a3,al,a3"

(Expected: "null,al,a3")

¢« FAILURE: SUT implements unspecified output trace "al,a4,a3,a3,al
,a3" for input trace "el,ed4,e3,e3,el,el"

5 Closest match diverges at step 4: "null,al,a3"

w

These reflect the mutated output: The expected output at that position
in the execution sequence would have been the output null, whereas the
SUT produces the output a3. 0
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5.4 Using the Test Harness

A test harness is a program which exercises a given test suite on a software
under test (SUT). The libfsmtest class library comes with a test harness
which allows to execute test suites generated by means of one of the FSM-
based methods described above against a C*" library consisting of one or
more operations to be tested. The re-usable test harness requires input
refinement (each input alphabet value of the test case needs to be mapped
to a concrete SUT operation call with input parameter values and presets
of attributes) and output abstraction (the effect of each operation call on
return value, reference parameters and attributes needs to be abstracted to
the corresponding value of the reference FSM’s output alphabet).

To support this, the test harness operates with a SUT wrapper. This is
a C™"-source frame to be completed for each test campaign, offering a func-
tion with fixed signature std: :string sut(const std::string& x) tothe
test harness for calling the SUT. For each input to be exercised on the SUT
in a test step, the test harness calls sut (x), where x is the input alphabet
value as string. The wrapper maps x to concrete input data (parameters
and attributes) of the SUT and calls the associated SUT operation. The
SUT response is abstracted by the wrapper to an output alphabet value
which is returned as string from call sut(x) to the harness. The harness
checks SUT reactions by simulating the test suite’s reference FSM in back-
to-back fashion and comparing outputs. In Fig. 5.5, the interplay between
harness, wrapper and SUT is depicted.

The harness is contained in libfsmtest as file

libfsmtest/src/harness/harness.cpp

It needs to be compiled and linked with the SUT, but there should be no
need in general to make any adaptations in this file.
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Test Harness SUT Wrapper Software Under Test
harness uses provides

void sut_init()

performs

SUT initialisation actions
]

uses provides

void sut reset()

performs

SUT reset actions
|

uses provides

const string sut(const string& x)

uses provides

t0 sw_under_test(tl x1, t2 x2, ..)

Figure 5.5: Test harness, SUT wrapper, and software under test.

The wrapper source frame is provided by file
libfsmtest/src/harness/sut_wrapper.cpp

This file needs to be edited; the source frame is shown in Listing 5.1. As
can be seen in the source frame, the following code needs to be included.

1. Include-directives to SUT-specific header files, so that the software
under test can be invoked from the wrapper, and the attributes to be
preset can be accessed (line 4 in Listing 5.1).

2. Data structures (typically maps) of functions for input refinement
and output abstraction need to be inserted (line 10 in Listing 5.1).
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3. The SUT has to be initialised in the body of function void
sut_init (). If the SUT software does not consist of a static class, it
is usually required to instantiate SUT objects here and make pointers
to these objects available in the global wrapper data.

4. The body of function void sut_reset() needs to be filled in. The
code to be inserted here should re-initialise the SUT, so that a new
test case can be applied to the SUT residing again in its initial state.

5. The body of the function const string sut(const string& input)
needs to be provided. Here, the input data refinement is per-
formed and the associated SUT operation is called. The returned
data and changed attributes are abstracted to the return string
fsmOutputEvent and returned to the calling harness.
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Listing 5.1: SUT wrapper source frame.

1 #include <string>

2

3 // Include header files of library to be tested
4 // #include "..."

5

6 /** Helper data structures and functions for

7

s /

* SUT test wrapper */

/

9 using namespace std;
10 void sut_init () {

11
12
13
14
15
16
17
18

19 }

20

//
//
//
//
//
//
//
//

initialise wrapper data structures
for mapping FSM inputs to SUT inputs
and vice versa

Initialise SUT, if required, by calling
initialisation functions or initialising
global SUT variables

21 void sut_reset () {

2 }

26

//
//
//

Insert code suitable for resetting SUT into
its initial state

27 const string sut(const string& input) {
string fsmOutputEvent;

28
29
30
31
32
33
34
35
36
37
38
39
40

41

a2 }

//
//
//
//
//
//
//
//
//
//
//
//

Transform FSM input event passed as string
>input’ to SUT input variable settings and
global variables settings

Call the SUT function addressed by the FSM input event
with the input parameter values defined before

Convert the return value, the (in-)out-parameter values,
and the global SUT variables to the FSM output event

represented as string fsmOutputEvent

return output event in string representation

return fsmOutputEvent;
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Example 5. In directory
libfsmtest/src/harness/example

an example test suite has been provided for testing the garage door con-
troller (GDC) code which is contained there in files gdclib.cpp, .hpp.
The reference DFSM is the result of a generator call (see Section 5.2) and
resides in files GDC.fsm, .in, .out, .state. The test cases are contained
in SUITE-GDC. txt.

The SUT wrapper for this test application is shown in Listing 5.2. In
lines 10—15, this wrapper applies a particularly simple, but frequently ap-
plicable variant of input refinement and output abstraction. To analyse
this, recall from the GDC software interface specified in Section 5.1.2 that
inputs to the GDC are specified as enumeration values el, ..., e4 and out-
puts by enumeration values nop,al,...,a4. The test harness uses inputs
encoded by the presentation layer of the reference DFSM (see file GDC. in).
This encoding uses strings "el",...,"e4". As a consequence, input re-
finement simply requires a mapping of input alphabet strings to associated
enumeration values. This is realised in lines 10—12 as map fsmIn2gdcIn.
Conversely, the GDC software return values nop,al,...,ad4 need to be
mapped to output alphabet values of the reference DFSM (file GDC.out)
which has the string values "null", "al",...,"a4". This is realised by
map gdcOut2fsmOut in lines 13—15.

With these mappings at hand, the implementation of the sut () wrap-
per function shown in lines 23—34 is straightforward: the input alpha-
bet value input is transformed by means of map fsmIn2gdcIn into an
enumeration value which is used as input argument of the SUT function
gdc(). The return value y of this SUT call is transformed by means of
map gdcOut2fsmOut into a string of the DFSM output alphabet and used
as return value of the wrapper function sut ().
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2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32
33

34

Listing 5.2: SUT wrapper for the garage door controller example.

#include <string>

#include <map>

using namespace std;

// Include header files of library to be tested
#include "gdclib.hpp"

/ %%

* Helper data structures and functions for
* SUT test wrapper

*/

map<string ,gdc_inputs_t> fsmIn2gdcln = {
{"e1",el}, {"e2",e2}, {"e3",e3}, {"ed",ed}
IE
map<gdc_outputs_t,string> gdcOut2fsmOut = {
{nop,"null"}, {al,"ai"}, {a2,"a2"}, {a3,"a3"}, {ad,"as"}
IE
using namespace std;
void sut_init () {
gdc_reset () ;
}
void sut_reset () {
gdc_reset () ;
}
const string sut(const string& input) {
string fsmOutputEvent;
map<string ,gdc_inputs_t >::iterator
inputlte = fsmIn2gdcln.find (input);
if ( inputlte = fsmIn2gdcIn.end() ) return fsmOutputEvent;
gdc_outputs_t y = gdc( inputlte—>second );
map<gdc_outputs_t , string >::iterator
outputlte = gdcOut2fsmOut. find (y);
if ( outputlte = gdcOut2fsmQOut.end() ) return
fsmOutputEvent;
fsmOutputEvent = outputlte—>second;
return fsmOutputEvent;
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Using the harness/example sub-directory as working directory, the har-
ness is now compiled and linked together with wrapper and SUT using
command
c++ —std=c++17 —o harness

—I1./ =I../../libfsmtest \

*x.cpp ../ harness.cpp
../../../ build. Release/libfsmtest /libfsmtest .a —lc++

Command c++ is a link to the C*" compiler. The -std option indicates
that C*" 2017 syntax is admissible (some compilers use an older C** stan-
dard if this option is missing; this might lead to compile errors). Options
-I... indicate where to look for C™ header files. In line 3 all cpp-files
in the local directory (wrapper and SUT code) are referenced, as well as
the harness source code residing in the directory above. In line 4, the
libfsmtest library and the C™" standard library are made available to the
other object files. As a result of the compilation and linking process, the ex-
ecutable harness is created which can be invoked with different test suites
and reference DF'SMs to be executed against the GDC software under test.
For the SUITE-GDC. txt test cases, the execution command is

./ harness SUITE-GDC GDC

which leads to result

PASS: el/al, el/a3, el/al

PASS: el/al, e2/a3, el/a2, el/a3
PASS: el/al, e2/a3, el/a2, e2/null
PASS: el/al, e2/a3, e2/null, el/a2
PASS: el/al, e2/a3, e3/null, el/a2
PASS: el/al, e2/a3, e4/null, el/a2
PASS: el/al, e3/null, el/a3

PASS: el/al, e3/null, e2/a3

PASS: el/al, e4/a4, el/a3, el/a2
PASS: el/al, e4/a4, e2/null, el/a3
PASS: el/al, e4/a4, e2/null, e2/null
PASS: el/al, e4/a4, e3/a3, el/al
PASS: el/al, e4/a4, e4/null, el/a3
PASS: el/al, e4/a4, e4/null, e2/null
PASS: e2/null, el/al

PASS: e3/null, el/al

PASS: e4/null, el/al
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written to the console.

Readers are invited to experiment with different SUT implementations,
fault injections into the gdclib.cpp implementation, and different model
variants. He or she should keep in mind that some fault injections may
increase the number of states in the minimised DFSM corresponding to
the true behaviour of the software under test. If this is suspected, the
parameter -a <additional states> hasto be used for test generation with
a suitable estimate (see Section 5.2). Otherwise it is not guaranteed that
the test suite will uncover every violation of language equivalence between
implementation and reference model. O

Note that the current version of the test harness only checks for language
equivalence with deterministic reference FSMs and deterministic imple-
mentations. Nondeterminism and reduction testing, as well as support of
other conformance relations (quasi reduction and strong reduction) will be
included in future versions of the harness.
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Chapter 6

Visitors for Saving FSMs to
Disk

The 1libfsmtest class library offers three ways to store FSM instances to
disk:

e Raw file format described in Section 3.1.1.
e CSV format described in Section 3.1.2.

e GraphViz format (also called “dot format”) to be visualised by
GraphViz!.

To store an FSM instance in raw format, class ToFsmFileVisitor with
files

src/libfsmtest/visitors/ToFsmFileVisitor.hpp, .cpp

is used. To store an FSM instance in CSV format, class ToCsvFileVisitor
with files

src/libfsmtest/visitors/ToCsvFileVisitor.hpp, .cpp

is used. To store an FSM instance in GraphViz format, class
ToDotFileVisitor with files

'https://graphviz.org
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src/libfsmtest/visitors/ToDotFileVisitor.hpp, .cpp

is used. All visitors get the filename as input parameter of their constructor.
Listing 6.1 shows how to apply these visitors.

Listing 6.1: Write an FSM to disk in three different formats format.
1 #include "..."

2

3 using namespace std;

4 using namespace libfsmtest;

5

6 int main(int argc, charx argv([]) {
7

8 // read and transform FSMs

9 //

10

11 // Write FSM pointed to by unique pointer ’fsm’

12 // in raw format to disk.

13 // We use the FSM name as base name. The visitor creates
14 // 4 files (extensions .fsm, .in, .out, .state) with this
15 // basename.

16 ToFsmFileVisitor visitor (fsm—>getName());

17 fsm—>accept ( visitor);

18 visitor . writeToFile();

19

20 // Write FSM pointed to by unique pointer ’fsm’ in
21 // CSV format to disk. Again, we use the FSM name
22 // as file basename

23 ToCsvFileVisitor csv(fsm—>getName());

24 fsm—>accept (csv);

25 csv.writeToFile();

26

27 // Write FSM pointed to by unique pointer ’fsm’ in
28 // GraphViz format to disk

20 ToDotFileVisitor dot(fsm—>getName()+".dot");

30 fsm—>accept (dot);

31 dot.writeToFile();

32

33 }
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