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Abstract In this paper, a novel safety-related variant of complete test suites for
finite state machines is introduced. Under certain hypotheses which are similar to
the ones used in the well-known W-Method and its improved versions, the new
method guarantees to uncover every safety violation, while erroneous behaviour
without safety-relevance may remain undetected. While the method can be based
on any of the known complete strategies for FSM testing, its most effective variant
is based on the H-method, and this variant is presented in detail, denoted as the
Safety-complete H-Method. It is guaranteed that application of the Safety-complete
H-Method always results in less or equally many test cases than when applying the
original H-Method. In well-defined situations that can be pre-determined from the
reference model, the Safety-complete H-Method leads to a substantial reduction of
test cases in comparison to the size of the analogous H test suites. We advocate
this new test suite for situations, where exhaustive testing of the complete system
is too expensive. In these cases, strong guarantees with respect to fault coverage
should only be given for the errors representing safety violations, while it may be
considered as acceptable if less critical errors remain undetected.

Keywords Model-based testing, Complete testing theories, Safety

1 Introduction
1.1 Motivation

Complete test suites guarantee to uncover all conformance violations of the system
under test (SUT) checked against a given reference model, provided that certain
hypotheses — typically captured in a fault model — are fulfilled. This ideal test
strength has attracted many researchers over the last 50 years, so that a large
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variety of contributions exists. On the other hand, the often infeasible size of the
test suites involved has frequently prevented their practical application. As a result,
there is a considerable interest in testing strategies allowing to focus the effort on
certain critical properties, while requiring lesser fault coverage for non-critical ones.
These approaches can be regarded as a combination of conformance testing and
property-based testing: we are no longer interested in full conformance, but only
require complete fault coverage for safety-properties.

1.2 Main Contributions

In this article, a novel contribution to property-oriented testing for the domain of
deterministic, completely specified, finite state machines is presented. Our approach
is based on the H-Method (Dorofeeva et al (2005)) which — to our best knowledge —
currently is the most effective complete test method for FSMs, because it usually
requires fewer test cases than the W-Method (Vasilevskii (1973); Chow (1978)),
Wp-Method (Luo et al (1994)), or HSI-Method (Luo et al (1995)), when applied
to the same reference model.

We extend the H-Method in such a way, that complete coverage for output
and transition faults (including addition of new states) is guaranteed, if these lead
to erroneous outputs representing safety-violations. To this end, an abstraction
concept for outputs is introduced, so that it can be formally captured whether an
erroneous replacement of another output for the expected one presents a safety
violation or just a non-critical deviation. In contrast to other publications in
this field, we formally prove that our strategy is complete with respect to this
safety-related fault coverage. We show by means of examples, that applying this
Safety-complete H-Method can lead to significantly reduced test suites in comparison
to the H-Method, though this is not guaranteed, but depends on the nature of the
reference model and its safety-related abstraction.

1.3 Main Contributions and Relation to Previous Work

The material presented here extends the publication Huang and Peleska (2017a) in
the following ways.

1. While Huang and Peleska (2017a) was based on the Wp-Method, the present
article uses the more effective H-Method, which requires less test cases while
still ensuring completeness.

2. A new algorithm for calculating test suites according to the Safety-complete
H-Method is presented.

3. The evaluation is now based on the Safety-complete H-Method, and it has been
extended by using random-generations of FSMs.

1.4 Overview
In Section 2, basic terms and concepts are introduced, so that this article remains

sufficiently self-contained. In Section 3, the Safety-complete H-Method and its
related definitions are introduced, and its completeness properties are proven. An
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algorithm for calculating safety-complete test suites is specified. In Section 4, three
case studies are presented that provide some insight into the situations where
the new method leads to a significant test case reduction. These case studies are
complemented by statistical evaluations based on state machines generated at
random. In Section 5, references to related work are given. Section 6 presents the
conclusion.

2 Notation and Technical Background
2.1 Deterministic Finite State Machines

A deterministic finite state machine (DFSM) is a tuple M = (Q, q, X1, X0, h) denoting
the finite state space Q, initial state ¢ € Q, finite input and output alphabets X
and Yo, and the transition relation h C Q x X7 x Yo x Q. For deterministic
machines, pre-state ¢ and input x uniquely determine the associated output y
and the post-state ¢’, such that h(q, z,y,q") holds. We assume that all DFSMs are
completely specified. This means that for every ¢ and every x, there exists y and ¢
such that h(q,z,v,q).

The after operator g-after-T maps a pre-state ¢ and a finite sequence T of inputs
to the uniquely determined post-state ¢’ resulting from repetitive application of h.
The language of a DFSM is the set of finite input/output traces z/y € (X1 X Xo)*
resulting from applying all T € X7 to the initial state ¢ and associating the output
trace y which is uniquely determined by ¢, T, and h. Two DFSMs are I/O-equivalent
(M ~ M’) if they produce the same language. The language of a state g (denoted
by L(g)) is the set of all Z/y generated by applying all T € X} to g. Two states
q,q" are distinguishable if and only if their languages differ, that is, L(q) # L(¢').
This implies the existence of an input trace T and output traces 7 # 7', such that
7/ € L(Q) and T/ € L(q'). In this case, 7 is said to be a distinguishing (input)
trace of ¢ and ¢’. The set of all distinguishing traces for states ¢, ¢’ is denoted by
Dist(q,q'). The prime machine prime(M) of a DFSM M is the minimal DFSM
producing the same language as M.

Let A C X7. We denote the set of all prefixes of input traces from A, including
these traces themselves, by Pref(A). Obviously, A C Pref(A) holds. The boundary
of A is the subset

DA={rc A|Vr € A: 7€ Pref(r') =7 =n} C A

Intuitively, A contains the longest input traces from A, where no continuations
inside A exist. The boundary of A satisfies the properties A C Pref(9A) and
Vr € A : Pref(r) N 9A = {r}.
Given M = (Q,q,%1,%X0,h), a state cover V. C X7 is a set of input traces
fulfilling B
Vg€ Q: 3z €V : g-after-T = q.

Since q = g-after-e, where ¢ denotes the empty trace, it is practical to assume for
the remainder of this article that e € V. Note that in principle, it is possible to
specify state covers not containing ¢, if there exist non-empty paths re-visiting the
initial state. If M has reachable states only (in particular, if M is a prime machine),
state covers with cardinality |@| can always be found.
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For input traces T = z1...7y, the suffix starting at index i € {1,...,k} is
denoted by 7" = x; ... xy. The trace segment starting at 7 and ending at j, where
1 <jandije{l,..., k}, is denoted by Zlil = g, . ST

2.2 Test Suites

A test suite is a subset TS C X7, each T € TS is a test case. This simplified notation
is possible, since only deterministic machines are considered, so that the input trace
T uniquely determines the output trace to be expected according to the reference
DFSM. An implementation passes a test case T if the application of this input
sequence produces an output sequence 7, such that /7 is in the language of the
reference DFSM.

2.3 Fault Models and Complete Test Suites

In the context of this article, a fault model is a triple F = (M, <, D). In this triple,
M is a DFSM called the reference model. D is a set of DFSMs over the same
input/output alphabet as M called the fault domain, and < is a relation between
DFSMs called the conformance relation. The fault domain D may contain both
DFSMs conforming to M and others non-conforming to M.

A test suite TS is called complete with respect to fault model F, if and only if for
all M’ € D, the following properties are fulfilled.

1. If M’ < M, then M’ passes all tests in TS (soundness).
2. If M’ £ M, then M’ fails at least one test in TS (exhaustiveness).

By D(X7, Yo, m), we denote the fault domain of all deterministic, completely
specified DFSMs over alphabet (X, ¥), whose prime machines have at most m
states.

2.4 The H-Method

The H-Method is a method for generating complete test suites, originally presented
in Dorofeeva et al (2005). It can be applied to completely or incompletely specified,
deterministic or nondeterministic finite state machines. To our best knowledge, the
H-Method is the most effective complete testing method currently known, in the
sense that it can guarantee completeness with respect to a given fault model with
the lowest number of test cases required. Therefore, our safety-oriented test method
presented in the next section will be based on the H-Method. In the context of
our article, we only need the completely specified, deterministic variant. This is
described in the sequel, to make this article sufficiently self-contained.

The following theorem has been proven in (Dorofeeva et al, 2005, Theorem 1).
It is re-phrased here in the slightly specialised form for complete DFSMs.

Theorem 1 (H-Method) Let M be a completely specified, deterministic prime ma-
chine with n states. Let m > mn > 2. Let V be a state cover of M, and let TS be a finite
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test suite of finite test cases. Define auxiliary sets

A=V xV
m—n-+1 )
B=vx(V. |J %)
i=1
m—n—+1 )
C={(wr,vy)lveVaye( U 27) Ay € Pref(y) — {e}}
i=1

D = {(a,B) € AUBUC | g-after-o # g-after-3}

Let
A:D— X7

be a map satisfying
V(a, B) € D : Aa, 8) € Dist(g-after-a, g-after-3)

Define a test case set H by

H ={a.A(e, B), B-A(ev, B) | (e, ) € D}

Then any test suite T'S containing OH is complete with respect to fault model F =
(M7 ~7D(EI7 207 m)), that ’L'S,

VM € D(S1, So,m): M M e M~ M

O

For the degenerate case where the reference model M has just one state (n = 1),
the set D specified in Theorem 1 is empty, because there are no two states in
M that can be distinguished. Therefore, also H is empty, and another test suite
definition is needed for this situation.

Theorem 2 If M has only one state (n = 1), any test suite containing X7* is complete
with respect to fault model F = (M, ~,D(X, Xo,m)). O

We do not present the original proofs of Theorem 1 and 2 established in
Dorofeeva et al (2005), because it will turn out (see Corollary 1 below) that for the
case where only completely specified DFSMs are considered, the H-method can be
regarded as a special case of the more general safety-complete H-method introduced
and proven in Section 3 below.

3 A Safety-complete H-Method

3.1 Safety-related Output Abstractions

Let M = (Q,q,X1,X0,h) be a deterministic completely specified FSM. Then
any reflexive and transitive relation <sC Xp x X is called a safety-related output

abstraction. The intuition behind this definition is that y <s v’ indicates that an
erroneous output of 3 instead of an expected output y does not induce a safety
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violation. Reflexivity just indicates that the occurrence of the output expected
according to the reference model M can never be a safety violation. Transitivity
implies that output z must also be a safe replacement of w, if w <s y Ay <s z holds.
Relation <y induces an equivalence relation ~5 on Yo x ¥ by defining

Y1 ~sy2 =91 Ssy2 Ay2 <s 1

Ezample 1 Consider a train onboard controller which compares actual train speed
against the allowed speed and progressively outputs

Yo = {ok,warning, ServiceBrakeTrigger, EmergencyBrakeTrigger},

depending on how much the train is overspeeding. The outputs ok and warning
are shown on the display unit of the train engine driver, whereas the outputs
ServiceBrakeTrigger and EmergencyBrakeTrigger directly act on the train’s brak-
ing system. The service brake slows the train down with lower braking force than
the emergency brake, so that the latter is used only as the “last resort”, when
warnings and service brake interventions do not suffice. These considerations induce
a safety-related output abstraction < as the reflexive and transitive closure of

ok <5 warning <; ServiceBrakeTrigger <s; EmergencyBrakeTrigger

The intuition behind this definition is that a warning or even a braking intervention
performed by the controller is an acceptable substitute for an expected ok-output
from the safety perspective: the substitute output may be a nuisance (a spurious
warning when the speed is within range) or even a severe reduction of reliability
(triggering the emergency brake without need), but it does not introduce a safety
threat. The same holds for situations where the service brake should be triggered
but instead, the emergency brakes are activated.

When an intervention by service brakes or emergency brakes is expected,
however, an output ok or warning would certainly be regarded as a safety hazard.

Next, suppose that the outputs to the train engine driver are extended by status
messages

Yo ={s1,--.,sn}.

Since these informative messages have no safety-relevance at all, we wish to extend
the relation <s in a way expressing that each status message can be replaced by
any other output of Yo U X}, without causing any safety hazard. This is achieved
by extending <s according to the rules

s ~s s forall s, s’ € ¥p
s<seforallsec ¥p,ec Xp

Finally consider a design extension, where the onboard controller operates in a
de-centralised distributed train control environment, so that it switches its own
points

26 :{Pj’ P; li=1,...,m}

along the route (such a system has been investigated, for example, in Haxthausen
and Peleska (2000)). Notation p;” stands for switching point number i into the
straight position, p;” for switching the point into the branching position. From the
safety-perspective, switching a point into the desired position cannot be replaced
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by any other event without introducing a safety hazard. Therefore we extend <s
this time as follows.

p <s p for all p € X¢
s <spforallse X,pe X,

The events of o and X7}, however, are incomparable: switching a point can never
be a safe replacement for braking a train, and vice versa. O

Given a safety-related output abstraction <s; on X, this is extended in the
natural way to a reflexive and transitive relation (again denoted by <s) on output
traces ¢, m € X by setting

v<sm=(Fr=#nAVie{l,... #i} (i) <s (i)

for v, m € Xy, where #., #m is the length of ¢, 7, respectively.

Now let ¢, ¢’ be two states of the same state machine or of different state machines
over the same input/output alphabet (X7, Xo). In the latter case, it is assumed
without loss of generality that their states come from disjoint sets Q, Q. Then it is
possible to specify a joint output function w : (QUQ’) x X — X which is extended
in the natural way to operate on sequences of inputs, i.e. w: (QUQ’) x T — I§.
Let T € X7 be an input trace. We define

d<sq= (w(d', ) <s w(g,)).

z
Intuitively speaking, ¢’ <s ¢ states that applying input trace Z to state q produces
an output sequence w(q,7) which is an admissible substitute to the output sequence
w(q’,Z) expected when applying the same input sequence to ¢'.

T
Relation <y induces an equivalence relation on states by defining

= T T
q ~sq=(d <sanqg<sq)

These relations can be extended to sets of input traces in the natural way by
defining

q’gsqz(VEGW:q’stq)
q/r\VJVSqE(VEGW:q/ESq)

for arbitrary W C X7. Finally, the specific case where W = X7 is written in the

simplified notation
/ / 2;
7 <sq=(qd <sq)
/ / 2;
q ~sq=(d ~sq).

If ¢ ~5 ¢ holds, any input trace applied to ¢’ will lead to an output trace which
—regarded from the safety perspective — is an admissible replacement of the outputs
expected when applying the same inputs to ¢ and vice versa. If the initial states ¢
and g' of two state machines M, M’ are s-equivalent (g/ ~s q), we denote this b§
M ~s M.
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The following lemma states a simple, but important fact which links ~s to ~.
To state the lemma, we introduce the identity relation

id(X) = {(z,z) | z € X}

which relates every element of some set to itself, but leaves distinct elements
incomparable.

Lemma 1 ]f <s = id(Z’O)7 then ~g = ~.

Proof Since <s is the diagonal relation by assumption, two output traces ¢, m € X¢)
are only comparable if they coincide, that is,

L<smeon<siL<sL=m.

E —
As a consequence, ¢ <s ¢ if and only ¢’ ~ ¢, and therefore, ~s = ~ follows. O

3.2 The Safety-complete H-Method

Throughout this section, let M = (Q, ¢, X1, Xo,h), M' = (Q', ¢, X1, Z0o,h’) be com-
pletely specified, deterministic, and minimised FSMs over the same input/output
alphabet ¥ = X1 x £o with |Q| = n, |Q'| < m and m > n. Let <;C Yo x ¥p be a
safety-related output abstraction with associated equivalence relation ~s.

Definition 1 (Safety-complete Test Suite) With the terms introduced above
and in Section 2.3, define fault model Fs = (M, ~5, D(X;, Xo,m)). Let TS C X7
be a test suite.

1. TS is called sound w.r.t. fault model Fs, if and only if every member M’ €
D(X1, Xo, m) which is I/O-equivalent to M (M’ ~ M) passes the test suite.

2. TS is called safety-exhaustive w.r.t. fault model Fs, if and only if every member
M' € D(Z, X0, m) which is not safety-equivalent to M (M’ «s M) fails at
least one test case in TS.

3. TS is called safety-complete w.r.t. fault model F, if it is both sound and safety-
exhaustive.

O

Note that in the definition above, we do not require every safety-equivalent
implementation to pass the safety-complete suite, because we are happy if the
safety-driven suite also uncovers some non-critical failures violating I/O-equivalence.
Furthermore, observe that the definition of safety-completness coincides with
ordinary completeness, if <s is the identity relation on X: this follows directly
from Lemma 1.
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Theorem 3 (Safety-complete H-method) Using the notation above, let V C X7
be a minimal state cover of M containing €. Define auxiliary sets

A=V xV
m—n+1 )
B=vx(V. |J =)
i=1
m—n+1 )
C={(wr,vy)|veVaye( U Z1) A+ € Pref(y) — {e}}
i=1

Ds = {(a, B) € A | g-after-a # g-after-4} U {(a, 8) € BUC | g-after-a o5 g-after-8}

Let
A:Dgs — E}‘

be a map satisfying
V(a,B) € Ds : Aw, B) € Dist(g-after-a, g-after-g).
Define a test case set Hs by
Hy = V.7 " Uf{a. Ao, B), B.A(e, B) | (a, B) € Ds}.

Then any test suite T'S containing OHs is safety-complete w.r.t. Fs, that is,

) OH

M R M= M ~s M.

Proof Assume that M’ passes the test suite, but is not safety-equivalent to M,
that is, ¢ of q but ¢’ %sq. Since ¢ € V by assumption and V C X7, we can

z
_ _ e ,
conclude that X7 = V.X7. Therefore, any sequence z € X7 satisfying ¢ 74 s gcan
be re-written as z = v.Z7 with v € V and 7 € X} (note that v may be the empty
V.T
trace s). As a consequence, we can select a shortest sequence T satisfying Q’ 745 q.
Since ¢ o8 ¢, we also have ¢ . g. Therefore, the traces of V.z are not
completely contained in 0Hs. Now, by definition of Hs, the set of prefixes Pref(0Hs)
contains all input traces of V.(Umfm'1 E}) As a consequence, the length of T

=1
must be greater than (m —n + 1).

v.x

Let v € V such that ¢’ 765 q. Then VU {rz" | i=1,...,m —n+1} contains
n+(m—n+1)=m+1 input sequences, because the two operands of the set union
are disjoint for the following reasons: suppose that v.z(""Yl € V for some i > 1. Then

—=i+1

the suffix 't! would be a shorter input sequence with ¢ V;S q, a contradiction
to the assumption about T being a shortest sequence of this kind.

Since M’ has at most m states, there are two input sequences o # f in
vV u {I/.f[Li] |i=1,...,m —n+ 1} with ¢’-after-a = ¢’-after-3. There are three
cases to be distinguished about «, §: a B

1. o, V.

2. aGV,ﬂ:V.E[l’j] for some j=1,....,m—n+1.

3. a=vzlhl g= u.f[l’j], for some i < j with é,5 € {1,...,m—n+1}
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Before analysing the 3 cases, we first observe that for the «, 8 occurring in cases
1, 2, or 3, the following fact holds.

¢-after-a = ¢'-after-B = g-after-a ~; g-after-g. (1)

This is shown by contradiction; suppose therefore, that ¢'-after-a = ¢'-after-3
and g-after-o 45 g-after-8. Then Hs contains two tests a.A(a, ), B.A(a, B) dis-
tinguishing ¢-after-a from g-after-3 w.r.t. ~s, and therefore also w.r.t ~. Since
¢-after-a = ¢’-after-8 by assumption, M’ would produce the same outputs when
gpplying A(a, B) to these identical states, whereas M produces different outputs
when applying A(a, 8) to g-after-a and g-after-8. This is a contradiction, because
M’ is supposed to pass all tests in OH,.

With this information at hand, it can be concluded that Case 1 above is not
possible, because the input traces in V' lead to n distinguishable states in M, so
they must also lead to n distinguishable states in M’ according to implication (1).
As a consequence, only Case 2 or Case 3 can apply. Hence 8 = vzt for some
j=1,....m—-n+1, and vz = B.27t!. Since |Z] > m —n + 1 the suffix 11 s
non-empty. This leads to the derivation

VT Bzt

dPaed % vz =it

I+l

< ¢'-after- 748 g-after-B [8 € Pref(Hs), therefore ¢’ £

]
zI+1
& ¢'-after-a 748 g-after-B [¢'-after-oo = ¢'-after-g]

fJ+1

& ¢'-after-o 74 . g-after-a [(1) implies g-after-o ~5 g-after-/]

a. it

< q 745 q [a € Pref(Hs), therefore ¢’ < g

Since a.z’t! € V't or a.z/t! e vzl Tt both /! and zL1 77+ are
shorter than T, a contradiction to the assumption that Z is a shortest input sequence

VT
with ¢’ o, q. Therefore, such an T cannot exist, and g’ must be ~s-equivalent to g.

This concludes the proof. O

Observe that in the proof of the theorem above, no reference to the completeness
of the original H-method stated in Theorem 1 was needed. From the perspective of
complete testing theories, it is interesting to note that Theorem 3 can be regarded
as a generalisation of the H-Method, whose completeness has been stated above in
Theorem 1. This fact is expressed by the following corollary.

Corollary 1 For completely specified DFSMs, the safety-complete H-method implies
the completeness of the H-method.
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Proof Let < = idXp. Then Lemma 1 implies that ~s = ~. For this case, the
set Ds specified in Theorem 3 coincides with D as specified in Theorem 1. As
a consequence, also Hs in Theorem 3 equals H as specified in Theorem 1. This

establishes that Theorem 1 is the special case of Theorem 3, where <; = idXo.
O

It is noteworthy that
VIR C {a.A(a, B), B.A(a, B) | (, B) € Ds}

holds whenever M has at least two ~s-distinguishable states. This follows directly
from the definition of the auxiliary sets B and Ds in Theorem 3. Therefore,

Hs = {OL.A(O&,ﬂ),ﬁ.A(O&,/B) | (aaﬁ) € DS}

if two ~s-distinguishable states can be found in M. Only for the degenerate case
where all states of M are equivalent w.r.t. ~, the set {a.A(«, B), 6 A( B) | (e, 8) €
Ds} is empty, so the test suite consists of the traces in V.X7"™ n+

Observe further, that Theorem 3 leaves considerable degrees of freedom regard-
ing the implementation of the Safety-complete H-Method. This is due to the fact
that the mapping A : Ds — X7 is not uniquely determined. Different choices of A
result in different sizes of the test suite OHs. Finding the optimal choice resulting in
a minimal test suite size has very high complexity. Even if we restrict the possible
choices of image values A(w, 8) € X7 just to the shortest distinguishing traces, there
would be up to \21||D s| different choices for selecting the best possible solution A.
Therefore we suggest a greedy algorithm below for implementing the method: for
each («,B) € Ds, a distinguishing trace w is selected, such that (a.w, B.w) extends
the current state of Hs in the least possible way.

3.3 Implementation

For implementing an algorithm calculating the safety-complete test suite according
to Theorem 3, we proceed as follows.

FSM Abstraction. Given a completely specified, deterministic, minimal FSM M =
(Q,q,%21,X0,h), every safety-related output abstraction <;C X X Yo induces
an abstraction as of the alphabet by mapping each output y € Yo to the set of
outputs y' € Yo that are greater or equal to y according to <s.

s: 20 —=P(X0); y={yeZo|ly<sy'}

The image X¢) = as(Xp) is again finite, therefore it can be used as a new output
alphabet of a state machine My which is an abstraction of M with respect to <;
in the following sense.

MS = Prime(Q7Q» Z‘]72‘807}[/5)
hS = {(Q7z7a8(y)7q/) | (%Ly:q/) S h}

Though M is assumed to be already minimised, the abstracted machine
(Q,q, X1, %5, hs) will not be minimal in general, because the output abstraction
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may result in fewer states of @ being distinguishable. Therefore M; is specified as
the prime machine of (Q, ¢, X1, X3, hs).

By construction, two different states (¢,q’) in Ms produce outputs for certain

input traces that differ in X,. As a consequence, ¢ 45 ¢’ holds.

Algorithm. With the DFSM abstraction at hand, the algorithm for calculating a
safety-complete test suite is specified as follows.

1.
2.
3.

0 O Ut

10.
11.

12.

Input 1. Reference model M = (Q, ¢, X1, X0, h) with |Q] = n.

Input 2. Integer m satisfying m > n.

Input 3. Deterministic, completely specified, minimised FSM

Ms = (QS,QS,EI,EB,hS) resulting from the abstraction of M with respect
to <s.

. Output. Test suite T'S which is safety-complete with respect to fault model

F = (M,~s,D(21, 50,m))).

. Calculate state cover V erm M.
. Calculate E = Um_"+1 X7

=1

. Define sets A, B, C of pairs as specified in Theorem 3.
. Calculate a distinguishability function

Dist : Q x Q — P(X7)

mapping pairs of non-equal states to the set of shortest input traces distinguish-
ing the two in M.

. Calculate a distinguishability function

Dists : Q x Q — B

returning true for pairs of states (qi,¢2) that are distinguishable in M, which

means that g1 %5 qo.

Initialise the test case set Hs by setting Hs = V.E.

For all (e, 8) € A do

(a) Set g1 = g-after-a and g2 = g-after-3, with both states calculated in M.

(b) If g1 = g2 in M, continue with the next pair (o, 8) at Step 11.

(c) Select w € Dist(q1, g2) such that the costs for adding a.w and 8.w are minimal.
The costs are defined as follows. (a) If a.w € Pref(Hs) and S.w € Pref(Hs),
the costs are zero. (b) If a.w € Pref(Hs) and B.w is an extension of an
existing input trace in 0Hs, the costs are 1; the same holds for the case
B.w € Pref(Hs) and a.w an extension of a trace in Hs. (c) If a.w € Pref(Hy)
and SB.w neither is contained in Pref(Hs), nor extends a trace from 0Hs,
or vice versa, the costs are 3. (d) If a.w extends dHs and B.w neither is
contained in Pref(Hy), nor extends a trace from dHs, or vice versa, the costs
are 4. (e) If both a.w and f.w lead to new test cases, the costs are 5.

(d) Set Hs = Hs U {a.w, B.w}.

For all (a, 8) € BUC do.

(a) Set q1 = g-after-a and g2 = g-after-g, with both states calculated in M.

(b) If —~Dists (g1, ¢2), continue with the next pair (a,3) at Step 12.

(¢) Otherwise select w € Dist(q1, g2) such that the costs for adding a.w and B.w
are minimal as specified above.

(d) Set Hs = Hs U {a.w, B.w}.
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13. Return TS = 0H,.

Termination of this algorithm is obvious, since the sets A, B, C are finite. The
cost function is motivated by the goal to add as few test cases as possible to Hs.
An extension of an existing trace from dH, does not add a new test case, but just
extends an existing one, so that only the number of test steps is increased. A trace,
however, that is neither contained in Hs nor extends a trace in OHs, corresponds
to a new test case; so the highest costs occur when a.w, 8.w give rise to two new
test cases.

In embedded systems testing, the time needed to restart an SUT for a new
test cases is usually much longer than the time needed to execute one test step;
therefore adding a test step causes lower costs than adding a test case.

Note that this algorithm also allows to calculate test cases for the original
H-Method, by setting Ms = M, which holds for <;=id(Xp).

FSM Open Source Library. We have published the open source C++ library fsmlib-
cpp! which contains all algorithms needed for implementing the Safety-complete
H-Method.? This library also provides essential methods for minimising DFSMs
and for making nondeterministic FSMs observable. Moreover, a generator main
program is provided which uses these methods to calculate test suites following
the W-Method, Wp-Method, H-Method, and their safety-complete equivalents. An
overview over this library is given in the lecture notes (Peleska and Huang, 2017,
Appendix B).

4 Case Studies and Strategy Evaluation
4.1 Control of Fasten Seat Belt and Return-to-Seat Signs in the Aircraft Cabin

Application. The following example is a (slightly simplified) real-world example
concerning safety-related and uncritical indications in an aircraft cabin. A cabin
controller in a modern aircraft switches the fasten seat belt (FSB) signs located
above the passenger seats in the cabin and the return to seat (RTS) signs located
in the lavatories according to the rules modelled in the DFSM shown in Table 1.

As inputs, the cabin controller reads the actual position of the fasten seat belts
switch in the cockpit, which has the position f0 (OFF), f1 (ON), and f2 (AUTO).
Further inputs come from the cabin pressure control system which indicates “cabin
pressure low” by event d1 and “cabin pressure ok” by d0. This controller also
indicates “excessive altitude” by el or “altitude in admissible range” by 0. Another
sub-component of the cabin controller determines whether the so-called AUTO
condition is true (event al) or false (a0).

The cabin controller switches the fasten seat belt signs and return to seat signs
on and off, depending on the actual input change and its current internal state. As
long as the cabin pressure and the cruising altitude are ok (after initialisation of
the cabin controller or if last events from the cabin pressure controller were dO,
€0), the status of the FSB and RTS signs is determined by the cockpit switch and
the AUTO condition: if the switch is in the ON position, both FSB and RTS signs

1 https://github.com/agbs—uni-bremen/fsmlib-cpp.git
2 The Safety-complete H-Method is implemented in file fsm-generator. cpp.
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are switched on (output 11 in Table 1). Turning the switch into the OFF position
switches the signs off. If the switch is in the AUTO position, both FSB and RTS
signs are switched on if the AUTO condition becomes true with event al, and they
are switched off again after event a0. The AUTO condition may depend on the
status of landing gears, slats, flaps, and oil pressure, these details are abstracted to
al, a0 in our example.

As soon as there occurs a loss of pressure in the cabin (event d1) or an excessive
altitude is reached, the FSB signs must be switched on and remain in this state,
regardless of the actual state of the cockpit switch and the AUTO condition. The
RTS signs, however, need to be switched off, because passengers should not be
encouraged to leave the lavatories in a low pressure or excessive altitude situation.

After the cabin pressure and the altitude are back in the admissible range, the
FSB and RTS signs shall automatically resume their state as determined by the
“normal” inputs from cockpit switch and AUTO condition.

Safety considerations. Analysing the outputs
(FSB,RTS) € ¥p = {00,10,11,01}

from the safety-perspective, leads to the identification of one safety-critical output
(FSB,RTS) = (1,0), which should be set whenever cabin decompression or excessive
altitude occurs. If the other outputs {00,11,01} are changed due to an application
error, this is certainly undesirable, but does not represent a safety hazard. Note
that the output combination 01 should never occur at all.

These considerations lead to an abstraction function

as Yo = P(Xo)
00 — {00,10,11,01}
11+ {00,10,11,01}
01 — {00,10, 11,01}
10 + {10}

as introduced in Section 3.3, and the abstracted FSM described there is obtained by
replacing outputs 00, 01, 11 by YY = {00, 10, 11,01}, while leaving every occurrence
of output 10 unchanged.

Comparison H-Method versus Safety-complete H-Method. The reference DFSM with
24 states as specified in Table 1 is already minimal. Applying our implementation
of the H-Method results in a test suite with 511 test cases, for the case m = n = 24.
The Safety-complete H-Method results in 337 test cases; this corresponds to an
improvement of 34%. The Wp-Method requires 841 test cases.

The main reason for this significant test case reduction is that the prime machine
of the new DFSM resulting from the safety abstraction only has 4 states which
corresponds to a state reduction of 83%, when compared to the original DFSM
from Table 1. This observation will be confirmed in the more general evaluation
below.
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Table 1 State-transition table of DFSM specifying the control of FSB signs and RTS signs in
an aircraft cabin.

[ [ fo [ 11 f2 | di | do [ el e0 al a0
So $0/00 s1/11 $2/00 s3/10 $0/00 s6/10 $0/00 | s12/00 | s0/00
s1 $0/00 s1/11 s2/00 $4/10 s1/11 s7/10 s1/11 s13/11 s1/11
So s0/00 s1/11 s2/00 85/10 82/00 sg/10 s2/00 s14/11 82/00
S3 s3/10 s4/10 s5/10 s3/10 $0/00 s9/10 s3/10 | s15/10 | s3/10
sS4 s3/10 s4/10 s5/10 s4/10 s1/11 s11/10 s4/10 s16/10 s4/10
S5 s3/10 s4/10 s5/10 s5/10 s2/00 | s11/10 | s5/10 | s17/10 | s5/10
S6 s6/10 s7/10 ss/10 s9/10 s6/10 s6/10 $0/00 s18/10 s6/10
s7 86/10 s7/10 s8/10 s10/10 87/10 s7/10 s1/11 s19/10 87/10
s8 s6/10 s7/10 sg/10 | s11/10 | sg/10 sg/10 $2/00 | s20/10 | sg/10
Sg s9/10 s10/10 | s11/10 s9/10 s6/10 s9/10 s3/10 s21/10 s9/10
s10 s9/10 s10/10 | s11/10 | s10/10 s7/10 s10/10 s4/10 s22/10 | s10/10
S11 s9/10 $10/10 | s11/10 | s11/10 s8/10 s11/10 s5/10 s23/10 | s11/10
S12 $12/00 813/11 s14/11 s15/10 | s12/00 818/10 812/00 s12/00 80/00
s13 $12/00 | s13/11 | s14/11 | s16/10 | s13/11 | s19/10 | s13/11 | s13/11 s1/11
S14 $12/00 | s13/11 | s14/11 | s17/10 | s14/11 | $20/10 | s14/11 | s14/11 s2/00
S15 s15/10 | s16/10 | s17/10 | s15/10 | s12/00 | s21/10 | s15/10 | s15/10 s3/10
s16 s15/10 | s16/10 | s17/10 | s16/10 | s13/11 | s22/10 | s16/10 | s16/10 s4/10
S17 s15/10 816/10 817/10 s17/10 | s14/11 823/10 817/10 s17/10 85/10
s18 $18/10 | s19/10 | s20/10 | s21/10 | s18/10 | s18/10 | s12/00 | s18/10 s6/10
S19 s18/10 | s19/10 | s20/10 | s22/10 | s19/10 | s19/10 | s13/11 | s19/10 s7/10
S20 s18/10 s19/10 $20/10 | s23/10 | s20/10 $20/10 s14/11 $20/10 sg/10
S21 $21/10 | s22/10 | s23/10 | s21/10 | s18/10 | s21/10 | s15/10 | s21/10 s9/10
S22 $21/10 822/10 s23/10 | s22/10 | s19/10 522/10 816/10 s22/10 | s10/10
S23 $21/10 | s22/10 | s23/10 | s23/10 | s20/10 | s23/10 | s17/10 | s23/10 | s11/10

4.2 Synthetic Example

First column defines the states (initial state sq)
First row defines the inputs

Fields s/y denote ‘Post-state/Output’

Inputs:

fo, f1, £2 : FSB switch in position OFF, ON, AUTO
d1, dO : Cabin decompression true, false

el, e0 : Excessive altitude true, false

al, a0 : Auto condition true, false

Outputs:

00 denotes (FSB,RTS)=
11 denotes (FSB,RTS)=
10 denotes (FSB,RTS)=

o
(1
(1

70)
1
’O)

Application. The following example does not come from a practical application, but
has been constructed to illustrate that the reduction of test cases in comparison
to the original H-Method can be quite significant. The reference state machine is
shown in Table 2.

Safety considerations. We assume that outputs 1 and 2 can be considered as non-
critical, so that they can be abstracted to a single output Y. Output 0 is considered
as critical.
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Table 2 State-transition table for the DFSM presented in the synthetic example in Section 4.2.

[ [ a [ b [ c [d] e |
sO || s1/1 | s3/2 | s2/0 | s4/1 | s5/1
sl || s1/1 | s3/1 | s2/0 | s4/2 | s5/1
s2 || s1/1 | s3/1 | s2/0 | s4/1 | s5/1
s3 || s1/2 | s3/2 | s1/0 | s4/1 | s5/1
s4 || s1/2 | s3/2 | s2/0 | s4/1 | s5/1
s5 || s1/0 | s3/1 | s0/0 | s4/1 | s6/1
s6 || s1/0 | s3/1 | s2/0 | s4/1 | s5/1

First column defines the states (initial state sq)
First row defines the inputs
Fields s/y denote ‘Post-state/Output’

Comparison H-Method versus Safety-complete H-Method. The reference machine in
Table 2 with its 7 states is already minimal, but the minimised abstracted DFSM
only has 2 states, this corresponds to a state reduction of 71%. The Wp-Method
with assumption m = n required 87 test cases, the H-Methods requires 61 test
cases, while the Safety-complete H-Method only requires 31, this corresponds to a
test case reduction of approx. 49%.

While this example is of no practical value, it illustrates that test case reductions
of approximately 50% are possible when using the Safety-complete H-Method
instead of the original H-Method.

4.3 Garage Door Controller

Application. This example has originally been proposed in Jorgensen (2017). We
use it here to confirm the fact discussed above, that the Safety-complete H-Method
does not lead to test case reductions, if the prime machine of the abstracted DFSM
has just as many states as the prime machine of the original reference model.

The garage door controller uses inputs from a remote control, two sensors
indicating whether the door has reached the up position or the down position,
respectively, and a light sensor indicating whether the door area is crossed while
the door is closing or opening. The controller commands the motor to go down, up,
stop, or to reverse the down direction to the up direction. Its detailed behaviour is
specified in Table 3.

Safety considerations. The only output considered as safety-critical is the command
to reverse the down-direction to the up direction. All other outputs can be abstracted
to some value Y.

Comparison H-Method versus Safety-complete H-Method. Both the reference model
in Table 3 and its abstraction are not minimal. It turns out, however, that the
minimised abstracted model still has as many states as the minimised reference
model (4 states). As a consequence, both the H-Method and the Safety-complete
H-Method requires 13 test cases for m = n. The Wp-Method generates 17 test
cases.
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Table 3 DFSM modelling the garage door controller.

[ I el [ e2 [ e3 [ ed |
DU DC/al DU/a3 DU/a3 DU/a3
DD DO/a2 | DD/a3 | DD/a3 | DD/a3

DSD || DC/al | DSD/a3 | DSD/a3 | DSD/a3
DSU || DO/a2 | DSU/a3 | DSU/a3 | DSU/a3
DC DSD/a3 | DD/a3 DC/al DO/a4
DO DSU/a3 | DO/a2 DU/a3 DO/a2

Inputs:

el : Remote control has been pressed

e2 : Sensor indicates “door reaches down position”
e3 : Sensor indicates “door reaches up position”
e4 : Sensor indicates “light beam crossed”
Outputs:

al : Command “start down movement” to motor
a2 : Command “start up movement” to motor

a3 : Command “stop movement” to motor

a4 : Command “reverse down movement to up” to motor
States:

DU : Door is in up position

DD : Door is in down position

DSD : Door is stopped while going down

DSU : Door is stopped while going up

DC : Door is closing

DO : Door is opening

4.4 Statistical Experiments

In addition to the “hand-crafted” DFSMs discussed above, a comprehensive collec-
tion of experiments has been performed with DFSMs generated at random. For
each DFSM, a safety-abstraction has been generated. Then the Wp-Method, the
H-Method, the Safety-complete Wp-Method, and the Safety-complete H-Method
have been applied to generate test suites.

For each generation, the following parameters were recorded; these are also
shown in the tables below.

|REFyvin| Number of states in the prime machine of the reference DFSM.

|ABSwMiNn| Number of states in the prime machine of the DFSM abstraction.

| 27| Size of the input alphabet.

m —n Hypothesis about the difference between maximal number m of states in
the prime machine modelling the true implementation behaviour and number
n of states in the prime machine of the reference model.

|TSwp| Test suite size (i.e., number of test cases) of the suite generated using the
Wp-Method.

|T'Sy| Test suite size of the suite generated using the H-Method.

|TSswp| Test suite size of the suite generated using the Safety-complete Wp-
Method.

|T'Ssu| Test suite size of the suite generated using the Safety-complete H-Method.
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Table 4 Number of test cases generated by different methods and test case reduction compared
to H-method in dependency of the size of the abstraction model’s prime machine.

|Zr =14
m—n=20

|ABSM1N| |REFM1N| |TSWp| |TSSWP| ‘TSH‘ |TSSH| Redy% RedHTotal%
2.00 51.82

99.97 913.60 593.56 796.84  414.27 48.01
3.00 102.44 1020.45 780.97 811.69  535.65 34.01 37.82
4.00 102.60 1030.44 868.20 837.07  640.30 23.51 27.42
5.00 103.25 1055.04 939.02 862.26  718.09 16.72 20.26
6.00 101.42 1073.24 963.92 840.63  728.93 13.29 16.87
7.00 102.64 1068.38 1020.32 880.71  781.87 11.22 14.34
8.00 103.01 1074.51 1047.98  880.79  809.69 8.07 11.11
9.00 100.76 1033.94 1055.74 866.15  809.37 6.56 9.10
10.00 102.85 1033.20 1089.53  904.97  852.88 5.76 8.10
20.00 103.73 1107.67 1367.51 960.16  943.61 1.72 3.24
30.00 103.92 1079.82 1529.54  975.72  968.98 0.69 1.66

Redy% Reduction of H-test suite versus Safety-H test suite size in percent, calcu-
lated using the formula

|TSH|

Red =100 — 100 - .
edy % 00 — 100 ITSsm]

|TSH |total,|T'SsH|total Total number of test steps occurring in the test suite gen-
erated using the H-Method and total number of test steps occurring in the
test suite generated using the Safety-complete H-Method, respectively. These
parameters are not explicitly shown in the tables presented here, but used to
calculate the reduction percentage Redp,,,,, % described next.

Redy,,,,, % Reduction of the number of test steps in percent, calculated using the
formula

‘TSH|total

Redy, .., % = 100 — 100 -
Hrotar 70 |TSsH |total

In Table 4, the reduction of test suite size is recorded in dependency of the
size |ABSnin| of the safety abstraction’s prime machine. An input alphabet of size
4 was used, together with the hypothesis m = n. The generated reference prime
machines have sizes varying between 95 and 105 states. Each line in this table is
based on 100 experiments, therefore the values are given as the average over 100
generated reference machines. The reduction results are displayed for variations of
|ABSMIN| from 2 to 30.

In Fig. 1, a plot displaying the number of test cases generated by each method in
dependency of |[ABSyn| is shown. The plot is based on the same data as presented
in Table 4. It can be seen that the Safety-complete Wp Method produces even
more test cases than the H-Method, if | ABSyin| > 9. This presents clear evidence
that the H-Method and its Safety-complete variant outperform the Wp-Method
and the Safety-complete Wp-Method.

The values of Redy % show that significant test suite reductions can be expected
if |[ABSMin| has a value below |REFyin|/10. The examples from Section 4.1 and
Section 4.2 perform better with state reductions |ABSyin| = |REFuin|/6 for the
Fasten Seatbelt Sign application and |[ABSyiN| = |REFuin|/3.5 for the synthetic
example. We see this as an indication that this type of random generation is not fully
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Fig. 1 Number of Test cases in dependency of the size of the safety abstraction’s prime
machine, m = n.

representative for meaningful DFSM constructions. This hypothesis is confirmed
by the experiments documented in Table 5, where the test suite reductions are
recorded in dependency of |REF\iN|, while |ABSyin| keeps the constant value 2.
Here, the reduction of 34% achieved for the Fasten Seatbelt application described
above is achieved for an approximate ratio of |ABSyin| = |REFMiN|/4, whereas
the 50% reduction achieved in the synthetic example (Section 4.2) is nearly achieved
for a ratio |ABSmin| = |REFMiN|/40. The plot based on the data presented in
Table 5 is shown in Fig. 3.

The plots in Fig. 2 and Fig. 4 show that the test step reductions follow the
same trend as the test case reductions. The former figure shows the reductions in
dependency of the safety abstraction’s size, the latter in dependency on the size of
the reference model.

The increasing difference m — n has no significant impact on the test case
reduction that can be obtained by using the Safety-complete H-Method instead of
the normal one: Fig. 5 shows the reduction curve again in dependency from the
size |ABSmiIN|, but now for the value m —n = 3. Comparing this with Fig. 2 shows
the same trends for both cases m =n and m —n = 3.
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Table 5 Number of test cases generated by different methods and test case reduction compared
to H-method in dependency of the size of the reference model’s prime machine.

|ABSmin| =2

|Zr|=4

m—n=20

|[REFvin|  |TSwel  |TSswel  [TSul |TSsul Redu% Redn,,,,%
0.00

2.00 7.00 7.00 7.00 7.00 0.00

4.00 19.48 13.29 17.82 13.69 23.18 25.47
6.00 32.33 20.94 29.86 20.94 29.87 32.80
8.00 46.15 29.57 43.03 28.19 34.49 37.78
10.00 60.71 38.64 55.91 36.24 35.18 38.37
12.00 74.18 49.05 70.15 44.66 36.34 39.96
14.00 87.82 59.77 82.90 50.47 39.12 42.74
16.00 105.87 68.91 100.04 57.21 42.81 45.99
18.00 115.70 75.00 113.81 69.61 38.84 41.31
19.66 134.05 90.20 126.57 73.27 42.11 45.80
21.57 147.04 100.06 142.35 80.61 43.37 46.88
31.59 219.40 153.41 216.99  124.15 42.79 46.11
41.09 319.50 213.25 295.62  160.31 45.77 49.32
51.03 423.16 276.64 378.06  210.15 44.41 48.35
60.61 499.79 339.02 443.75  243.50 45.13 49.17
70.41 587.89 396.58 538.07  293.83 45.39 49.17
79.79 701.84 457.32 605.98  312.12 48.49 52.25
89.94 813.69 518.85 690.72  364.56 47.22 51.21
97.49 889.05 564.21 756.92  408.52 46.03 49.80

5 Related Work

Complete Testing Theories. The investigation of complete theories for testing against
finite state machine models has a long tradition. This started started with the
W-Method published by Vasilevskii (1973) and Chow (1978), who were the first
to show that implementations whose true behaviour is represented by completely
specified DFSMs with at most m states can be tested against reference models
with n < m states, such that any violation of I/O-equivalence will be uncovered by
finitely many finite test cases derived from the reference model and the estimate
m. Since then, these initial results have been extended to incompletely specified
and nondeterministic finite state machines, and to reduction (language inclusion)
as an alternative conformance relation to I1/O-equivalence. Moreover, many of the
new theories guaranteed complete fault coverage with considerably less test cases
than needed according to the W-Method.

For the work presented here, the following results are of particular importance.
The W-Method is outperformed by the Wp-Method published by Fujiwara et al
(1991) and extended by Luo et al (1995) to nondeterministic incomplete FSMs. The
key idea to the considerable test case reduction achieved in comparison with the
original W-Method consisted in the fact that it is not always necessary to distinguish
states reached during a test by means of all distinguishing traces contained in a
characterisation set. Instead, so-called state identification sets — these are subsets
of a characterisation set, distinguishing just one state from all the others — can be
applied. In Petrenko et al (1993), the HSI-Method has been presented which yields
further test case reductions in comparison to the Wp-Method.
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Fig. 2 Test case reduction and test step reduction compared to H-method in dependency of
the size of the safety abstraction’s prime machine, m = n.

The key insight that arbitrary distinguishing traces can be used instead of
(subsets of) the characterisation set, in order to check the correctness of target states
reached in a test case execution has been perfected in the H-Method published
in Dorofeeva et al (2005), leading to a further reduction of test cases needed
to guarantee full fault coverage. This motivated our decision to base the safety-
complete testing method introduced here on the H-Method. Previous experiments
(Huang and Peleska (2017a)) based on the W-Method and the Wp-Method confirm
that (1) the H-Method outperforms the Wp-Method and W-Method, as stated
in Dorofeeva et al (2005), and (2) that the safety-complete variants of these methods
are also outperformed by the safety-complete H-Method described here. It is not
surprising that the reductions of test suite sizes achieved with the H-Method
carry over to the safety-complete variant: we have shown in Corollary 1 that the
H-Method can be considered as a special case of the more general safety-complete
H-Method, at least if completely specified DFSMs are considered.

@todo SPY method Simo et al (2012)

Property-oriented Testing. The approach to focus test suites on safety-critical be-
havioural aspects is a special variant of property-oriented testing; see Machado et al
(2007) for an overview of this research field. As stated there, the main motivation
for property-oriented testing is the possibility to reduce test suite size in comparison
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Fig. 3 Number of Test cases in dependency of the size of the reference model’s prime machine,
m=n.

to a complete model-based conformance test suite: while the latter requires test
cases to verify all possible behaviours in relation to a reference model, the former
only requires to investigate the subset of possible behaviours which is relevant to
verify a certain set or properties (i.e. requirements).

A typical approach to property-oriented testing is to state desired system
requirements as formulas in a temporal logic (see e.g. Fernandez et al (2003) and
Li and Qi (2004)) and construct test cases based on that formula. Since we are
only interested in testable properties, the set of properties is usually restricted to
safety properties. For linear safety properties (usually expressed as LTL formulas),
the test oracle problem is solved by noting that the test executions violating the
property (the so-called bad prefizes) are inside the language of a finite automaton,
as described in (Baier and Katoen, 2008, Section 4.2). This holds for the important
class of regular safety properties. In the more general case, property violations
can be characterised by accepting states of Biichi automata (Huang et al, 2014,
Chapter 4) or Rabin automata (Safra (1988)). For test generation, the subsets of
model executions are of interest, where the premises associated with the property
under consideration are fulfilled, so that the expected SUT reactions can be observed.
To our best knowledge, no general theory which guarantees complete fault coverage
for the general class of safety properties has been elaborated yet: the publications
Fernandez et al (2003) and Li and Qi (2004), for example, only suggest heuristics
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Fig. 4 Test case reduction and test step reduction compared to H-method in dependency of
the size of the reference model’s prime machine, m = n.

for generating suitable test suites, without any guarantees concerning test strength
or fault coverage.

The approach presented in this article differs fundamentally from the general
approach described above: by specialising on safety properties that can be expressed
by means of output abstractions, we can apply the conformance testing approach
on a simpler model, instead of using a completely different property-oriented
method. As a consequence, the concepts of fault coverage and completeness are
very close to those used in general conformance testing, and the completeness
proofs can be elaborated in a similar way. As a tradeoff, our safety properties
are less general: there are linear safety requirements that cannot be expressed by
safety-related output abstractions and their resulting DFSMs. From safety-critical
systems testing in the railway and avionic domain, however, we know that the
class of safety properties covered in this article fits the practical requirements quite
often.

6 Conclusion

We have presented a testing strategy which guarantees to uncover every safety
violation when testing an implementation against a deterministic finite state
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Fig. 5 Test case reduction and test step reduction in dependency of the size of the safety
abstraction’s prime machine, m — n = 3.

machine reference model. These guarantees hold under the assumption that the
true behaviour of the implementation, when expressed by a minimised state machine,
does not exceed a certain maximum number of states m, in comparison to the
number n of states in the minimised reference model. Safety criticality has been
modelled by means of a safety-related output abstraction which allows to express
that certain outputs can be exchanged by certain others without introducing a
safety threat. The new strategy has been derived from the H-Method which is
known to guarantee complete fault coverage, while producing smaller test suites,
when compared to the well-known older W-Method or Wp-Method. A proof has
been presented which shows that — while no longer guaranteeing to uncover every
violation of input/output equivalence — the new strategy is safety-complete: it
will uncover every failure which ends in an erroneous output representing a safety
violation.

The experiments show that this Safety-complete H-Method may require sig-
nificantly fewer test cases than the H-Method (reductions up to 50% have been
observed). It has been indicated by another example, however, that this reduction
is not guaranteed: the most important factor influencing the decrease of test cases
is the reduction of states achieved when transforming the original reference machine
to its safety-related abstraction.
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The concept described here can be extended to more complex systems whose
behaviour is represented by Extended Finite State Machines or, equivalently, by
a certain class of Kripke structures over infinite input domains, but with finite
domains for internal states and outputs. It has been shown in Huang and Peleska
(2017b) that a specific input equivalence class construction technique can be applied,
so that any complete testing theory valid for FSMs can be translated to a likewise
complete equivalence class partition testing strategy for these systems with Kripke
semantics.
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