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Chapter 1

Introduction

In this report we develop a domain specific language based on the UML 2.0 to support the model
driven development process of railway control systems.

1.1 A Domain Specific Formalism for Railway Control Sys-
tems

With emphasis on a modeling language and its formal semantics, we support the foundation of
the widely automated generation of controller components in the railway domain. As we provide a
means to capture the requirements of these control components thoroughly and unambiguously, the
focus within the development process shifts towards the modeling phase, i.e. the formalization of the
application users’ view onto the system.

We demonstrate our approach of utilizing a UML 2.0 profile as a domain specific language for a
problem in the railway control system domain. The domain of control — also called physical model —
consists of a railway network composed of track segments, points, signals, and sensors. Trains enter
the domain of control at distinguished entry segments and request to take pre-defined routes through
the network. Detection of trains is possible only via sensor observations. A controller monitors state
changes within the network, derives train locations, and governs signals and points to enable the
correct passage of trains through the network. With all activities, the controller must ensure that no
hazardous situation arises, formulated by requiring compliance with a specific set of safety conditions.

The railway control domain is a perfect candidate to apply a domain specific language as it con-
tains a rather limited amount of different entities. The specialized objects involved may exhibit only
a limited variation of behavior, and the high safety requirements already established in the railway
domain have resulted in a decent formalization of component descriptions. Part of the challenge of
formulating a domain theory of railways [rai] lies in the long history of the domain where domain
experts gathered a respectable amount of knowledge which is hard to contain in a computing science
formalism. Thus, an approach to deal with critical railway control applications has to carefully con-
nect the expertise in railway engineering with the development techniques of safety critical software.

Among the various proposed solutions, we observe a number of characteristics that we deem
desirable:

1. The UniSpec language within the EURIS method [FKvV98] provides a domain specific language
with graphical elements to reflect the topology of a railway network.

2. In order to support the development process with standard tools the wide-spectrum Unified
Modeling Language UML [RJB04] is used in the SafeUML project [Hun06] which specifically
aims at generating code conforming to safety standards. The use of UML is restricted here by
guidelines to ensure maintenance of safety requirements which still allow sufficiently expressive-
ness for the modeling process.

3. In [PBH00, HP02, HP03] the domain analysis concentrates on the relevant issues for formal
treatment of the control problem using a presentation form of tables and lists as foundation for



a formal model.

Based on these experiences, we propose to use the profile mechanism for UML 2.0 [OMGO05b,
OMGO05a] to create a domain-specific description formalism for requirements modeling in the railway
control systems domain (RCSD). This approach allows us to use a graphical representation of the
domain elements with domain specific icons in order to facilitate the communication between domain
experts and specialists for embedded control systems development. As the profile mechanism is part
of the UML standard, the wide-spread variety of existing tools can be adapted within the very spirit
of the UML using UML-inherent concepts. Since a profile allows to introduce new semantics for the
elements of the profile we can attach a rigorous mathematical model to the descriptions of the domain
model. Timed state transition system semantics form the base for formal transformations towards
code generation for the controller as well as for the verification task that guarantees conformance
to the safety requirements. Consequently, the RCSD profile constitutes the first and founding step
in a development process for the automatic generation and verification of controllers derived from a
domain model as outlined in [HP03, JPD04, PHK " 06].

The next section gives a brief introduction to the railway control domain terminology as back-
ground for the development of a profile. Section 1.3 explains the basic concepts and techniques for
the construction of a UML 2.0 profile. The main part, Chapter 2, contains the full formal notation
of the RCSD profile. An example in Section 3.2 demonstrates the successful connection between the
typical domain notation and the conceptual view of the profile.

1.2 Elements of the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain and their properties
as e.g. described in [Pac02]. We focus on the modeling of main tracks. All elements that are not
allowed on main tracks as e.g. track locks are discarded. The further elements are divided into track
elements, sensors, signals, automatic train runnings, and routes. Elements in the domain that come
in different but similar shapes like signals are modeled as one element with different characteristics.
In this way, we can abstract the railway domain to eight main modeling elements. These are described
in the following:
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1.2.1 Track Elements

The track network consists of segments, crossings, and points. Segments are rails with two ends
(see Fig. 1.1), while crossings consist of either two crossing segments or two interlaced segments (see
Fig. 1.2 and Fig. 1.3). In general, the number of trains on a crossing is restricted to one to ensure
safety. Points allow a changeover from one segment to another one. We use single points with a stem
and a branch (see Fig. 1.4). There is no explicit model element for double points, as these are seldom
used in praxis. If needed, they can be modeled by two single points. Single slip points and double
slip points are crossings with one, respectively two, changeover possibilities from one of the crossing
segments to the other one (see Fig. 1.5 and Fig. 1.6). All points have in common that the number of
trains at each point in time is restricted to one.
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1.2.2 Sensors

Sensors are used to identify the position of trains on the track network, i.e. the current track element.
To achieve this goal, track elements have entry and exit sensors located at each end. The number
of sensors depends on the allowed driving directions, i.e. the uni- or bidirectional usage of the track
element. Each sensor is the exit sensor of one track element and the entry sensor of the following
one. If the track elements can be used bidirectionally, another sensor is needed that works vice versa.

1.2.3 Signals

Signals come in various ways. In general, they indicate if a train may go or if it has to stop. The
permission to go may be constrained, e.g. by speed limits or by obligatory directions in case of
points. As it is significant to know if a train moves according to signaling, signals are always located
at sensors.

1.2.4 Automatic Train Running

Automatic train running systems are used to enforce braking of trains, usually in safety-critical
situations. The brake enforcement may be permanent or controlled, i.e. it can be switched on and
off. Automatic train running systems are also located at sensors.

1.2.5 Route Definition

As sensors are used as connection between track elements, routes of a track network are defined by
sequences of sensors. They can be entered if the required signal setting of the first signal of the route
is set. This can only be done if all points are in the correct position needed for this route. Conflicting
routes cannot be released at the same time. Some conflicts occur as the required point positions or
signal settings are incompatible. Another problem are routes that cross and are potentially safety-
critical.

1.3 The UML 2.0 RCSD Profile

The next step is tailoring the UML 2.0 to the railway domain to provide the previously identified
elements of the domain. There are two approaches to achieve this goal. The first one is using the
UML 2.0 profile mechanism described in [OMGO5b] and [OMGO05a] that allows for:

e introducing new terminology,

e introducing new syntax/notation,
e introducing new constraints,

e introducing new semantics, and

e introducing further information like transformation rules.



Changing the existing metamodel itself e.g. by introducing semantics contrary to the existing
ones or removing elements is not allowed. Consequently, each model that uses profiles is a valid UML
model. The second approach is adapting the UML 2.0 metamodel to the needs of the railway domain
by using MOF 2.0 (see [OMGO06]). This approach offers more possibilities as elements can be added
to or removed from the metamodel, syntax can be changed, etc. In fact, a new metamodel is created
that is based on UML but is not UML anymore.

We have chosen the first approach - defining a UML 2.0 profile - as this supports exactly the
features we need: the elements of the railway domain are new terminology that we want to use as
modeling elements.

MOF 2.0
UML 2.0 < RCSD Profile
UML 2.0 Model | RCSD Model
Class Level | Class Level
UML 2.0 Model |_ RCSD Model
Object Level | Object Level

Figure 1.7: RCSD Profile in the UML metalevel context

To simplify communication between domain specialists and system developers, the usual notation
of the railway domain should be used in a defined way. Therefore, constraints are needed to determine
the meaning of the new elements. Track networks described with the new profile are transfered to
transition systems. This is done by transformation rules. Also, we have valid UML models and
therefore various tool support.

A UML 2.0 profile mainly consists of stereotypes, i.e. extensions of already existing UML modeling
elements. You have to choose which element should be extended and define the add-ons. The RCSD
profile uses either Class, Association, or InstanceSpecification as basis of stereotypes. In addition,
new primitive datatypes and enumerations can be defined as necessary.

Unfortunately, defining eight stereotypes as suggested by the domain analysis in Sec. 1.2 is not
sufficient. New primitive datatypes and enumerations are needed to model attributes adequately.
Special kinds of association are needed to model interrelationships between stereotypes. Furthermore,
UML supports two modeling layers, i.e. the model layer itself (class diagrams) and the instances layer
(e.g. object diagrams). In the RCSD profile, both layers are needed: class diagrams are used to model
specific parts of the railway domain, e.g. tramways or railroad models. They consist of the same
components but with different characteristics. Second, object diagrams show explicit track layouts
for such a model. Here, the symbols of the railway domain have to be used. We need stereotypes
on the object level to define these features. For these reasons, the RCSD profile is structured in five
parts: the definition of primitive datatypes and literals, network elements on class level, associations
between these elements, network elements and associations on object level, and routes.

Defining new primitive types is the easiest part. New datatypes must be identified and their
range of values specified. In our case, these are identifiers for all controllable elements, identifiers for
routes (e.g. to specify conflicting ones), time instants and durations. For each primitive datatype, a
corresponding literal has been described that defines the appearance of valid literal values.

The next part of the profile defines all track network elements, i.e. segments, crossing, points,
signals, sensors, and automatic train runnings. Segment, Crossing, and Point have in common that



they form the track network itself, therefore they are all subclasses of the abstract TrackFElement.
Similarly, SinglePoint and SlipPoint are specializations of Point, while DoubleSlipPoint is a special-
ization of SlipPoint. All elements are equipped with a set of constraints that define which properties
each element must support and how it is related to other elements.

Associations are used to connect track network elements. SensorAssociations connect track ele-
ments and sensors, SignalAssociations are used to associate signals to sensors, and AutoRunAssoci-
ations connect automatic train runnings and sensors. Here, constraints are needed to determine the
kind of stereotype at the ends of each association. Most important, several constraints of SensorAs-
sociation describe that each sensor is the exit sensor of one track element and the entry sensor of the
following one. In that way, routes can be defined as sequences of sensors.

For each non-abstract modeling element and each association, there exists a corresponding instance
stereotype. Domain-specific notation is defined here. Of course, usual UML notation can be used but
is infeasible as we can see in the direct comparison in Section 3.2. Constraints are heavily used to
describe correct values of instances. Hence, it is possible to determine well-formed object diagrams,
i.e. well-formed track layouts.

Furthermore, the profile defines routes and their instances. Each Route is defined by an ordered
sequence of sensors. Also, the signal setting for entering the route is given. Other properties are
ordered sets of required point positions and of conflicts with other routes. The stereotypes to describe
this information are given in Fig. 2.35. Again, constraints are used for unambiguous and strict
definitions of properties and their valid values. To give an example, point positions given for a route
have to refer to points located at that route.



Chapter 2

UML 2.0 Profile for the Railway
Control System Domain

2.1 Primitives and Literals

Primitive data types are used as types of properties, i.e. attributes of classes. We define seven new
primitive types, five of them devoted to specific identification numbers, and two of them used for
modeling time. AutoRunld, Pointld, Routeld, Sensorld, and Signalld are identification types used
for points, routes, sensors, and signals. Timelnstant and Duration are used for modeling points in
time and fixed intervals of time.

<<primitive>>
Timelnstant

<<primitive>>
Duration

<<primitive>>
Routeld

<<primitive>>
AutoRunld

<<primitive>>
Signalld

<<primitive>>
Pointld

<<primitive>>
Sensorld

Figure 2.1: Primitive data types

Each primitive data type has its dedicated literal. The literal describes the values a variable of a
certain type may take.

2.1.1 AutoRunld

Description

AutoRunld is a primitive type that is used to model identification numbers of automatic train running
systems in RCSD.

Semantics

Instances of type AutoRunld have values in N.

Notation

AutoRunld is given as a type, e.g. ald:AutoRunId.



<<metaclass>>
Literallnteger

value:Integer

<<stereotype>>
Literalld

<<stereotype>>
LiteralAutoRunld

prefix:String

<<stereotype>>
LiteralSensorld

<<stereotype>>
LiteralSignalld

<<stereotype>>
LiteralPointld

<<stereotype>>
LiteralRouteld

<<stereotype>>
LiteralTimelnstant

2.1.2 Duration

Description

<<stereotype>>
LiteralDuration

Figure 2.2: Literals of primitive data types

Duration is a primitive type that is used to model time intervals in RCSD.

Semantics

Instances of type Duration have values in N.

Notation

Duration is given as a type, e.g. latency:Duration.

2.1.3 LiteralAutoRunld

Description

LiteralAutoRunld describes valid literals for attributes with type AutoRunld.

Associations

None

Attributes

None.

Constraints

e The prefix is 'A’:

inv LiteralAutoRunIdil:

prefix = A’

Semantics

Literals of type LiteralAutoRunld have values in N and a prefix A’




Notation

Literal AutoRunld is given as a prefixed value, e.g. A50.

2.1.4 LiteralDuration
Description

LiteralDuration describes valid literals for attributes with type Duration.

Associations

None

Attributes

None.
Constraints
e The value of attribute value is a natural.

inv LiteralDurationl:
value >= 0

Semantics

Literals of type LiteralDuration have values in N.

Notation

Literal AutoRunld is given as a value, e.g. 50.

2.1.5 Literalld

Description

Literalld describes valid literals for attributes with identification types (LiteralAutoRunld, Literal-
Pointld, LiteralSensorld, LiteralSignalld).

Associations

None.

Attributes

o prefix:String

Constraints

e The value of attribute value is a natural.

inv Literalldl:
value >= 0

Semantics

Literals of type LiteralDuration have values in N and a prefix.
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Notation

None. Literalld is abstract and must be used by its concrete subtypes.

2.1.6 LiteralPointld

Description

LiteralPointId describes valid literals for attributes with type Pointld.

Associations

None

Attributes

None.
Constraints
e The prefix is 'P”:

inv LiteralPointIdl:
prefix = ’P’

Semantics

Literals of type LiteralPointld have values in N and a prefix 'P’.

Notation

LiteralPointId is given as a prefixed value, e.g. P50.

2.1.7 LiteralRouteld

Description

LiteralRouteld describes valid literals for attributes with type Routeld.

Associations

None

Attributes

None.

Constraints

e The prefix is 'R’:

inv LiteralRouteIdl:
prefix = ’R’

Semantics

Literals of type LiteralRouteld have values in N and a prefix 'R’.

Notation

LiteralRouteld is given as a prefixed value, e.g. R1.
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2.1.8 LiteralSensorld
Description

LiteralSensorld describes valid literals for attributes with type Sensorld.

Associations

None

Attributes

None.

Constraints

e The prefix is 'S”:

inv LiteralSensorIdil:
prefix = ’S’

Semantics

Literals of type LiteralSensorld have values in N and a prefix ’S’.

Notation

LiteralSensorld is given as a prefixed value, e.g. S11.

2.1.9 LiteralSignalld

Description

LiteralSignalld describes valid literals for attributes with type Signalld.

Associations

None

Attributes

None.

Constraints

e The prefix is "Sig’:

inv LiteralSignalldil:
prefix = ’Sig’

Semantics

Literals of type LiteralSignalld have values in N and a prefix ’Sig’.

Notation

LiteralSignalld is given as a prefixed value, e.g. Sigh.
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2.1.10 LiteralTimelnstant
Description

LiteralTimelnstant describes valid literals for attributes with type Timelnstant.

Associations

None

Attributes

None.

Constraints

o The value of attribute value is a natural.

inv LiteralTimeInstantl:
value >= 0

Semantics

Literals of type LiteralSignalld have values in N.

Notation

LiteralTimelnstant is given as a value, e.g. 120.

2.1.11 Pointld
Description

Pointld is a primitive type that is used to model identification numbers of points in RCSD.

Semantics

Instances of type Pointld have values in N.

Notation

Pointld is given as a type, e.g. pId:PointId.

2.1.12 Routeld
Description

Routeld is a primitive type that is used to model identification numbers of routes in RCSD.

Semantics

Instances of type Routeld have values in N.

Notation

Routeld is given as a type, e.g. rId:Routeld.

2.1.13 Sensorld
Description

Sensorld is a primitive type that is used to model identification numbers of sensors in RCSD.
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Semantics

Instances of type Sensorld have values in N.

Notation

Sensorld is given as a type, e.g. senId:SensorId.

2.1.14 Signalld

Description

Signalld is a primitive type that is used to model identification numbers of signals in RCSD.

Semantics

Instances of type Signalld have values in N.

Notation

Signalld is used as a type, e.g. sigId:Signalld.

2.1.15 Timelnstant
Description

Timelnstant is a primitive type that is used to model points in time in RCSD.

Semantics

Instances of type Timelnstant have values in N.

Notation

Timelnstant is used as a type, e.g. requested:TimeInstant.

2.2 Network Elements

A railway track network consists of TrackElements that are either Segments, Crossings, or Points.
Additional elements are Signals, Sensors, and automatic train running systems AutomaticRunning.

TrackElements are rails and have at least two ends. At most one entry sensor and one exit sensor
may be located at each end of the segment. Each track element has a number of maximal allowed
trains at each moment in time and optionally a speed limit (e.g. curved segments).

Segments are either bidirectional segments that need one entry and one exit sensor at each end, or
unidirectional segments that need an entry sensor at one end and an exit sensor at the opposite end.
It is also possible, that sensors are located just at one end of the segment. In this case, the segment
is either a sink (one entry sensor), a source (one exit sensor), or a combined sink/source (one entry
sensor and one exit sensor).

Crossings are track elements with four ends. They consists of two track segments that either cross
or are interlaced. Only one train is allowed on a crossing at each point in time. Like simple segments,
crossing can be used unidirectionally or bidirectionally and are equipped with sensors.

Points have a plus and a minus position that are either STRAIGHT, LEFT, or RIGHT. The plus
position is the default position of the point. The actual state and the requested state are important
information about the point. In addition to the correct positions, FAILURE is a possible state here.
The time of the last request is also memorized. In addition, the time needed to process a request, i.e.
a state change, is modeled as delta_p. Points have also an id. There are three different kinds of points,
SinglePoints with one branch, SlipPoints where two track segments cross with the possibility of one

14



changeover from one segment to the other one, and DoubleSlipPoints where two track segments cross
with two changeover possibilities. All points are identified by their id.

Sensors have an actual state that is either HIGH, LOW, or FAILURE. A counter is used to
register passing trains that is stimulated by the switching of the sensor state from LOW to HIGH.
If a passing train is noticed, this information is sent at time sentTime. To guarantee the correct
detection of passing trains, delta_l gives the time the sensor must be in state HIGH to notice a train,
and delta_tram specifies the time that has to pass so that a subsequent train can be detected reliably.
Like points, sensors have an id.

Signals provide the train respectively the engine driver with information, i.e. mainly the permission
to go or to stop by signaling GO and STOP. In addition, speed limits and the direction to go
(STRAIGHT,LEFT, RIGHT) can be signaled. Each signal has an actual and a requested state and
memorizes the time of the last request, just as points. The time needed to fulfill a request is called
delta_s. Signals are also identified by an id.

If braking of the train has to be enforced, e.g. before a STOP signal, automatic train running
systems AutomaticRunning can be used. These cause braking of the train in case the speed limit is
exceeded. They are either permanent or controlled and also identified by an id.

<<stereotype>>
<<metaclass>> Segment
Class
0.1 <<stereotype>> <<stereotype>>
TrackElement Crossing
<<stereotype>>
SinglePoint
<<stereotype>>
0.1 <<stereotype>> Point <<stereotype>> <<stereotype>>
Sensor SlipPoint DoubleSlipPoint
0.1| <<stereotype>>
Signal

0.1] <<stereotype>>
AutomaticRunning

PointStateKind

SignalStateKind

<<enumeration>> <<enumeration>> <<enumeration>> <<enumeration>>
SensorStateKind RouteKind PermissionKind ActivationKind
LOW STRAIGHT GO ON
HIGH LEFT STOP OFF
FAILURE RIGHT
<<enumeration>> <<enumeration>> <<enumeration>>

AutoRunKind

STRAIGHT GO ON
LEFT STOP OFF
RIGHT FAILURE FAILURE
FAILURE

Figure 2.3: Stereotypes and enumerations for modeling the track network of a railway system

2.2.1 ActivationKind
Description

ActivationKind is an enumeration that specifies the valid values for requested states of automatic
train runnings.
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Semantics

The literals defined by ActivationKind are used as values of properties with type ActivationKind.
These literals are:

e ON

e OFF

Notation

The defined literals are used as values of properties with type ActivationKind, e.g. requestedState
= ON.

2.2.2 AutomaticRunning
Description

Automatic train running systems invoke automatic braking in case a train exceeds its speed limit,
especially if a train is approaching a brake point or a velocity target point, i.e. a signal that enforces
STOP or a speed limit. Automatic train runnings can be permanent if braking is always required or
controlled.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property autoRunld with type AutoRunld. The property is read-only
and has the multiplicity 1.

inv AutomaticRunningl:

ownedAttribute->one(a | a.name->includes(’autoRunId’) and
.type.name->includes (’AutoRunId’) and
.upperBound()=1 and
.lowerBound()=1 and
.isReadOnly=true)

(SRR

e There is a mandatory property actualState with type AutoRunKind. The property has the
multiplicity 1.

inv AutomaticRunning2:
ownedAttribute->one(a | a.name->includes(’actualState’) and
a.type.name->includes (’AutoRunKind’) and
a.upperBound()=1 and
a.lowerBound()=1)

e There is an optional property requestedState with type AutoRunKind. If present, the property
has the multiplicity 1.

inv AutomaticRunning3:

(ownedAttribute->one(a | a.name->includes(’requestedState’) and
a.type.name->includes(’ActivationKind’) and
a.upperBound()=1 and
a.lowerBound ()>=0)) or

(not ownedAttribute->exists(a | a.name->includes(’requestedState’)))
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e There is an optional property requestTime with type Timelnstant. If present, the property has
the multiplicity 1.

inv AutomaticRunning4:

(ownedAttribute->one(a | a.name->includes(’requestTime’) and
a.type.name->includes (’TimeInstant’) and
a.upperBound()=1 and
a.lowerBound()=1)) or

(not ownedAttribute->exists(a | a.name->includes(’requestTime’)))

e There is an optional property delta_a with type Duration. If present, the property is read-only
and has the multiplicity 1.

inv AutomaticRunning5:

(ownedAttribute->one(a | a.name->includes(’delta_a’) and
a.type.name->includes(’Duration’) and
a.upperBound()=1 and
a.lowerBound()=1 and
a.isReadOnly=true)) or

(not ownedAttribute->exists(a | a.name->includes(’delta_a’)))

e The properties requested state, requestTime and delta_a are either all present or none of them.

inv AutomaticRunning6:

ownedAttribute->one(al | al.name->includes(’requestedState’)) implies
(ownedAttribute->one(a2 | a2.name->includes(’requestTime’)) and
ownedAttribute->one(a3 | a3.name->includes(’delta_a’))) and

ownedAttribute->one(al | al.name->includes(’requestTime’)) implies
(ownedAttribute->one(a2 | a2.name->includes(’requestedState’)) and
ownedAttribute->one(a3 | a3.name->includes(’delta_a’))) and

ownedAttribute->one(al | al.name->includes(’delta_a’)) implies
(ownedAttribute->one(a2 | a2.name->includes(’requestTime’)) and
ownedAttribute->one(a3 | a3.name->includes(’requestedState’)))

e All outgoing associations are AutoRunAssociations.

inv AutomaticRunning7:
ownedAttribute->collect (outgoingAssociation)->
forAll(oclIsTypeOf (AutoRunAssociation))

e There is exactly one outgoing association.

inv AutomaticRunning8:
ownedAttribute->collect (outgoingAssociation)->size()=1

e There is a mandatory property sensor that has an outgoing association of type AutoRunAsso-
ciation. The property is read-only and has the multiplicity 1.

inv AutomaticRunning9:
ownedAttribute->one(a | a.name->includes(’sensor’) and
a.upperBound () 1 and
a.lowerBound() = 1 and
a.isReadOnly = true and
a.outgoingAssociation.
0clIsTypeOf (AutoRunAssociation))
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Semantics

AutomaticRunning is a stereotype of Class. Automatic braking points are used to enforce stopping
of a train in case of exceeded speed limits, especially if a train has to stop. Each automatic running
is associated to a sensor by an AutoRunAssociations.

If an automatic train running is permanently active, its actualState is always ON, else it can be
also OFF. Non-permanently automatic train runnings have a requestedState set by the controller at
Timelnstant requestTime. The time interval needed to switch from the actual to the requested state
is Duration delta_a. They are identified by an autoRunld with type AutoRunld.

Notation

AutomaticRunnings are used in class diagrams using the UML class notation. For automatic train
running instances, see the respective paragraph.

2.2.3 AutoRunKind

Description

AutoRunKind is an enumeration that specifies the valid values for states of automatic train runnings.
It is a specialization of ActivationKind and adds FAILURFE as possible state.

Semantics

The literals defined by AutoRunKind are used as values of properties with type AutoRunKind. These
literals are:

e ON
e OFF

e FAILURE

Notation

The defined literals are used as values of properties with type AutoRunKind, e.g. actualState =
ON.

2.2.4 Crossing
Description

Crossings are crossings of tracks or interlaced tracks which have in common that only one train is
allowed at one moment in time. Crossings consist of two separate tracks with no possibility of a
changeover from one track to the other one.

Associations

None.

Attributes

None.
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Constraints

e There is an optional property e3Entry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Crossingl:

(ownedAttribute->one(a | a.name->includes(’e3Entry’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e3Entry’)))

PP

e There is an optional property e3Exit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Crossing2:

(ownedAttribute->one(a | a.name->includes(’e3Exit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e3Exit’)))

[CI I

e There is an optional property edEntry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Crossing3:

(ownedAttribute->one(a | a.name->includes(’e4Entry’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e4Entry’)))

PP

e There is an optional property e4Exit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Crossing4:

(ownedAttribute->one(a | a.name->includes(’e4Exit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e4Exit’)))

PP oo

e The number of properties named elEntry and e2Exit is 2 or/and the number of properties
named elExit and e2Entry is 2.

inv Crossingb:
ownedAttribute->select(a |
a.name->includes(’elEntry’) or a.name->includes(’e2Exit’))->size()=2 or
ownedAttribute->select(a |
a.name->includes(’elExit’) or a.name->includes(’e2Entry’))->size()=2
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e The number of properties named e3Entry and e4Exit is 2 or/and the number of properties
named e3Exit and e4Entry is 2.

inv Crossing6:
ownedAttribute->select(a |
a.name->includes(’e3Entry’) or a.name->includes(’e4Exit’))->size()=2 or
ownedAttribute->select(a |
a.name->includes(’e3Exit’) or a.name->includes(’e4Entry’))->size()=2

e The number of properties named e3Entry, edEntry, e3Exit, and e4Exit is 4 or less.

inv Crossing7:
ownedAttribute->select(a |
a.name->includes(’e3Entry’) or a.name->includes(’e4Entry’) or
a.name->includes(’e3Exit’) or a.name->includes(’e4Exit’))->size() <= 4

e The number of properties named e3Entry, edEntry, e3Exit, and e4Exit is not 3.

inv Crossing8:
ownedAttribute->select(a |
a.name->includes(’e3Entry’) or a.name->includes(’e4Entry’) or
a.name->includes(’e3Exit’) or a.name->includes(’e4Exit’))->size() <> 3

Semantics

Crossing is a specialization of TrackElement where two segments cross without the possibility to
change from one segment to the other one. Each crossing has four ends, end! and end2 mark one
segment just as end3 and endj mark the other one. Crossings are formed either by crossing track
segments (see Fig. 2.4) or interlaced track segments (see Fig. 2.5). They are not sinks or sources of
track networks and therefore require sensors at each end.

endl end3 — endl ]— end3

end4 end2 —L end2 1 end4

Figure 2.4: Figure 2.5:
Crossed tracks Interlaced
tracks

Notation

Crossings are used in class diagrams using the UML class notation. For crossing instances, see the
respective paragraph.

2.2.5 DoubleSlipPoint

Description

Slip points are used at crossings with a changeover possibility between two almost parallel track
segments. A double slip point has two changeover possibilities, i.e. it is a crossing with two integrated
(opposite) points.

Associations

None.
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Attributes

None.

Constraints

e There is a mandatory property pointldOpp with type Pointld. The property is read-only and
has the multiplicity 1.

inv DoubleSlipPointl:

ownedAttribute->one(a | a.name->includes(’pointIdOpp’) and
.type.name->includes (’PointId’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property plusOpp with type RouteKind. The property is read-only and
has the multiplicity 1.

inv DoubleSlipPoint2:

ownedAttribute->one(a | a.name->includes(’plusOpp’) and
.type.name->includes(’RouteKind’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property minusOpp with type RouteKind. The property is read-only and
has the multiplicity 1.

inv DoubleSlipPoint3:

ownedAttribute->one(a | a.name->includes(’minusOpp’) and
.type.name->includes (’RouteKind’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property actualStateOpp with type PointStateKind. The property has
the multiplicity 1.

inv DoubleSlipPoint4:
ownedAttribute->one(a | a.name->includes(’actualStateOpp’) and
a.type.name->includes (’PointStateKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property requestedStateOpp with type RouteKind. The property has the
multiplicity 1.

inv DoubleSlipPointbh:
ownedAttribute->one(a | a.name->includes(’requestedStateOpp’) and
a.type.name->includes (’RouteKind’) and
a.upperBound() = 1 and
a.lowerBound () 1)

e There is a mandatory property request TimeOpp with type Timelnstant. The property has the
multiplicity 1.

inv DoubleSlipPoint6:
ownedAttribute->one(a | a.name->includes(’requestTimeOpp’) and
a.type.name->includes (’TimeInstant’) and
a.upperBound() = 1 and
a.lowerBound() = 1)
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o If there is one property named e3Entry then there are also two properties named e2Exit and
edExit.

inv DoubleSlipPoint7:
ownedAttribute->one(a | a.name->includes(’e3Entry’)) implies
ownedAttribute->one(a | a.name->includes(’e2Exit’)) or
ownedAttribute->one(a | a.name->includes(’e4Exit’))

e If there is one property named e3Exit then there are also two properties named e2Entry and
edEntry.

inv DoubleSlipPoint8:
ownedAttribute->one(a | a.name->includes(’e3Exit’)) implies
ownedAttribute->one(a | a.name->includes(’e2Entry’)) or
ownedAttribute->one(a | a.name->includes(’e4Entry’))

Semantics

DoubleSlipPoint is a specialization of SlipPoint. Is is a point that resembles a crossing with two
possibilities to change from one segment to the other one (see Fig. 2.6).

endl end3

end4 end2
Figure 2.6: Double slip point

As a crossing, the train can travel from end! to end2, from end2 to endl, from end3 to endj, and
from end4 to end3. A single slip point enables traveling from end! to end4 and from end4 to endl.
In addition, a double slip point also allows traveling from end2 to end3 and from end3 to end?2.

At each end of the point must be at least one sensor. The concrete placement of sensors depend
on the enabled traveling routes on the point. Double slip points require more information than single
slip points as a second point is added, i.e. plusOpp, minusOpp, actualStateOpp, and requiredState Opp
are further properties. We assume that both points combined in the double slip point have the same
latency. Note that one of the two points has positions STRAIGHT and RIGHT and the other one
positions STRAIGHT and LEFT as a double slip point consists of two opposite single points.
Notation

DoubleSlipPoints are used in class diagrams using the UML class notation. For double slip point
instances, see the respective paragraph.
2.2.6 PermissionKind

Description

PermissionKind is an enumeration that specifies the valid values for signal requests.

Semantics

The literals defined by PermissionKind are used as values of properties with type PermissionKind.
These literals are:

o GO

e STOP
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Notation

The defined literals are used as values of properties with type PermissionKind, e.g. requestedState
= GO.

2.2.7 Point

Description

Points are switches in track networks. Points are either single points or slip points. A single point
consists of a stem and a left or right branch. A slip point consists of two crossing segments where a
changeover from one segment to the other one is possible in at least one way.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property pointld with type Pointld. The property is read-only and has
the multiplicity 1.

inv Pointl:

ownedAttribute->one(a | a.name->includes(’pointId’) and
.type.name->includes (’PointId’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property plus with type RouteKind. The property is read-only and has
the multiplicity 1.

inv Point2:

ownedAttribute->one(a | a.name->includes(’plus’) and
.type.name->includes (’RouteKind’) and
.upperBound() = 1 and
.lowerBound () 1 and
.isReadOnly = true)

PP oo

e There is a mandatory property minus with type RouteKind. The property is read-only and has
the multiplicity 1.

inv Point3:

ownedAttribute->one(a | a.name->includes(’minus’) and
.type.name->includes (’RouteKind’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP oo

e There is a mandatory property actualState with type PointStateKind. The property has the
multiplicity 1.

inv Point4:
ownedAttribute->one(a | a.name->includes(’actualState’) and
a.type.name->includes (’PointStateKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)
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e There is a mandatory property requestedState with type RouteKind. The property has the
multiplicity 1.

inv Pointb:
ownedAttribute->one(a | a.name->includes(’requestedState’) and
a.type.name->includes (’RouteKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property requestTime with type Timelnstant. The property has the
multiplicity 1.

inv Point6:
ownedAttribute->one(a | a.name->includes(’requestTime’) and
a.type.name->includes (’TimeInstant’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property delta_p with type Duration. The property is read-only and has
the multiplicity 1.

inv Point7:

ownedAttribute->one(a | a.name->includes(’delta_p’) and
.type.name->includes(’Duration’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP oo

e There is an optional property e3Entry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Point8:

(ownedAttribute->one(a | a.name->includes(’e3Entry’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e3Entry’)))

PP

e There is an optional property e3Exit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Point9:

(ownedAttribute->one(a | a.name->includes(’e3Exit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e3Exit’)))

PP

e There are at least 3 outgoing associations of type SensorAssociation.
inv Point10:
ownedAttribute->collect (outgoingAssociation)->

select(a | a.oclIsTypeOf(SensorAssociation))->size() >= 3

e There are at most 6 outgoing associations of type SensorAssociation.
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inv Pointl1l:
ownedAttribute—>collect(outgoingAssociation)—>
select(a | a.oclIsTypeOf(SensorAssociation))->size() <= 6

e The number of properties named elEntry and elExit is at least 1.

inv Point12:
ownedAttribute->select(a |
a.name->includes(’elEntry’) or a.name->includes(’elExit’))->size() >= 1

e The number of properties named elEntry and elExit is at most 2.

inv Pointi13:
ownedAttribute->select(a |
a.name->includes(’elEntry’) or a.name->includes(’elExit’))->size() <= 2

e The number of properties named e2Entry and e2Exit is at least 1.

inv Point14:
ownedAttribute->select(a |
a.name->includes(’e2Entry’) or a.name->includes(’e2Exit’))->size() >= 1

e The number of properties named e2Entry and e2Exit is at most 2.

inv Point15:
ownedAttribute->select(a |
a.name->includes(’e2Entry’) or a.name->includes(’e2Exit’))->size() <= 2

e The number of properties named e3Entry and e3Exit is at least 1.

inv Point16:
ownedAttribute->select(a |
a.name->includes(’e3Entry’) or a.name->includes(’e3Exit’))->size() >= 1

e The number of properties named e3Entry and e3Exit is at most 2.

inv Pointl7:
ownedAttribute->select(a |
a.name->includes(’e3Entry’) or a.name->includes(’e3Exit’))->size() <= 2

Semantics

Point is a specialization of TrackElement identified by a pointld with type Pointld . They are used
as switch from one track segment to another one. Points have a plus position and minus position.
One of these is always STRAIGHT and one is always LEFT or RIGHT depending on the design
of the point. Each point has an actualState and a requestedState that is either STRAIGHT, LEFT,
orRIGHT. The actual state can also be FAILURE. The time of the latest request is a Timelnstant
stored in requestTime. The Duration needed to switch from one state to another one is delta_p.

Sensors are associated to points by SensorAssociations. At least one sensor is positioned at each
end of the point as a point is not allowed as sink or source of a track network. Points can be used
bidirectionally or unidirectionally. In the latter case, two sensors are needed at each end of the point,
one entry sensor and one exit sensor.

Notation

None. Point is abstract and must be used by its concrete specializations SinglePoint and SlipPoint.
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2.2.8 PointStateKind
Description

PointStateKind is an enumeration that specifies the valid values for point states. It is a specialization
of RouteKind and adds FAILURE as possible state.

Semantics

The literals defined by PointStateKind are used as values of properties with type PointStateKind.
These literals are:

e STRAIGHT
e LEFT
e RIGHT

e FAILURE

Notation

The defined literals are used as values of properties with type PointStateKind, e.g. actualState =
RIGHT.

2.2.9 RouteKind
Description

RouteKind is an enumeration that specifies the valid values for signals with route indications and
point state requests.

Semantics

The literals defined by RouteKind are used as values of properties with type RouteKind. These
literals are:

e STRAIGHT
e LEFT

e RIGHT

Notation

The defined literals are used as values of properties with type RouteKind, e.g. direction = RIGHT.

2.2.10 Segment
Description

Segment describes a part of a track network with two ends, i.e. straight and curved network elements.

Associations

None.

Attributes

None.
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Constraints

e The number of properties named elEntry, e2Entry, el Exit, and e2Exit is 4 or less.

inv Segmentl:
ownedAttribute->select(a | a.name->includes(’elEntry’) or
a.name->includes(’e2Entry’) or
a.name->includes(’elExit’) or
a.name->includes (’e2Exit’))->size() <= 4

e The number of properties named elEntry, e2Entry, el Exit, and e2Exit is 1 or more.

inv Segment2:
ownedAttribute->select(a | a.name->includes(’elEntry’) or
a.name->includes(’e2Entry’) or
a.name->includes(’elExit’) or
a.name->includes(’e2Exit’))->size() >= 1

e The number of properties named elEntry, e2Entry, elExit, and e2Exit is not 3.

inv Segment3:
ownedAttribute->select(a | a.name->includes(’elEntry’) or
a.name->includes(’e2Entry’) or
a.name->includes(’elExit’) or
a.name->includes(’e2Exit’))->size() <> 3

Semantics

Trains travel on track elements. A segment is a specialization of TrackElement with two ends as
shown in Fig. 2.7. In general, there are three possibilities: traveling from endl to end2, traveling
from end2 to endl, or traveling in both directions. The first two possibilities classify a unidirectional
segment, the last describes a bidirectional segment.

Passing trains have to be detected to allow monitoring of the track network. If there is an entry
sensor on one end of the segment, passing the entry sensor means entering the segment. Vice versa,
passing the exit sensor at the opposite end means leaving the segment.

endl

end2

Figure 2.7: Segment

A segment may have at most two associations with type SensorAssociations to entry sensors and
at most two associations to exit sensors: end1Entry, end1FExit, end2Entry, and end2FEzit. There must
be at least one association to a sensor.

A segment that has one entry and one exit sensor at the same end is a sink and source of a
network. If there is only one entry sensor associated, the segment is a sink; if there is only one exit
sensor associated, the segment is a source.

Notation

Segments are used in class diagrams using the UML class notation. For segment instances, see the
respective paragraph.
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2.2.11 Sensor

Description

Sensors notice passing trains by changes of their sensor state given by SensorStateKind. If the state
changes from LOW to HIGH, a passing train can be detected.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property sensorld with type Sensorld. The property is read-only and has
the multiplicity 1.

inv Sensoril:

ownedAttribute->one(a | a.name->includes(’sensorId’) and
.type.name->includes(’SensorId’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property counter with type Integer. The property has the multiplicity 1.

inv Sensor2:
ownedAttribute->one(a | a.name->includes(’counter’) and
a.type.name->includes(’Integer’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property actualState with type SensorStateKind. The property has the
multiplicity 1.

inv Sensor3:
ownedAttribute->one(a | a.name->includes(’actualState’) and
a.type.name->includes (’SensorStateKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property delta_t with type Duration. The property is read-only and has
the multiplicity 1.

inv Sensor4:

ownedAttribute->one(a | a.name->includes(’delta_t’) and
.type.name->includes (’Duration’) and
.upperBound() = 1 and
.lowerBound () 1 and
.isReadOnly = true)
.lowerBound() = 1)

Moo

e There is a mandatory property sentTime with type Timelnstant. The property has the multi-
plicity 1.
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inv Sensorb:
ownedAttribute->one(a | a.name->includes(’sentTime’) and
a.type.name->includes (’TimeInstant’) and

a.upperBound() = 1 and
a.lowerBound() = 1)
a.lowerBound() = 1)

There is a mandatory property delta_tram with type Duration. The property is read-only and
has the multiplicity 1.

inv Sensor6:

ownedAttribute->one(a | a.name->includes(’delta_tram’) and
.type.name->includes (’Duration’) and
.upperBound () 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

All outgoing associations are either SensorAssociations, SignalAssociations, or AutoRunAsso-
ciations.

inv Sensor7:
ownedAttribute->collect (outgoingAssociation)->forAll(a |
a.oclIsTypeOf (SensorAssociation) or
a.oclIsTypeOf (SignalAssociation) or
a.oclIsTypeOf (AutoRunAssociation) or
a.isUndefined)

There are at least 2 outgoing SensorAssociations.

inv Sensor8:
ownedAttribute->collect (outgoingAssociation)->select(a |
a.oclIsTypeOf (SensorAssociation))->size()>= 2

There are at most 10 outgoing SensorAssociations

inv Sensor9:
ownedAttribute->collect (outgoingAssociation)->select(a |
a.oclIsTypeOf (SensorAssociation))->size()<= 10

There is at most 1 outgoing Signal Association.

inv Sensor10:
ownedAttribute->collect (outgoingAssociation)->select(a |
a.oclIsTypeOf (SignalAssociation))->size() <= 1

There is at most 1 outgoing AutoRunAssociation.

inv Sensorill:
ownedAttribute->collect (outgoingAssociation)->select(a |
a.oclIsTypeOf (AutoRunAssociation))->size() <= 1

There is a mandatory property entrySeg that has an outgoing association of type SensorAsso-
ciation. The property is read-only and has the multiplicity 0..1 or 1.

inv Sensori2:

ownedAttribute->one(a | a.name->includes(’entrySeg’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
0c1IsTypeOf (SensorAssociation))

a
a
a
a
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e There is an optional property entryCross that has an outgoing association of type SensorAsso-
ciation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensori3:

(ownedAttribute->one(a | a.name->includes(’entryCross’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’entryCross’)))

PP

e There is an optional property entryPoint that has an outgoing association of type SensorAsso-
ciation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensoril4:

(ownedAttribute->one(a | a.name->includes(’entryPoint’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAtrribute->exists(a | a.name->includes(’entryPoint’)))

PP

e There is an optional property entrySIPoint that has an outgoing association of type SensorAs-
sociation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensorilb:
(ownedAttribute->one(a | a.name->includes(’entryS1Point’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’entrySlPoint’)))

oo

e There is an optional property entryDbSIPoint that has an outgoing association of type Senso-
rAssociation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensoril6:
(ownedAttribute->one(a | a.name->includes(’entryDbS1Point’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’entrySlPoint’)))

PP

e There is a mandatory property exitSeg that has an outgoing association of type SensorAssoci-
ation. The property is read-only and has the multiplicity 0..1 or 1.

inv Sensorl7:

ownedAttribute->one(a | a.name->includes(’exitSeg’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
0clIsTypeOf (SensorAssociation))

[CI I
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e There is an optional property exitCross that has an outgoing association of type SensorAssoci-
ation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensori8:

(ownedAttribute->one(a | a.name->includes(’exitCross’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’exitCross’)))

PP

e There is an optional property exitPoint that has an outgoing association of type SensorAssoci-
ation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensorl9:

(ownedAttribute->one(a | a.name->includes(’exitPoint’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’exitPoint’)))

PP oo

e There is an optional property exitSIPoint that has an outgoing association of type SensorAsso-
ciation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensor20:

(ownedAttribute->one(a | a.name->includes(’exitS1Point’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’exitS1Point’)))

PP

e There is an optional property exitDbSIPoint that has an outgoing association of type Senso-
rAssociation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensor21:

(ownedAttribute->one(a | a.name->includes(’exitDbS1Point’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’exitS1Point’)))

PP

e There is an optional property signal that has an outgoing association of type SignalAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensor22:
(ownedAttribute->one(a | a.name->includes(’signal’) and
a.upperBound() = 1 and
a.lowerBound() >= 0 and
a.isReadOnly = true and
a.outgoingAssociation.
oclIsTypeOf (SignalAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’signal’)))

31



e There is an optional property autoRun that has an outgoing association of type AutoRunAs-
sociation. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv Sensor23:

(ownedAttribute->one(a | a.name->includes(’autoRun’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (AutoRunAssociation))) or
(not ownedAttribute->exists(a | a.name->includes(’autoRun’)))

PP

Semantics

Sensor is a stereotype of Class. Each sensor requires the following properties: the state actualState of
the sensor that is either HIGH, LOW, or FAILURE, a counter with type Integer that is incremented
if a passing train has been detected, the Duration delta_l needed to detected a train reliably, the
Timelnstant sentTime at which this detection has occurred and is signaled, and the minimal Duration
delta_tram between two passing trains to guarantee reliable detection of both of them. Sensors also
have a sensorld with type Sensorld.

A Sensor is associated by a SensorAssociations to two track elements. The properties entry and
exit model these relationships.

A Sensor is associated to at most one signal by a SignalAssociation and at most one automatic
train running system by an AutoRunAssociation.

Notation

Sensors are used in class diagrams using the UML class notation. For sensor instances, see the
respective paragraph.

2.2.12 SensorStateKind

Description

SensorStateKind is an enumeration that specifies the valid values for sensor states.

Semantics

The literals defined by SensorStateKind are used as values of properties with type SensorStateKind.
These literals are:

e HIGH
o LOW

e FATILURE

Notation

The defined literals are used as values of properties with type SensorStateKind, e.g. actualState =
HIGH.

2.2.13 Signal
Description

Signals are used to provide important information to the engine driver, i.e. speed limitations, driving
directions, the permission to go, or the need to stop.
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Associations

None.

Attributes

None.

Constraints

e There is a mandatory property signalld with type Signalld. The property is read-only and has
the multiplicity 1.

inv Signall:

ownedAttribute->one(a | a.name->includes(’signalld’) and
.type.name->includes(’Signalld’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property actualState with type SignalStateKind. The property has the
multiplicity 1.

inv Signal2:
ownedAttribute->one(a | a.name->includes(’actualState’) and
a.type.name->includes(’SignalStateKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property requestedState with type PermissionKind. The property has
the multiplicity 1.

inv Signal3:
ownedAttribute->one(a | a.name->includes(’requestedState’) and
a.type.name->includes (’PermissionKind’) and
a.upperBound() = 1 and
a.lowerBound() = 1)

e There is a mandatory property requestTime with type Timelnstant. The property has the
multiplicity 1.

inv Signal4:
ownedAttribute->one(a | a.name->includes(’requestTime’) and
a.type.name->includes(’TimeInstant’) and
a.upperBound () 1 and
a.lowerBound () 1)

e There is a mandatory property delta_s with type Duration. The property is read-only and has
the multiplicity 1.

inv Signalb:

ownedAttribute->one(a | a.name->includes(’delta_s’) and
.type.name->includes(’Duration’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is an optional property limit with type Integer. If present, the property has the multi-
plicity 0..1 or 1.
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inv Signal6:

(ownedAttribute->one(a | a.name->includes(’limit’) and
a.type.name->includes(’Integer’) and
a.upperBound() = 1 and
a.lowerBound() >= 0)) or

(not ownedAttribute->exists(a | a.name->includes(’limit’)))

There is an optional property direction with type RouteKind. If present, the property has the
multiplicity 0..1 or 1.

inv Signal7:

(ownedAttribute->one(a | a.name->includes(’direction’) and
a.type.name->includes(’RouteKind’) and
a.upperBound() = 1 and
a.lowerBound() >= 0)) or

(not ownedAttribute->exists(a | a.name->includes(’direction’)))

There is an optional property requestedDir with type RouteKind. If present, the property has
the multiplicity 0..1 or 1.

inv Signal8:

(ownedAttribute->one(a | a.name->includes(’requestedDir’) and
a.type.name->includes(’RouteKind’) and
a.upperBound() = 1 and
a.lowerBound() >= 0)) or

(not ownedAttribute->exists(a | a.name->includes(’requestedDir’)))

The properties direction and requestedDir are either both present or none of them.

inv Signal9:
ownedAttribute->one(al | al.name->includes(’direction’)) implies
ownedAttribute->one(a2 | a2.name->includes(’requestedDir’)) and
ownedAttribute->one(al | al.name->includes(’requestedDir’)) implies
ownedAttribute->one(a2 | a2.name->includes(’direction’))

All outgoing associations are SignalAssociations.

inv Signall0:
ownedAttribute->forAll(a |
a.outgoingAssociation.oclIsTypeOf (SignalAssociation) or
(a.outgoingAssociation->size() = 0 ))

There is exactly one outgoing SignalAssociation.

inv Signallil:
ownedAttribute->collect (outgoingAssociation)->select(a |
a.oclIsTypeOf (SignalAssociation))->size() = 1

There is an optional property sensor that has an outgoing association of type Signal Association.
If present, the property is read-only and has the multiplicity 1.

inv Signall2:
ownedAttribute->one(a | a.name->includes(’sensor’) and
.upperBound() = 1 and

a
a
a.lowerBound () 1 and
a
a

.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SignalAssociation))
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Semantics

Signal is a stereotype of Class . Each signal has an actualState and a requestedState. The Timelnstant
at which a request is received is requestTime while Duration delta_s gives the time needed to switch
from one state to another one. Signals can give further information to the engine driver, i.e. a speed
limit and the direction in case the signal is located before a point.

A signal is always located at a sensor. This relationship is modeled by a SignalAssociation. There
are no other associations.

Notation

Signals are used in class diagrams using the UML class notation. For signal instances, see the
respective paragraph.

2.2.14 SignalStateKind

Description

SignalStateKind is an enumeration that specifies the valid values for signal states. It is a specialization
of PermissionKind and adds FAILURE as possible value.

Semantics

The literals defined by SignalStateKind are used as values of properties with type SignalStateKind.
These literals are:

e GO
e STOP

e FATILURE

Notation

The defined literals are used as values of properties with type SignalStateKind, e.g. actualState =
GO.

2.2.15 SinglePoint

Description

Single points are points with a stem and a left or right branch.

Associations

None.

Attributes

None.

Constraints

e If there is one property named elEntry then there are also two properties named e2Exit and
e3Exit.

inv SinglePointl:
ownedAttribute->one(a | a.name->includes(’elEntry’)) implies
ownedAttribute->one(a | a.name->includes(’e2Exit’)) and
ownedAttribute->one(a | a.name->includes(’e3Exit’))
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e If there is one property named elExit then there are also two properties named e2Entry and
e3Entry.

inv SinglePoint2:
ownedAttribute->one(a | a.name->includes(’elExit’)) implies
ownedAttribute->one(a | a.name->includes(’e2Entry’)) and
ownedAttribute->one(a | a.name->includes(’e3Entry’))

Semantics

SinglePoint is a specialization of Point. Is is a point with one branch as shown in Fig. 2.8. Obviously,
the branch can be left or right depending on the design of the point.

— end2 end3

-L endl
Figure 2.8: Single point

Trains can travel on several ways over the point: if the point can be entered at endl, it can be left
either at end2 or end3 depending on the actual state. If the point is used bidirectionally, possible
ways are from end2 to endl or from end3 to endl. For each way on a point, the respective entry
sensors and exit sensors must be present.

Notation

SinglePoints are used in class diagrams using the UML class notation. For single point instances, see
the respective paragraph.

2.2.16 SlipPoint
Description

Slip points are used at crossings with a changeover possibility between two almost parallel track
segments. A single slip point has one changeover possibility, i.e. it is a crossing with one integrated
point.

Associations

None.

Attributes

None.

Constraints

e There is an optional property e4Entry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv SlipPoint1:

(ownedAttribute->one(a | a.name->includes(’e4Entry’) and
a.upperBound() = 1 and
a.lowerBound() >= 0 and
a.isReadOnly = true and
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a.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e4Entry’)))

e There is an optional property e4dExit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv SlipPoint2:

(ownedAttribute->one(a | a.name->includes(’e4Exit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e4Exit’)))

PP

e The number of properties named edEntry and e4Exit is at least 1.

inv SlipPoint3:
ownedAttribute->select(a |
a.name->includes(’e4Entry’) or a.name->includes(’e4Exit’))->size() >= 1

e The number of properties named e4Entry and e4Exit is at most 2.

inv SlipPoint4:
ownedAttribute->select(a |
a.name->includes(’e4Entry’) or a.name->includes(’e4Exit’))->size() <= 2

e If there is one property named elEntry then there are also two properties named e2Exit and
edExit.

inv SlipPointb:
ownedAttribute->one(a | a.name->includes(’elEntry’)) implies
ownedAttribute->one(a | a.name->includes(’e2Exit’)) and
ownedAttribute->one(a | a.name->includes(’e4Exit’))

e If there is one property named elExit then there are also two properties named e2Entry and
ed4Entry.

inv SlipPoint6:
ownedAttribute->one(a | a.name->includes(’elExit’)) implies
ownedAttribute->one(a | a.name->includes(’e2Entry’)) and
ownedAttribute->one(a | a.name->includes(’e4Entry’))

o If there is one property named e3Entry then there are also one property e4Exit.
inv SlipPoint7:
ownedAttribute->one(a | a.name->includes(’e3Entry’)) implies
ownedAttribute->one(a | a.name->includes(’e4Exit’))
e If there is one property named E3Exit then there is also one property e4Entry.
inv SlipPoint8:

ownedAttribute->one(a | a.name->includes(’e3Exit’)) implies
ownedAttribute->one(a | a.name->includes(’e4Entry’))
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endl end3

end4 end2

Figure 2.9: Single slip point

Semantics

SlipPoint is a specialization of Point. Is is a point that resembles a crossing with one possibility to
change from one segment to the other one. A slip point with one changeover possibility is called
single slip point (see Fig. 2.9).

As a crossing, the train can travel from end! to end2, from end2 to endl1, from end3 to end4, and
from end4 to end3. A single slip point enables traveling from end! to endj and from end4 to endl.

Single slip points require sensors at the fourth end of the point, namely e/Entry and ejFExit. At
each end of the point must be at least one sensor. The concrete placement of sensors depend on the
enabled traveling routes on the point.

Notation

SlipPoints are used in class diagrams using the UML class notation. For slip point instances, see the
respective paragraph.

2.2.17 TrackElement

Description

The track network consists of track elements, i.e. segments and points. A track element has at least
two ends that serve as connection points between different elements. Passing trains are monitored by
sensors located at each of the two ends of the segment.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property maxNumberOfTrains with type Integer. The property is read-
only and has the multiplicity 1.

inv TrackElement1:
ownedAttribute->one(a | a.name->includes(’maxNumber0OfTrains’) and
a.type.name->includes(’Integer’) and
a.upperBound() = 1 and
a.lowerBound() = 1 and
a.isReadOnly = true)

e All outgoing associations are SensorAssociations.

inv TrackElement2:
ownedAttribute—>collect(outgoingAssociation)—>
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forAll(a | a.oclIsTypeOf (SensorAssociation) or
a.isUndefined)

e There is an optional property elEntry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv TrackElement3:

(ownedAttribute->one(a | a.name->includes(’elEntry’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’elEntry’)))

PP

e There is an optional property el Exit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv TrackElement4:

(ownedAttribute->one(a | a.name->includes(’elExit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’elExit’)))

[CI I

e There is an optional property e2Entry that has an outgoing association of type SensorAssocia-
tion. If present, the property is read-only and has the multiplicity 0..1 or 1.

inv TrackElement5:
(ownedAttribute->one(a | a.name->includes(’e2Entry’) and
a.upperBound() = 1 and
a.lowerBound() >= 0 and
a.isReadOnly = true and
a.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e2Entry’)))

e There is an optional property e2Exit that has an outgoing association of type SensorAssociation.
If present, the property is read-only and has the multiplicity 0..1 or 1.

inv TrackElement6:

(ownedAttribute->one(a | a.name->includes(’e2Exit’) and
.upperBound() = 1 and
.lowerBound() >= 0 and
.isReadOnly = true and
.outgoingAssociation.
oclIsTypeOf (SensorAssociation))) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e2Exit’)))

pop oo

e There is an optional property limit with type Integer. If present, the property is read-only and
has the multiplicity 0..1 or 1.

inv TrackElement7:

(ownedAttribute->one(a | a.name->includes(’limit’) and
a.type.name->includes(’Integer’) and
a.upperBound() = 1 and
a.lowerBound() >= 0 and
a.isReadOnly = true)) or

(not ownedAttribute->exists(a2 | a2.name->includes(’limit’)))
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Semantics

TrackElement is a stereotype with Class as its metaclass. Each track element has a maximal number
of trains mazNumberOfTrains as a property. At each end of the track element there may be one
entry sensor and one exit sensor, given as elEntry, elFExit, e2Entry, and e2Fxzit. In addition, a
fixed speed limit can be defined per track element. All associations related to TrackElement are
SensorAssociations.

Notation

None. TrackElement is abstract and must be used by its concrete specializations.

2.3 Associations

Associations are used to connect track network elements. SensorAssociations are used to associate
sensors to track elements, SignalAssociations are used to associate signals to sensors, while automatic
train runnings are also connected to sensors but by means of AutoRunAssociations.

<<metaclass>> 0.1 <<stereotype>>
Association SignalAssociation

0.1 <<stereotype>>
SensorAssociation

0.1 <<stereotype>>
AutoRunAssociation

Figure 2.10: Stereotypes for modeling associations between track network elements

2.3.1 AutoRunAssociation

Description

AutoRunAssociations are used to connect sensors to automatic train runnings.

Associations

None.

Attributes

None.

Constraints

e There are 2 ends.

inv AutoRunAssociationl:
memberEnd->size ()=2

e There are 2 end types.

inv AutoRunAssociation2:
endType->size()=2

e One end type is Sensor.
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inv AutoRunAssociation3:
endType->one(t | t.oclIsKindOf (Sensor))

e One end type is AutomaticRunning.

inv AutoRun4:
endType->one(t | t.oclIsKindOf (AutomaticRunning))

Semantics

AutoRunAssociations connect sensors and automatic train runnings, respectively properties of them.
They are always binary.

Notation

AutoRunAssociations are used in class diagrams using the UML association notation. For instances,
called AutoRunlLink, see the respective paragraph.

2.3.2 SensorAssociation
Description

SensorAssociations are used to connect sensors to track elements.

Associations

None.

Attributes

None.
Constraints
e There are at least 2 ends.

inv SensorAssociationl:
memberEnd->size () >=2

e There are at most 5 ends.

inv SensorAssociation?2:
memberEnd->size () <=5

e There are 2 end types.

inv SensorAssociation3:
endType->size() = 2

e One end type is Sensor.

inv SensorAssociation4:
endType->one(t | t.oclIsKindOf (Sensor))

e If there is an end entrySeg or exitSeg, there is one end type Segment.
inv SensorAssociationb:
memberEnd->exists(ml | ml.name->includes(’entrySeg’) or

ml.name->includes(’exitSeg’)) implies
endType->one(t | t.oclIsTypeOf (Segment))
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If there is an end entryCross or exitCross, there is one end type Crossing.

inv SensorAssociation6:
memberEnd->exists(ml | ml.name->includes(’entryCross’) or
ml.name->includes(’exitCross’)) implies
endType->one(t | t.oclIsTypeOf(Crossing))

If there is an end entryPoint or exitPoint, there is one end type SinglePoint.

inv SensorAssociation7:
memberEnd->exists(ml | ml.name->includes(’entryPoint’) or
ml.name->includes(’exitPoint’)) implies
endType->one(t | t.oclIsTypeOf(SinglePoint))

If there is an end entrySlPoint or exitSIPoint, there is one end type SlipPoint.

inv SensorAssociation8:
memberEnd->exists(ml | ml.name->includes(’entryS1lPoint’) or
ml.name->includes(’exitS1Point’)) implies
endType->one(t | t.oclIsTypeOf(SlipPoint))

If there is an end entryDbSIPoint or exitDbSIPoint, there is one end type DoubleSlipPoint.

inv SensorAssociation9:
memberEnd->exists(ml | ml.name->includes(’entryDbS1Point’) or
ml.name->includes(’exitDbS1Point’)) implies
endType->one(t | t.oclIsTypeOf (DoubleSlipPoint))

If there is an end entrySeg, the other ends are named elEntry or e2Entry. All other ends belong
to the same Class.

inv SensorAssociationlO:
memberEnd->exists(ml | ml.name->includes(’entrySeg’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’entrySeg’))->first
in
memberEnd->excluding(p)->
forAll1(m3 | m3.name->includes(’elEntry’) or
m3.name->includes(’e2Entry’)) and
memberEnd->excluding(p)->
forAll1(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end entryCross, the other ends are named elEntry, e2Entry, e3Entry, or e4Entry.
All other ends belong to the same Class.

inv SensorAssociationill:
memberEnd->exists(ml | ml.name->includes(’entryCross’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’entryCross’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elEntry’) or
m3.name->includes(’e2Entry’) or
m3.name->includes(’e3Entry’) or
m3.name->includes(’e4Entry’)) and
memberEnd->excluding(p)->
forAll1(m3,m4 | m3.owningClass = m4.owningClass)
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o If there is an end entryPoint, the other ends are named elEntry, e2Entry, or e3Entry. All other
ends belong to the same Class.

inv SensorAssociationl2:
memberEnd->exists(ml | ml.name->includes(’entryPoint’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’entryPoint’))->first
in
memberEnd->excluding(p)->
forAl1(m3 | m3.name->includes(’elEntry’) or
m3.name->includes(’e2Entry’) or
m3.name->includes(’e3Entry’)) and
memberEnd->excluding(p)->
forAl1(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end entrySlPoint, the other ends are named elEntry, e2Entry, e3Entry, or e4Entry.
All other ends belong to the same Class.

inv SensorAssociationi13:
memberEnd->exists(ml | ml.name->includes(’entryS1Point’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’entrySlPoint’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elEntry’) or
m3.name->includes(’e2Entry’) or
m3.name->includes(’e3Entry’) or
m3.name->includes(’e4Entry’)) and
memberEnd->excluding(p)->
forAll(m3,m4 | m3.owningClass = m4.owningClass)

o If there is an end entryDbSIPoint, the other ends are named elEntry, e2Entry, e3Entry, or
edEntry. All other ends belong to the same Class.

inv SensorAssociationi4:
memberEnd->exists(ml | ml.name->includes(’entryDbS1Point’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’entryDbS1Point’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elEntry’) or
m3.name->includes(’e2Entry’) or
m3.name->includes(’e3Entry’) or
m3.name->includes(’e4Entry’)) and
memberEnd->excluding(p)->
forAll(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end exitSeg, the other ends are named elExit or e2Exit. All other ends belong to
the same Class.

inv SensorAssociationl5:
memberEnd->exists(ml | ml.name->includes(’exitSeg’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’exitSeg’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elExit’) or
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m3.name->includes(’e2Exit’)) and
memberEnd->excluding(p)->
forAll(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end exitCross, the other ends are named elExit, e2Exit, e3Exit, or edExit. All
other ends belong to the same Class.

inv SensorAssociationl6:
memberEnd->exists(ml | ml.name->includes(’exitCross’)) implies
(let p:Property =
memberEnd->select (m1 | ml.name->includes(’exitCross’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elExit’) or
m3.name->includes (’e2Exit’) or
m3.name->includes (’e3Exit’) or
m3.name->includes (’e4Exit’)) and
memberEnd->excluding(p)->
forAll(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end exitPoint, the other ends are named elExit, e2Exit, or e3Exit. All other ends
belong to the same Class.

inv SensorAssociationl?7:
memberEnd->exists(ml | ml.name->includes(’exitPoint’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’exitPoint’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elExit’) or
m3.name->includes(’e2Exit’) or
m3.name->includes(’e3Exit’)) and
memberEnd->excluding(p)->
forAll1(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end exitSIPoint, the other ends are named elExit, e2Exit, e3Exit, or edExit. All
other ends belong to the same Class.

inv SensorAssociationi8:
memberEnd->exists(ml | ml.name->includes(’exitS1lPoint’)) implies
(let p:Property =
memberEnd->select (m1 | ml.name->includes(’exitS1Point’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elExit’) or
m3.name->includes(’e2Exit’) or
m3.name->includes(’e3Exit’) or
m3.name->includes (’e4Exit’)) and
memberEnd->excluding(p)->
forAll(m3,m4 | m3.owningClass = m4.owningClass)

e If there is an end exitDbSIPoint, the other ends are named elExit, e2Exit, e3Exit, or e4Exit.
All other ends belong to the same Class.

inv SensorAssociationl9:
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memberEnd->exists(ml | ml.name->includes(’exitDbS1Point’)) implies
(let p:Property =
memberEnd->select(ml | ml.name->includes(’exitDbS1Point’))->first
in
memberEnd->excluding(p)->
forAll(m3 | m3.name->includes(’elExit’) or
m3.name->includes(’e2Exit’) or
m3.name->includes(’e3Exit’) or
m3.name->includes(’e4Exit’)) and
memberEnd->excluding(p)->
forAll1(m3,m4 | m3.owningClass = m4.owningClass)

Semantics

SensorAssociations connect track elements and sensors, respectively properties of them. They are

always binary. Exit properties of sensors are always connected to exit properties of points and

segments. Vice versa, entry properties of sensors are connected to entry properties of segments.
SensorAssociation is used to create a railway network by associating its different parts.

Notation

SensorAssociations are used in class diagrams using the UML association notation. For instances,
called SensorLink, see the respective paragraph.

2.3.3 SignalAssociation
Description

A SignalAssociation connects one signals to one sensor. Passing trains must obey signals associated
to exit sensors of the current track segment in their driving direction.

Associations

None.

Attributes

None.
Constraints
e There are 2 ends.

inv SignalAssociationli:
memberEnd->size() = 2

e There are 2 end types.

inv SignalAssociation2:
endType->size() = 2

e One end type is Sensor.

inv SignalAssociation3:
endType->one(t | t.oclIsKindOf (Sensor))

e One end type is Signal.

inv SignalAssociation4:
endType->one(t | t.oclIsKindOf(Signal))
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Semantics

SignalAssociation connects a signal to a sensor.

Notation

SignalAssociations are used in class diagrams using the UML association notation. For instances,
called SignalLink, see the respective paragraph.

2.4 Instances

Each of the track network elements has its specific instance stereotype as this is needed, e.g. to add
additional notation. This makes it possible to use (a) usual UML object symbols for these instances
or (b) use the specific railway domain notation. The same holds for the three kinds of association
specified above.

<<stereotype>> <<stereotype>>
AutomaticRunninglinstance Sensorinstance
0.1 0.1
<<metaclass>> 0.1 <<stereotype>>

. Segmentinstance
InstanceSpecification

0.1 <<stereotype>>
Crossinglnstance

0.1 <<stereotype>>
SinglePointinstance

0.1 <<stereotype>>
SlipPointinstance

0.1 <<stereotype>>
DoubleSlipPointinstance

0.1 <<stereotype>>
Signallnstance

0.1 0.1
<<stereotype>> <<stereotype>>
SignalLink SensorLink

0.1
<<stereotype>>

AutoRunLink

Figure 2.11: Stereotypes for track network element instances

2.4.1 AutomaticRunninglInstance
Description

An AutomaticRunninglnstance is the instance of an automatic train running.
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Associations

None.

Attributes

None.
Constraints
e There is one classifier instantiated.

inv AutomaticRunningInstancel:
classifier->size() =1

The instantiated classifier is a kind of Class.

inv AutomaticRunningInstance2:
classifier->one(oclIsKindOf (Class))

The instantiated classifier has the type AutomaticRunning.

inv AutomaticRunningInstance3:
classifier->one(oclIsTypeOf (AutomaticRunning))

There is a mandatory slot autoRunld. The value is given by a LiteralAutoRunld.

inv AutomaticRunningInstance4:
slot->one(sl | sl.definingFeature.name->includes(’autoRunId’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralAutoRunId))

e There is an optional slot requestedState. If present, the value is taken from the enumeration
ActivationKind.

inv AutomaticRunningInstanceb:
slot->select(sl | sl.definingFeature.name->includes(’requestedState’))->
forAll(s2 | s2.value->size()= 1 and

s2.value->first() .oclAsType(InstanceValue).
instance.oclIsTypeOf (EnumerationLiteral) and

s2.value->first() .oclAsType (InstanceValue) .
instance.oclAsType (EnumerationLiteral) .enumeration.name->

includes(’ActivationKind’))

e There is a mandatory slot actualState. The value is taken from the enumeration AutoRunKind.

inv AutomaticRunningInstance6:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .
instance.oclIsTypeOf (EnumerationLiteral) and

sl.value->first() .oclAsType(InstanceValue).
instance.oclAsType (EnumerationLiteral) .enumeration.name->

includes(’AutoRunKind’))

e There is an optional slot requestTime. If present, the value is given by a Literal Timelnstant.
inv AutomaticRunningInstance7:
slot->select(sl | sl.definingFeature.name->includes(’requestTime’))->

forAll(s2 | s2.value->size()= 1 and
s2.value->first.oclIsTypeOf (LiteralTimeInstant))
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e There is an optional slot delta_a. If present, the value is given by a LiteralDuration.

inv AutomaticRunningInstance8:
slot->select(sl | sl.definingFeature.name->includes(’delta_a’))->
forAll(s2 | s2.value->size()= 1 and
s2.value->first.oclIsTypeOf (LiteralDuration))

e There is an optional slot sensor. If present, the slot is the end of an AutoRunLink.

inv AutomaticRunningInstance9:

(slot->select(sl | sl.definingFeature.name->includes(’sensor’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first () .oclAsType(InstanceValue) .instance.
oclIsTypeOf (AutoRunLink))->size() = 1) or

(not slot->exists(sl | sl.definingFeature.name->includes(’sensor’)))

o If the slot requestedState is present, there have to be slots for requestTime and delta_a.

inv AutomaticRunningInstancelO:
self.classifier->asSequence->first.oclAsType(Class) .ownedAttribute->
one(p | p.name->includes(’requestedState’) and
p.lower = Set{1}) implies

slot->select(sl | (sl.definingFeature.name->includes(’requestedState’) or
sl.definingFeature.name->includes(’requestTime’) or
sl.definingFeature.name->includes(’delta_a’)) and
sl.value->size() = 1)->size()=3

e The slots requestedState, requestTime, and delta_a are either all present or none of them.

inv AutomaticRunningInstancell:

slot->select(sl | (sl.definingFeature.name->includes(’requestedState’) or
sl.definingFeature.name->includes (’requestTime’) or
sl.definingFeature.name->includes(’delta_a’)) and
sl.value->size() = 1)->size()=0 or

slot->select(sl | (sl.definingFeature.name->includes(’requestedState’) or
sl.definingFeature.name->includes(’requestTime’) or
sl.definingFeature.name->includes(’delta_a’)) and
sl.value->size() = 1)->size()=3

e The slot autoRunld has a different value for every instance of AutoRunlnstance.

inv AutomaticRunningInstancel2:
AutomaticRunningInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’autoRunId’))->
iterate(s:Slot;

result:Set(LiteralAutoRunId) =
oclEmpty(Set(LiteralAutoRunId)) |

result->including(s.value->first.oclAsType(LiteralAutoRunId)))->
isUnique(value)

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

An AutomaticRunninglnstance is either depicted as a UML object or as a white or black box un-
derneath the sensor to which it is associated in a track layout diagram. A white box denotes a
permanent automatic train running system (see Fig. 2.12), a black box a controlled automatic train
running system (see Fig. 2.13).
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e

Figure 2.12:
Permanent auto-
matic train running
instance

o

Figure 2.13:
Controlled auto-
matic train running
instance

2.4.2 AutoRunLink
Description

An AutoRunLink is the instance of an automatic running association.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv AutoRunLinkl:
classifier->size() =1

e The instantiated classifier is a kind of Association.

inv AutoRunLink2:
classifier->one(oclIsKindOf (Association))

e The instantiated classifier has the type AutoRunAssociation.

inv AutoRunLink3:
classifier->one(oclIsTypeOf (AutoRunAssociation))

e There are two slots.

inv AutoRunLink4:
slot->size()=2

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

An AutoRunLink is either depicted as a UML link or implicitly in a track layout diagram. The
placement of the automatic train running instance depends on the driving directions of the segments
at which connecting sensor the automatic train running instance is placed.

S1__s2
T

L]

Al

Figure 2.14: Automatic train running instance linked to sensor instance
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In Fig. 2.14, S2 is the exit sensor of the left track segment and the entry sensor of the right one.
Vice versa, S1 is the exit sensor of the right track segment and the entry sensor of the left one. The
automatic train running A1 is placed at sensor S1, i.e. braking is invoked if the train travels from the
right to the left segment and exceeds the current speed limit at sensor S1. The current speed limit is
either given by a signal placed at the same sensor or by a fixed speed limit of the entry segment of
the sensor.

In Fig. 2.15, we can see the same constellation as an object diagram.

<< i i ing>>
autoRun
sensor
<< >>
entry e2entry elexit exit
<< >> << >>
exit e2exit << >>. elentry entry

Figure 2.15: Automatic train running instance linked to sensor instance in object notation

2.4.3 Crossinglnstance
Description

A Crossinglnstance is the instance of a crossing.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv Crossinglnstancel:
classifier->size() = 1

o The instantiated classifier is a kind of Class.

inv Crossinglnstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier is a kind of TrackElement.

inv CrossingInstance3:
classifier->one(oclIsKindOf (TrackElement))

e The instantiated classifier has the type Crossing.

inv Crossinglnstance4:
classifier->one(oclIsTypeOf (Crossing))
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e There is a mandatory slot maxNumberOfTrains. The value is given by a Literallnteger.

inv Crossinglnstanceb:
slot->one(sl | sl.definingFeature.name->includes(’maxNumberOfTrains’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralInteger) and
sl.value->first()->oclAsType(LiteralInteger).value = 1)

e There is an optional slot limit. If present, the value is given by a Literallnteger.

inv CrossingInstance6:
slot->one(sl | sl.definingFeature.name->includes(’limit’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralInteger) and
sl.value->first()->oclAsType(LiteralInteger).value >= 0) or
not slot->exists(sl | sl.definingFeature.name->includes(’limit’))

e The slots elEntry, e3Entry, e2Exit, and e4Exit are mandatory. Each slot is an end of a Sensor-
Link.

inv CrossinglInstance7:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size() = 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue).instance.

0clIsTypeOf (SensorLink))->size = 4

e The slots elEntry, e3Entry, e2Exit, and e4dExit either exist all or not of them. If present, each
slot is an end of a SensorLink.

inv Crossinglnstance8:

(slot->select(sl | (sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size() = 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue).instance.

oclIsTypeOf (SensorLink))->size = 4) or

(slot->select(sl | (sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size() = 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first () .oclAsType(InstanceValue) .instance.

oclIsTypeOf (SensorLink))->size = 0)

o If the instantiated classifier has a mandatory attribute e2Entry, there have to be slots named
e2entry and elExit. If present, each slot is an end of a SensorLink.

inv CrossingInstance9:
self.classifier->asSequence->first.oclAsType(Class) .ownedAttribute->
one(p | p.name->includes(’e2Entry’) and
p-lower = Set{1}) implies
slot->select(sl | (sl.definingFeature.name->includes(’e2Entry’) or
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sl.definingFeature.name->includes(’elExit’)) and

sl.value->size() = 1 and

sl.value->first().oclIsTypeOf (InstanceValue) and

sl.value->first().oclAsType(InstanceValue).instance.
0clIsTypeOf (SensorLink))->size = 2

e If the instantiated classifier has a mandatory attribute e2Entry, there have to be slots named
e2entry and elExit. If present, each slot is an end of a SensorLink.

inv CrossinglnstancelO:
self.classifier->asSequence->first.oclAsType(Class) .ownedAttribute->
one(p | p.name->includes(’e4Entry’) and
p-lower = Set{1}) implies

slot->select(sl | (sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size() = 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue).instance.

oclIsTypeOf (SensorLink))->size = 2

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A Crossinglnstance is either depicted as a UML object or as a symbol as shown in Fig. 2.16 (crossing
segments) or in Fig. 2.17. A speed limit can optionally be shown above the crossing just as for
segment instances.

e T e—
Figure 2.16: Crossing in- Figure 2.17: Interlaced cross-
stance ing instance

2.4.4 DoubleSlipPointInstance
Description

A DoubleSlipPointInstance is the instance of a double slip point.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv DoubleSlipPointInstancel:
classifier->size() = 1
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e The instantiated classifier is a kind of Class.

inv DoubleSlipPointInstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier is a kind of TrackElement.

inv DoubleSlipPointInstance3:
classifier->one(oclIsKindOf (TrackElement))

e The instantiated classifier is a kind of Point.

inv DoubleSlipPointInstance4:
classifier->one(oclIsKindOf (Point))

e The instantiated classifier is a kind of SlipPoint.

inv DoubleSlipPointInstanceb:
classifier->one(oclIsTypeOf (S1ipPoint))

e The instantiated classifier has the type DoubleSlipPoint.

inv DoubleSlipPointInstance6:
classifier->one(oclIsTypeOf (DoubleSlipPoint))

e There is a mandatory slot pointld. The value is given by a

LiteralPointId.
inv DoubleSlipPointInstance7:
slot->one(sl | sl.definingFeature.name->includes(’pointId’) and
sl.value->size()= 1 and
sl.value->first () .oclIsTypeOf (LiteralPointId))

e There is a mandatory slot pointIdOpp. The value is given by a LiteralPointId.

inv DoubleSlipPointInstance8:
slot->one(sl | sl.definingFeature.name->includes(’pointIdOpp’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralPointId))

e There is a mandatory slot plus. The value is taken from the enumeration RouteKind.

inv DoubleSlipPointInstance9:
slot->one(sl | sl.definingFeature.name->includes(’plus’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot minus. The value is taken from the enumeration RouteKind.

inv DoubleSlipPointInstancelO:
slot->one(sl | sl.definingFeature.name->includes(’minus’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))
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e There is a mandatory slot plusOpp. The value is taken from the enumeration RouteKind.

inv DoubleSlipPointInstancell:
slot->one(sl | sl.definingFeature.name->includes(’plusOpp’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot minusOpp. The value is taken from the enumeration RouteKind.

inv DoubleSlipPointInstancel2:
slot->one(sl | sl.definingFeature.name->includes(’minusOpp’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
0clIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes (’RouteKind’))

e There is a mandatory slot maxNumberOfTrains. The value is given by a Literallnteger.

inv DoubleSlipPointInstancel3:
slot->one(sl | sl.definingFeature.name->includes(’maxNumberOfTrains’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralInteger) and
sl.value->first().oclAsType(LiteralInteger).value = 1)

e There is a mandatory slot delta_p. The value is given by a LiteralDuration.

inv DoubleSlipPointInstancel4:
slot->one(sl | sl.definingFeature.name->includes(’delta_p’) and
sl.value->size()= 1 and
sl.value->first () .oclIsTypeOf (LiteralDuration))

e There is a mandatory slot actualState. The value is taken from the enumeration PointStateKind.

inv DoubleSlipPointInstancelb:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
0clIsTypeOf (EnumerationLiteral) and

sl.value->first() .oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’PointStateKind’))

e There is a mandatory slot requestedState. The value is taken from the enumeration RouteKind.

inv DoubleSlipPointInstancel6:
slot->one(sl | sl.definingFeature.name->includes(’requestedState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot requestTime. The value is given by a Literal Timelnstant.
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inv DoubleSlipPointInstancel7:
slot->one(sl | sl.definingFeature.name->includes(’requestTime’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is a mandatory slot actualStateOpp. The value is taken from the enumeration PointStateKind.

inv DoubleSlipPointInstancel8:
slot->one(sl | sl.definingFeature.name->includes(’actualStateOpp’) and

sl.value->size()= 1 and

s1.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) . enumeration.name->

includes(’PointStateKind’))

e There is a mandatory slot requestedStateOpp. The value is taken from the enumeration
RouteKind.

inv DoubleSlipPointInstancel9:
slot->one(sl | sl.definingFeature.name->includes(’requestedStateOpp’) and

sl.value->size()= 1 and

sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot requestTimeOpp. The value is given by a LiteralTimelnstant.

inv DoubleSlipPointInstance20:
slot->one(sl | sl.definingFeature.name->includes(’requestTimeOpp’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is an optional slot requestTime. If present, the value is given by a Literallnteger.

inv DoubleSlipPointInstance21:
slot->select(sl | sl.definingFeature.name->includes(’limit’))->
forAll(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (LiteralInteger) and
s2.value->first()->oclAsType(LiteralInteger) .value >= 0)

e One of the slots plus and minus has the value STRAIGHT, the other one the value LEFT or
RIGHT.

inv DoubleSlipPointInstance22:
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (InstanceValue) and
s2.value->first () .oclAsType(InstanceValue) .instance.name->
includes(’STRAIGHT’)) and
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (InstanceValue) and
(s2.value->first () .oclAsType(InstanceValue) .instance.name->
includes(’LEFT’) or
s2.value->first () ->oclAsType(InstanceValue) .instance.name->
includes (’RIGHT’)))
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e One of the slots plusOpp and minusOpp has the value STRAIGHT, the other one the value
LEFT or RIGHT.

inv DoubleSlipPointInstance23:
slot->select(sl | sl.definingFeature.name->includes(’minusOpp’) or
sl.definingFeature.name->includes(’plusOpp’))->
one(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (InstanceValue) and
s2.value->first () .oclAsType(InstanceValue) . instance.name->
includes(’STRAIGHT’)) and
slot->select(sl | sl.definingFeature.name->includes(’minusOpp’) or
sl.definingFeature.name->includes(’plusOpp’))->
one(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (InstanceValue) and
(s2.value->first().oclAsType(InstanceValue) .instance.name->
includes (’LEFT’) or
s2.value->first () ->oclAsType(InstanceValue) .instance.name->
includes (’RIGHT’)))

e If one of the slots plus or minus has he value LEFT, then also one of the slots plusOpp or
minusOpp has the value LEFT. Vice versa, if one of the slots plus or minus has the value
RIGHT, then also one of the slots plusOpp or minusOpp has the value RIGHT.

inv DoubleSlipPointInstance24:
slot->select(sl | sl.definingFeature.name->includes(’plus’) or
sl.definingFeature.name->includes(’minus’))->
one(s2 | s2.value->first().oclAsType(InstanceValue) .instance.name->
includes(’LEFT’)) implies
slot->select(sl | sl.definingFeature.name->includes(’plusOpp’) or
sl.definingFeature.name->includes (’minusOpp’))->
one(s2 | s2.value->first().oclAsType(InstanceValue).instance.name->
includes(’LEFT’)) and
slot->select(sl | sl.definingFeature.name->includes(’plus’) or
sl.definingFeature.name->includes(’minus’))->
one(s2 | s2.value->first().oclAsType(InstanceValue).instance.name->
includes (’RIGHT’)) implies
slot->select(sl | sl.definingFeature.name->includes(’plusOpp’) or
sl.definingFeature.name->includes (’minusOpp’))->
one(s2 | s2.value->first().oclAsType(InstanceValue).instance.name->
includes (’RIGHT’))

e The slots elEntry, e2Exit, e4dExit exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv DoubleSlipPointInstance25:

(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and

sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or

(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 0)
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e The slots el Exit, e2Entry, e4dEntry exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv DoubleSlipPointInstance26:

(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and

sl.value->size()= 1 and

sl.value->first().oclIsTypeOf (InstanceValue) and

sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 3) or

(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or

sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and
sl.value->size()= 1 and

sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 0)

e The slots e3Entry, e2Exit, e4Exit exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv DoubleSlipPointInstance27:

(slot->select(sl | (sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and

sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or

(slot->select(sl | (sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 0)

e The slots e3Exit, e2Entry, edEntry exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv DoubleSlipPointInstance28:

(slot->select(sl | (sl.definingFeature.name->includes(’e3Exit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and

sl.value->size()= 1 and

sl.value->first().oclIsTypeOf (InstanceValue) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or

(slot->select(sl | (sl.definingFeature.name->includes(’e3Exit’) or

sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 0)

e There are at least 4 slots named elEntry, elExit, e2Entry, e2Exit, e3Entry, e3Exit, e4Entry, or
edExit. If present, each slot is the end of a SensorLink.
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inv DoubleSlipPointInstance29:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e3Exit’) or
sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.

oclIsTypeOf (SensorLink))->size() >= 4

e The slot pointld has a different value for every instance of SinglePointInstance, SlipPointIn-
stance, and DoubleSlipPointInstance.

inv DoubleSlipPointInstance30:
DoubleSlipPointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’) or
s.definingFeature.name->includes(’pointIdQpp’))->
union(SinglePointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))
)->
union(SlipPointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))
)->
iterate(s:Slot;
result:Set(LiteralPointId) =
oclEmpty (Set(LiteralPointId)) |
result->including(s.value->first.oclAsType(LiteralPointId)))->
isUnique(value)

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A DoubleSlipPointInstance is either depicted as a UML object or as a symbol as shown in Fig. 2.18.
At least one of the plus and minus positions of each point has to be marked.

/
=

Figure 2.18: Double slip point instance

2.4.5 SegmentInstance
Description

A SegmentlInstance is the instance of a segment.

Associations

None.
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Attributes

None.

Constraints

e There is one classifier instantiated.

inv SegmentInstancel:
classifier->size() =1

e The instantiated classifier is a kind of Class.

inv SegmentInstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier is a kind of TrackElement.

inv SegmentInstance3:
classifier->one(oclIsKindOf (TrackElement))

e The instantiated classifier has the type Segment.

inv SegmentInstance4:
classifier->one (oclIsTypeOf (Segment))

e There is a mandatory slot maxNumberOfTrains. The value is given by a Literallnteger.

inv SegmentInstanceb:
slot->one(sl | sl.definingFeature.name->includes(’maxNumberOfTrains’) and
sl.value->size()= 1 and
s1l.value->first () .oclIsTypeOf (LiteralInteger) and
sl.value->first()->oclAsType(LiteralInteger).value = 1)

e There is an optional slot limit. If present, the value is given by a Literallnteger.

inv SegmentInstance6:
slot->one(sl | sl.definingFeature.name->includes(’limit’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralInteger) and
sl.value->first()->oclAsType(LiteralInteger).value >= 0) or
not slot->exists(sl | sl.definingFeature.name->includes(’limit’))

e At least 1 and at most 2 of the slots elEntry and e2Exit exist. If present, each slot is the end
of a SensorLink.

inv SegmentInstance7:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’)) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
0clIsTypeOf (SensorLink))->size()=1 or

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
0clIsTypeOf (SensorLink))->size()=2
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o At most 2 of the slots e2Entry and elExit exist. If present, each slot is the end of a SensorLink.

inv SegmentInstance8:

slot->select(sl | (sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’elExit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size()<=1 or

slot->select(sl | (sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’elExit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size()=2

e The number of the slots named elEntry, elExit, e2Entry, or e2Exit is not 3. If present, each
slot is the end of a SensorLink.

inv SegmentInstance9:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e2Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() <> 3

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SegmentInstance is either depicted as a UML object or as a symbol as shown in Fig. 2.19. Note
that it is possible that two segments cross in a track layout diagram but do not form a crossing e.g. if
one segment is located on a bridge. In this case, one of the segments is drawn interrupted as shown
in Fig. 2.20. Optionally, the current speed limit can be shown above the segment. If no speed limit
is shown, there is no limit. The maximal number of trains is shown under the segment and marked

with maz=. If it is not shown, the default value is 1.
100 /
max=2

Figure 2.19: Segment instance Figure 2.20: Two seg-
ment instances that do
not cross

e Sink:

slot->one(sl | sl.definingFeature.name->includes(’e2Entry’)) and

slot->select( s2 | s2.definingFeature.name->includes(’elEntry’) or
s2.definignFeature.name->includes(’elExit’) or
s2.definingFeature.name->includes(’e2Exit’))->size() = 0
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e Source:

slot->one(sl | sl.definingFeature.name->includes(’elEntry’)) and

slot->select( s2 | s2.definingFeature.name->includes(’e2Entry’) or
s2.definignFeature.name->includes(’elExit’) or
s2.definingFeature.name->includes(’e2Exit’))->size()

e Sink/source:

(slot->one(sl | sl.definingFeature.name->includes(’elEntry’)) and
slot->one(s2 | s2.definingFeature.name->includes(’elExit’)) and
slot->select( s2 | s2.definingFeature.name->includes(’e2Entry’) or
s2.definingFeature.name->includes(’e2Exit’))->size()
)
xor
(slot->one(sl | sl.definingFeature.name->includes(’e2Entry’)) and
slot->one(s2 | s2.definingFeature.name->includes(’e2Exit’)) and
slot->select(s3 | s3.definingFeature.name->includes(’elEntry’) or
s3.definingFeature.name->includes(’elExit’))->size()

o Unidirectional:

(slot->one(sl | sl.definingFeature.name->includes(’elEntry’)) and
slot->one(a2 | s2.definingFeature.name->includes(’e2Exit’)) and
slot->select( s2 | s2.definingFeature.name->includes(’e2Entry’) or
s2.definignFeature.name->includes(’elExit’))->size()
)
xor
(slot->one(sl | sl.definingFeature.name->includes(’e2Entry’)) and
slot->one(a2 | s2.definingFeature.name->includes(’elExit’)) and
slot->select( s2 | s2.definingFeature.name->includes(’elEntry’) or
s2.definignFeature.name->includes(’e2Exit’))->size()

e Bidirectional:

slot->one(s1
slot->one(sl
slot->one(sl
slot->one(s1

sl.definingFeature.name->includes(’elEntry’)) and
sl.definingFeature.name->includes(’e2Entry’)) and
sl.definingFeature.name->includes(’elExit’)) and
sl.definingFeature.name->includes(’e2Exit’))
2.4.6 Sensorlnstance

Description

A SensorInstance is the instance of a sensor.

Associations

None.

Attributes

None.
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Constraints

e There is one classifier instantiated.

inv SensorInstancel:
classifier->size() = 1

e The instantiated classifier is a kind of Class.

inv SensorInstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier has the type Sensor.

inv SensorInstance3:
classifier->one(oclIsTypeOf (Sensor))

e There is a mandatory slot sensorld. The value is given by a LiteralSensorId.

inv SensorInstance4:
slot->one(sl | sl.definingFeature.name->includes(’sensorId’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralSensorId))

e There is a mandatory slot actualState. The value is taken from the enumeration SensorStateKind.

inv SensorInstanceb:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .
instance.oclIsTypeOf (EnumerationLiteral) and

sl.value->first() .oclAsType(InstanceValue) .
instance.oclAsType (EnumerationLiteral) .enumeration.name->

includes(’SensorStateKind’))

e There is a mandatory slot sentTime. The value is given by a LiteralTimelnstant.

inv SensorInstance6:
slot->one(sl | sl.definingFeature.name->includes(’sentTime’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is a mandatory slot counter. The value is given by a Literallnteger.

inv SensorInstance7:
slot->one(sl | sl.definingFeature.name->includes(’counter’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralInteger) and
sl.value->first().oclAsType(LiteralInteger).value >= 0)

e There is a mandatory slot delta_t. The value is given by a LiteralDuration.

inv SensorInstance8:
slot->one(sl | sl.definingFeature.name->includes(’delta_t’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralDuration))

e There is a mandatory slot delta_tram. The value is given by a LiteralDuration.
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inv SensorInstance9:
slot->one(sl | sl.definingFeature.name->includes(’delta_tram’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralDuration))

e The number of slots named entrySeg, entryCross, entryPoint, entrySIPoint, or entryDbSIPoint
is 1. The slot has a defined value.

inv SensorInstancel0:
slot->select(sl | sl.definingFeature.name->includes(’entrySeg’) or
sl.definingFeature.name->includes(’entryCross’) or
sl.definingFeature.name->includes(’entryPoint’) or
sl.definingFeature.name->includes(’entrySlPoint’) or
sl.definingFeature.name->includes(’entryDbS1Point’))->
size()=1 and
slot->select(sl | sl.definingFeature.name->includes(’entrySeg’) or
sl.definingFeature.name->includes(’entryCross’) or
sl.definingFeature.name->includes(’entryPoint’) or
sl.definingFeature.name->includes(’entrySlPoint’) or
sl.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.isDefined

e The number of slots named exitSeg, exitCross, exitPoint, exitSIPoint, or exitDbSIPoint is 1.
The slot has a defined value.

inv SensorInstancell:
slot->select(sl | sl.definingFeature.name->includes(’exitSeg’) or
sl.definingFeature.name->includes(’exitCross’) or
sl.definingFeature.name->includes(’exitPoint’) or
sl.definingFeature.name->includes(’exitS1Point’) or
sl.definingFeature.name->includes(’exitDbS1Point’))->
size()=1 and
slot->select(sl | sl.definingFeature.name->includes(’exitSeg’) or
sl.definingFeature.name->includes(’exitCross’) or
sl.definingFeature.name->includes(’exitPoint’) or
sl.definingFeature.name->includes(’exitS1Point’) or
sl.definingFeature.name->includes(’exitDbS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.isDefined

e The values of the slots entrySeg, entryCross, entryPoint, entrySIPoint, entryDbS1Point, exitSeg,
exitCross, exitPoint, exitSIPoint, and exitDbSIPoint are distint, i.e. they refer to different
instances.

inv SensorInstancel2:

slot->select(sl | sl.definingFeature.name->includes(’entrySeg’) or
sl.definingFeature.name->includes(’entryCross’) or
sl.definingFeature.name->includes(’entryPoint’) or
sl.definingFeature.name->includes(’entryS1lPoint’) or
sl.definingFeature.name->includes(’entryDbS1Point’) or
sl.definingFeature.name->includes(’exitSeg’) or
sl.definingFeature.name->includes(’exitCross’) or
sl.definingFeature.name->includes(’exitPoint’) or
sl.definingFeature.name->includes(’exitS1Point’) or
sl.definingFeature.name->includes(’exitDbS1Point’))->

forAll(s1,s2 | sl <> s2 implies sl.value <> s2.value)

e There is an optional slot signal. If present, the slot is the end of an SignalLink.
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inv SensorInstancel3:
(slot->select(sl | sl.definingFeature.name->includes(’signal’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SignallLink))->size() = 1) or
(not slot->exists(sl | sl.definingFeature.name->includes(’signal’)))

There is an optional slot autoRun. If present, the slot is the end of an AutoRunLink.

inv SensorInstancel4:

(slot->select(sl | sl.definingFeature.name->includes(’autoRun’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue).instance.
oclIsTypeOf (AutoRunLink))->size() = 1) or

(not slot->exists(sl | sl.definingFeature.name->includes(’autoRun’)))

The slot sensorld has a different value for every instance of SensorInstance.

inv SensorInstancelb:
SensorInstance.allInstances->collect(slot)->asSet->flatten—>
select(s | s.definingFeature.name->includes(’sensorId’))->
iterate(s:Slot;
result:Set(LiteralSensorId) =
oclEmpty(Set(LiteralSensorId)) |
result->including(s.value->first.oclAsType(LiteralSensorId)))->
isUnique(value)

If the slot entrySeg, entryCross, entryPoint, entrySIPoint, or entryDbSIPoint of one instance
of SensorInstance has the same value as the slot exitSeg, exitCross, exitPoint, exitSIPoint,
or exitDbSIPoint of another instance of SensorInstance, then the value of the slot exitSeg,
exitCross, exitPoint, exitS1Point, or exitDbSlipPoint of the first instance has to be the same as
the value of the slot entrySeg, entryCross, entryPoint, entrySIPoint, or entryDbSIPoint of the
second instance.

inv SensorInstancel6:
SensorInstance.allInstances->forAl11(il,i2 |
(il.slot->select(s | s.definingFeature.name->includes(’entrySeg’) or
s.definingFeature.name->includes(’entryCross’) or
.definingFeature.name->includes(’entryPoint’) or
.definingFeature.name->includes(’entryS1lPoint’) or
.definingFeature.name->includes (’ entryDbS1P0int’))->
.value =
.definingFeature.name->includes(’exitSeg’) or
.definingFeature.name->includes(’exitCross’) or
.definingFeature.name->includes(’exitPoint’) or
.definingFeature.name->includes(’exitS1Point’) or
.definingFeature.name->includes(’exitDbS1Point’))->
.value) implies
.definingFeature.name->includes(’exitSeg’) or

s
s
s

asSequence->first()

s

s

s

s

s
)

s

s.definingFeature.name->includes(’exitCross’) or

s

s

s
)

s

s

s

s

s
).

i2.slot->select(s |

asSequence->first(
(il.slot->select(s |

.definingFeature.name->includes(’exitPoint’) or

.definingFeature.name->includes(’exitS1Point’) or

.definingFeature.name->includes(’exitDbS1Point’))->
asSequence->first().value =
i2.slot->select(s | s.definingFeature.name->includes(’entrySeg’) or
.definingFeature.name->includes(’entryCross’) or
.definingFeature.name->includes(’entryPoint’) or
.definingFeature.name->includes(’entryS1lPoint’) or
.definingFeature.name->includes(’entryDbS1Point’))->

asSequence->first() .value))

64



Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SensorInstance is either depicted as a UML object or as a symbol in a track layout diagram.
Each sensor separates two segments. The alignment of bar on top of the separating line denotes the
traveling direction: a) from the left segment to the right segment (see Fig. 2.21), b) from the right
segment to the left segment (see Fig. 2.22), or ¢) bidirectionally (see Fig. 2.23). Optionally, black
arrows on the segments can be used to make the traveling direction unambigiously clear.

FSl

Figure 2.21: Sensor for traveling from the left to the right segment

Slq
Figure 2.22: Sensor for traveling from the right to the left segment

S1-S2

B S e e

Figure 2.23: Sensor for bidirectional usage

2.4.7 SensorLink

Description

A SensorLink is the instance of a sensor association.

Associations

None.

Attributes

None.

Constraints
e There is one classifier instantiated.

inv SensorLinkil:
classifier->size() =1

e The instantiated classifier is a kind of Association.

inv SensorLink?2:
classifier->one(oclIsKindOf (Association))

e The instantiated classifier has the type SensorAssociation.

inv SensorLink3:
classifier->one(oclIsTypeOf (SensorAssociation))

e There are two slots.

inv SensorLink4:
slot->size()=2
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Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SensorLink is either depicted as a UML link or implicitly in a track layout diagram. The figures

2.24, 2.25, and 2.26 show the explicit usage in a UML object diagram.
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Figure 2.24: Sensor for traveling from the left to the right segment in object notation
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Figure 2.25: Sensor for traveling from the right to the left segment in object notation
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Figure 2.26: Sensor for bidirectional usage in object notation

2.4.8 Signallnstance
Description

A Signallnstance is the instance of a signal.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv Signallnstancel:
classifier->size() =1

o The instantiated classifier is a kind of Class.
inv Signallnstance2:

classifier->one(oclIsKindOf (Class))
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e The instantiated classifier has the type Signal.

inv Signallnstance3:
classifier->one(oclIsTypeOf (Signal))

e There is a mandatory slot signalld. The value is given by a LiteralSignalld.

inv Signallnstance4:
slot->one(sl | sl.definingFeature.name->includes(’signalld’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralSignalld))

e There is a mandatory slot actualState. The value is taken from the enumeration Signal-
StateKind.

inv SignalInstanceb5:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first () .oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’SignalStateKind’))

e There is a mandatory slot requestedState. The value is taken from the enumeration Permis-
sionKind.

inv Signallnstance6:
slot->one(sl | sl.definingFeature.name->includes(’requestedState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue).instance.
oclAsType (EnumerationLiteral) . enumeration.name->

includes(’PermissionKind’))

e There is a mandatory slot requestTime. The value is given by a Literal Timelnstant.

inv Signallnstance7:
slot->one(sl | sl.definingFeature.name->includes(’requestTime’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is a mandatory slot delta_s. The value is given by a LiteralDuration.

inv Signallnstance8:
slot->one(sl | sl.definingFeature.name->includes(’delta_s’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralDuration))

e There is an optional slot direction. If present, the value is taken from the enumeration
RouteKind.

inv Signallnstance9:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->
forAll(s2 | s2.value->size()= 1 and
s2.value->first() .oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and
s2.value->first () .oclAsType(InstanceValue) . instance.
oclAsType (EnumerationlLiteral) .enumeration.name->
includes(’RouteKind’)) and
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size <= 1
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e There is an optional slot requestedDir. If present, the value is taken from the enumeration
RouteKind.

inv SignallnstancelO:
slot->select(sl | sl.definingFeature.name->includes(’requestedDir’))->
forAll(s2 | s2.value->size()= 1 and
s2.value->first() .oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and
s2.value->first() .oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->
includes(’RouteKind’)) and
slot->select(sl | sl.definingFeature.name->includes(’requestedDir’))->size <= 1

e There is a mandatory slot sensor. The slot is the end of a SignalLink.

inv Signallnstancell:
slot->select(sl | (sl.definingFeature.name->includes(’sensor’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (Signallink))->size() = 1

e The slots requestedDir and direction are either both present or none of them.

inv SignalInstancel2:
slot->select(sl | (sl.definingFeature.name->includes(’requestedDir’) or
sl.definingFeature.name->includes(’direction’)) and
sl.value->size() = 1)->size()=0 or
slot->select(sl | (sl.definingFeature.name->includes(’requestedDir’) or
sl.definingFeature.name->includes(’direction’)) and
sl.value->size() = 1)->size()=2

e The slot signalld has a different value for every instance of Signallnstance.

inv Signallnstancel3:
SignalInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’signalld’))->
iterate(s:Slot;
result:Set(LiteralSignalld) =
oclEmpty (Set(LiteralSignalld)) |
result->including(s.value->first.oclAsType(LiteralSignalld)))->
isUnique(value)

e If an instance of Signallnstance is located at a SegmentInstance, the values of slots direction
and requestedDir are always STRAIGHT.

inv Signallnstancel4:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first () .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entrySeg’))->size()=1
implies
slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first()->
oclAsType (InstanceValue) . instance.name->includes (’STRAIGHT’) and
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first()->
oclAsType (InstanceValue) . instance.name->includes (’ STRAIGHT’)
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o If an instance of Signallnstance is located at a Crossinglnstance, the values of slots direction
and requestedDir are always STRAIGHT.

inv SignalInstancel5:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryCross’))->
size()=1
implies
slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first ()->
oclAsType(InstanceValue) .instance.name->includes (’STRAIGHT’) and
slot->select(s | s.definingFeature.name->includes(’requested’))->
asSequence->first() .value->first()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)

e If an instance of Signallnstance is located at slot elEntry of a SinglePointInstance, the values
of slots direction and requestedDir have to refer to a valid position of that point (given by
slots plus and minus). If not, the actualState of that instance of SinglePointInstance has to be
FAILURE.

inv SignalInstancel6:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryPoint’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SinglePoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1

implies
(SinglePointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKind0f (Sensor))->first () .value->first().
oclAsType (InstanceValue) . instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first() .oclAsType(InstanceValue) .instance = self
and
(p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes (’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->includes(
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slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first () .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes (’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

)

e If an instance of Signallnstance is located at slot e2Entry or e3Entry of a SinglePointInstance,
the values of slots direction and requestedDir have to be STRAIGHT. If not, the actualState
of that instance of SinglePointInstance has to be FAILURE.

inv Signallnstancel7:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first () .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryPoint’))->
asSequence->first () .value->first () .oclAsType (InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SinglePoint))->
asSequence->first() .value->first.oclAsType (InstanceValue).
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’) or
s.definingFeature.name->includes(’e3Entry’))->size()=1
implies
(slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first().value->first()->
oclAsType(InstanceValue) .instance.name->includes (’STRAIGHT’) and
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first().value->first()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

e If an instance of Signallnstance is located at slot elEntry of a SlipPointInstance, the values
of slots direction and requestedDir have to refer to a valid position of that point (given by
slots plus and minus). If not, the actualState of that instance of SlipPointInstance has to be
FAILURE.

inv SignalInstancel8:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first () .value->
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first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (S1ipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->

first() .oclAsType(InstanceValue) .instance = self
and

(p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes(’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes(’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

)

e If an instance of Signallnstance is located at slot e2Entry or e3Entry of a SlipPointInstance,
the values of slots direction and requestedDir have to be STRAIGHT. If not, the actualState
of that instance of SlipPointInstance has to be FAILURE.

inv SignalInstancel9:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryS1lPoint’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
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instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (S1ipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’) or
s.definingFeature.name->includes(’e3Entry’))->size()=1
implies
(slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first()->
oclAsType(InstanceValue) .instance.name->includes (’STRAIGHT’) and
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first().value->first().oclAsType(InstanceValue).
instance.name->includes (’FAILURE’)

e If an instance of Signallnstance is located at slot edEntry of a SlipPointInstance, the values
of slots direction and requestedDir have to refer to a valid position of that point (given by

slots plus and minus), strictly speaking the opposite direction. If not, the actualState of that
instance of SlipPointInstance has to be FAILURE.

inv Signallnstance20:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes (’e4Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first() .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->

first().oclAsType(InstanceValue) .instance = self
and

(p.slot->select(s | s.definingFeature.name->includes(’minus’) or

s.definingFeature.name->includes(’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->
excluding(’STRAIGHT’)->
excludes (
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slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first () .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes (’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->
excluding(’STRAIGHT’)->
excludes (
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

))

e If an instance of Signallnstance is located at slot elEntry of a DoubleSlipPointInstance, the
values of slots direction and requestedDir have to refer to a valid position of that point (given

by slots plus and minus). If not, the actualState of that instance of DoubleSlipPointInstance
has to be FAILURE.

inv SignalInstance2l:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first () .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first () .value->first.oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oc1IsKindOf (Sensor))->asSequence->first() .value->

first().oclAsType(InstanceValue) .instance = self
and

(p.slot->select(s | s.definingFeature.name->includes(’minus’) or

s.definingFeature.name->includes(’plus’))->
iterate(s:Slot;

ret:Set(String)=oclEmpty(Set(String)) |

ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->includes(
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slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first () .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes (’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

))

e If an instance of Signallnstance is located at slot elEntry of a DoubleSlipPointInstance, the
values of slots direction and requestedDir have to refer to a valid position of that point (given

by slots plusOpp and minusOpp). If not, the actualState of that instance of DoubleSlipPointIn-
stance has to be FAILURE.

inv Signallnstance22:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e2Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first() .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->

first().oclAsType(InstanceValue) .instance = self
and

(p.slot->select(s | s.definingFeature.name->includes(’minusOpp’) or

s.definingFeature.name->includes(’plusOpp’))->
iterate(s:Slot;

ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
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instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minusOpp’) or
s.definingFeature.name->includes(’plusOpp’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->includes(
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->

asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name->asSequence->first())

) or

slot->select(s | s.definingFeature.name->includes(’actualState’))->

asSequence->first().value->first().oclAsType(InstanceValue).
instance.name->includes (’FAILURE’)

))

e If an instance of Signallnstance is located at slot e3Entry of a DoubleSlipPointInstance, the
values of slots direction and requestedDir have to refer to a valid position of that point (given

by slots plusOpp and minusOpp), strictly speaking the opposite direction. If not, the actualState
of that instance of DoubleSlipPointInstance has to be FAILURE.

inv SignalInstance23:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot—>
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e3Entry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e3Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType (Property) .owningClass.
oclIsKind0f (Sensor))->first () .value->first().
oclAsType (InstanceValue) . instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType (Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first().oclAsType (InstanceValue) .instance = self
and
(p.slot->select(s | s.definingFeature.name->includes(’minusOpp’) or
s.definingFeature.name->includes (’plusOpp’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->
excluding(’STRAIGHT’)->
excludes (
slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
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instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minusOpp’) or
s.definingFeature.name->includes(’plusOpp’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->
excluding (’ STRAIGHT’)->
excludes (
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

)

e If an instance of Signallnstance is located at slot e3Entry of a DoubleSlipPointInstance, the
values of slots direction and requestedDir have to refer to a valid position of that point (given

by slots plus and minus), strictly speaking the opposite direction. If not, the actualState of
that instance of DoubleSlipPointInstance has to be FAILURE.

inv Signallnstance24:
slot->select(sl | sl.definingFeature.name->includes(’direction’))->size = 1 and
slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first().value->first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->size()=1

implies
(SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes (’e4Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first() .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->

first().oclAsType(InstanceValue) .instance = self
and

(p.slot->select(s | s.definingFeature.name->includes(’minus’) or

s.definingFeature.name->includes(’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()))->
excluding(’STRAIGHT’)->
excludes (
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slot->select(s | s.definingFeature.name->includes(’direction’))->
asSequence->first () .value->first () .oclAsType(InstanceValue).
instance.name->asSequence->first()) and
p.slot->select(s | s.definingFeature.name->includes(’minus’) or
s.definingFeature.name->includes (’plus’))->
iterate(s:Slot;
ret:Set(String)=oclEmpty(Set(String)) |
ret->including(s.value->first () .oclAsType(InstanceValue) .
instance.name->asSequence->first()))->
excluding(’STRAIGHT’)->
excludes (
slot->select(s | s.definingFeature.name->includes(’requestedDir’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name->asSequence->first())
) or
slot->select(s | s.definingFeature.name->includes(’actualState’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.name->includes (’FAILURE’)

))

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A Signallnstance is either depicted as a UML object or as a symbol in track layout diagram (see Fig.
2.27. Tt is placed in front of the sensor to which it belongs to.
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Figure 2.27: Signal on bidirectional segments

There are four different kinds of signals than can be used

e A signal that only gives information GO and STOP such that:

not slot->exists(sl | sl.definingFeature.name->includes(’limit’) or
sl.definingFeature.name->includes(’direction’))

H®
Figure 2.28: Signal that signals GO and STOP

e A signal that gives additionally speed limits such that:

not slot->exists(sl | sl.definingFeature.name->includes(’direction’)) and
slot->one(s2 | s2.definingFeature.name->includes(’limit’))

—o»

Figure 2.29: Signal that signals GO, STOP, and speed limit

e A signal that gives additionally directions such that:

not slot->exists(sl | sl.definingFeature.name->includes(’limit’)) and
slot->one(s2 | s2.definingFeature.name->includes(’direction’))
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Figure 2.30: Signal that signals GO, STOP, and direction to go

e A signal that gives additionally both speed limits and directions:

slot->one(sl | sl.definingFeature.name->includes(’limit’)) and
slot->one(s2 | s2.definingFeature.name->includes(’direction’))

o™

Figure 2.31: Signal with all information possible

2.4.9 SignalLink
Description

A SignalLink is the instance of a signal association.

Associations

None.

Attributes

None.
Constraints
e There is one classifier instantiated.

inv SignalLink1:
classifier->size() =1

e The instantiated classifier is a kind of Association.

inv SignalLink2:
classifier->one(oclIsKindOf (Association))

e The instantiated classifier has the type SignalAssociation.

inv SignalLink3:
classifier->one(oclIsTypeOf (SignalAssociation))

e There are two slots.

inv SignalLink4:
slot->size()=2
Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SignalLink is either depicted as a UML link or implicity in track layout diagrams by placing the
signal near to the associated sensor. In object notation, the associations in Fig. 2.27 can be seen
explicitly as shown in Fig. 2.32.
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Figure 2.32: Signal on bidirectional segments in object notation

2.4.10 SinglePointInstance

Description

A SinglePointInstance is the instance of a single point.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv SinglePointInstancel:
classifier->size() = 1

e The instantiated classifier is a kind of Class.

inv SinglePointInstance?2:
classifier->one(oclIsKind0f (Class))

e The instantiated classifier is a kind of TrackElement.

inv SinglePointInstance3:

classifier->one(oclIsKindOf (TrackElement))

o The instantiated classifier is a kind of Point.

inv SinglePointInstance4:
classifier->one(oclIsKindOf (Point))

e The instantiated classifier has the type SinglePoint.

inv SinglePointInstanceb:

classifier->one(oclIsTypeOf (SinglePoint))
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e There is a mandatory slot pointld. The value is given by a LiteralPointId.

inv SinglePointInstance6:
slot->one(sl | sl.definingFeature.name->includes(’pointId’) and
sl.value->size()= 1 and
sl.value->first () .oclIsTypeOf (LiteralPointId))

e There is a mandatory slot maxNumberOfTrains. The value is given by a Literallnteger.

inv SinglePointInstance7:
slot->one(sl | sl.definingFeature.name->includes(’maxNumberOfTrains’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralInteger) and
sl.value->first() .oclAsType(Literallnteger) .value = 1)

e There is a mandatory slot plus. The value is taken from the enumeration RouteKind.

inv SinglePointInstance8:
slot->one(sl | sl.definingFeature.name->includes(’plus’) and

sl.value->size()= 1 and

sl.value->first() .oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first () .oclAsType(InstanceValue).instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot minus. The value is taken from the enumeration RouteKind.

inv SinglePointInstance9:
slot->one(sl | sl.definingFeature.name->includes(’minus’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot actualState. The value is taken from the enumeration PointStateKind.

inv SinglePointInstancelO:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
0clIsTypeOf (EnumerationLiteral) and

sl.value->first() .oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’PointStateKind’))

e There is a mandatory slot requested. The value is taken from the enumeration RouteKind.

inv SinglePointInstancell:
slot->one(sl | sl.definingFeature.name->includes(’requestedState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot requestTime. The value is given by a Literal Timelnstant.
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inv SinglePointInstancel?2:
slot->one(sl | sl.definingFeature.name->includes(’requestTime’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is a mandatory slot delta_p. The value is given by a LiteralDuration.

inv SinglePointInstancel3:
slot->one(sl | sl.definingFeature.name->includes(’delta_p’) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (LiteralDuration))

e There is an optional slot limit. If present, the value is given by a Literallnteger.

inv SinglePointInstancel4:
slot->one(sl | sl.definingFeature.name->includes(’limit’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralInteger) and
sl.value->first.oclAsType(LiteralInteger) .value >= 0) or
not slot->exists(sl | sl.definingFeature.name->includes(’limit’))

e The slots elEntry, e2Exit, e3Exit exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv SinglePointInstancel5:

(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e3Exit’)) and

sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 3) or
(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
0clIsTypeOf (SensorLink))->size() = 0)

e The slots elExit, e2Entry, e3Entry exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv SinglePointInstancel6:

(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e3Entry’)) and

sl.value->size()= 1 and

sl.value->first().oclIsTypeOf (InstanceValue) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or

(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or

sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e3Entry’)))->size()=0)

e There are at least three slots named elEntry, elExit, e2Entry, e2Exit, e3Entry, or e3Exit. If
present, each slot is the end of a SensorLink.
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inv SinglePointInstancel7:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.

oclIsTypeOf (SensorLink))->size() >= 3

e One of the slots plus and minus has the value STRAIGHT, the other one the value LEFT or
RIGHT.

inv SinglePointInstancel8:
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
s2.value->first() .oclAsType(InstanceValue) . instance.name->
includes(’STRAIGHT’)) and
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
(s2.value->first () .oclAsType (InstanceValue) .instance.name->
includes (’LEFT’) or
s2.value->first () ->oclAsType(InstanceValue) .instance.name->
includes (’RIGHT’)))

e The value of the slot requestedState must be a valid direction of that point, i.e. a value defined
by slot plus or minus.

inv SinglePointInstancel9:
let
r1:Set(Slot) = slot->select(sl |
sl.definingFeature.name->includes(’requestedState’))

in
let
r2:Set(String) = slot->select(s2 |
s2.definingFeature.name->includes(’plus’) or
s2.definingFeature.name->includes(’minus’))->
collect(value.oclAsType(InstanceValue) .instance.name)->flatten->
asSet
in

r1->forAl1(s3 | r2->includes(s3.value->first()->
oclAsType(InstanceValue) . instance.name->asSequence->first()))

e The value of the slot actualState must be a valid direction of that point, i.e. a value defined by
slot plus or minus. If not, the actualState has the value FAILURE.

inv SinglePointInstance20:

let

r1:Set(Slot) = slot->select(sl |

sl.definingFeature.name->includes(’actualState’))

in

let

r2:Set(String) = slot->select(s2 |
s2.definingFeature.name->includes(’plus’) or
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s2.definingFeature.name->includes(’minus’))->
collect(value.oclAsType (InstanceValue) .instance.name)->flatten->
asSet
in
r1->forAl1(s3 | r2->includes(s3.value->first()->
oclAsType(InstanceValue) .instance.name->asSequence->
first()) or
s3.value->first () ->oclAsType(InstanceValue) . instance.
name->includes (’FAILURE’))

e The slot pointld has a different value for every instance of SinglePointInstance, SlipPointIn-
stance, and DoubleSlipPointInstance.

inv SinglePointInstance21:
SinglePointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))->
union(SlipPointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))
)->
union(DoubleSlipPointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’) or
s.definingFeature.name->includes (’pointIdOpp’))
)->
iterate(s:Slot;
result:Set(LiteralPointId) =
oclEmpty(Set(LiteralPointId)) |
result->including(s.value->first.oclAsType(LiteralPointId)))->
isUnique(value)

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SinglePointInstance is either depicted as a UML object or as a symbol as shown in Fig. 2.33. At
least one position must be marked as plus or minus position.

L

Figure 2.33: Single point instance

2.4.11 SlipPointInstance

Description

A SlipPointInstance is the instance of a slip point.

Associations

None.

Attributes

None.
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Constraints

e There is one classifier instantiated.

inv SlipPointInstancel:
classifier->size() = 1

e The instantiated classifier is a kind of Class.

inv SlipPointInstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier is a kind of TrackElement.

inv SlipPointInstance3:
classifier->one(oclIsKindOf (TrackElement))

o The instantiated classifier is a kind of Point.

inv SlipPointInstance4:
classifier->one(oclIsKindOf (Point))

e The instantiated classifier is a kind of SlipPoint.

inv SlipPointInstanceb:
classifier->one(oclIsTypeOf (S1ipPoint))

e There is a mandatory slot pointld. The value is given by a LiteralPointId.

inv SlipPointInstance6:
slot->one(sl | sl.definingFeature.name->includes(’pointId’) and
sl.value->size()= 1 and
sl.value->first () .oclIsTypeOf (LiteralPointId))

e There is a mandatory slot plus. The value is taken from the enumeration RouteKind.

inv SlipPointInstance7:
slot->one(sl | sl.definingFeature.name->includes(’plus’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot minus. The value is taken from the enumeration RouteKind.

inv SlipPointInstance8:
slot->one(sl | sl.definingFeature.name->includes(’minus’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue).instance.
0c1IsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot maxNumberOfTrains. The value is given by a Literallnteger.
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inv SlipPointInstance9:
slot->one(sl | sl.definingFeature.name->includes(’maxNumberOfTrains’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralInteger) and
sl.value->first().oclAsType(LiteralInteger).value = 1)

e There is a mandatory slot delta_p. The value is given by a LiteralDuration.

inv SlipPointInstancelO:
slot->one(sl | sl.definingFeature.name->includes(’delta_p’) and
sl.value->size()= 1 and
sl.value->first () .oclIsTypeOf (LiteralDuration))

e There is a mandatory slot actualState. The value is taken from the enumeration PointStateKind.

inv SlipPointInstancell:
slot->one(sl | sl.definingFeature.name->includes(’actualState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) . instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name—>

includes(’PointStateKind’))

e There is a mandatory slot requestedState. The value is taken from the enumeration RouteKind.

inv SlipPointInstancel2:
slot->one(sl | sl.definingFeature.name->includes(’requestedState’) and

sl.value->size()= 1 and

sl.value->first() .oclAsType(InstanceValue).instance.
0clIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’RouteKind’))

e There is a mandatory slot requestTime. The value is given by a Literal Timelnstant.

inv SlipPointInstancel3:
slot->one(sl | sl.definingFeature.name->includes(’requestTime’) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (LiteralTimeInstant))

e There is a mandatory slot limit. The value is given by a Literallnteger.

inv SlipPointInstancel4:
slot->select(sl | sl.definingFeature.name->includes(’limit’))->
forAll(s2 | s2.value->size()= 1 and
s2.value->first() .oclIsTypeOf (LiteralInteger) and
s2.value->first()->oclAsType(LiteralInteger) .value >= 0)

e One of the slots plus and minus has the value STRAIGHT, the other one the value LEFT or
RIGHT.

inv SlipPointInstancelb:
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
s2.value->first() .oclAsType(InstanceValue) . instance.name->
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includes(’STRAIGHT’)) and
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
(s2.value->first () .oclAsType(InstanceValue) .instance.name->
includes (’LEFT’) or
s2.value->first () ->oclAsType(InstanceValue) .instance.name->
includes (’RIGHT’)))

e The slots elEntry, e2Exit, edExit exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv SlipPointInstancel6:

(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and

sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or
(slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue).instance.
oclIsTypeOf (SensorLink))->size() = 0)

e The slots el Exit, e2Entry, edEntry exist either all or none of them. If present, each slot is the
end of a SensorLink.

inv SlipPointInstancel7:

(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and

sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 3) or
(slot->select(sl | (sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e4Entry’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue).instance.
oclIsType0f (SensorLink))->size() = 0)

e The slots e3Entry and e4Exit exist either both or none of them. If present, each slot is the end
of a SensorLink.

inv SlipPointInstancel8:

(slot->select(sl | (sl.definingFeature.name->includes(’e4Exit’) or
sl.definingFeature.name->includes(’e3Entry’)) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 2) or

(slot->select(sl | (sl.definingFeature.name->includes(’e4Exit’) or
sl.definingFeature.name->includes(’e3Entry’)) and
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sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 0)

e The slots e3Exit and e4Entry exist either both or none of them. If present, each slot is the end
of a SensorLink.

inv SlipPointInstancel9:

(slot->select(sl | (sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size()= 1 and
sl.value->first() .oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 2) or

(slot->select(sl | (sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’e3Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (SensorLink))->size() = 0)

e There are at least 4 slots named elEntry, elExit, e2Entry, e2Exit, e3Entry, e3Exit, edEntry, or
edExit. If present, each slot is the end of a SensorLink.

inv SlipPointInstance20:

slot->select(sl | (sl.definingFeature.name->includes(’elEntry’) or
sl.definingFeature.name->includes(’elExit’) or
sl.definingFeature.name->includes(’e2Entry’) or
sl.definingFeature.name->includes(’e2Exit’) or
sl.definingFeature.name->includes(’e3Entry’) or
sl.definingFeature.name->includes(’e3Exit’) or
sl.definingFeature.name->includes(’e4Entry’) or
sl.definingFeature.name->includes(’e4Exit’)) and
sl.value->size()= 1 and
sl.value->first().oclIsTypeOf (InstanceValue) and
sl.value->first() .oclAsType(InstanceValue) .instance.

oclIsTypeOf (SensorLink))->size() >= 4

e The slot pointld has a different value for every instance of SinglePointInstance, SlipPointIn-
stance, and DoubleSlipPointInstance.

inv SlipPointInstance21:
SlipPointInstance.alllnstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))->
union(SinglePointInstance.allIlnstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’))
)—>
union(DoubleSlipPointInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’pointId’) or
s.definingFeature.name->includes (’pointIdOpp’))
)->
iterate(s:Slot;
result:Set(LiteralPointId) =
oclEmpty (Set (LiteralPointId)) |
result->including(s.value->first.oclAsType(LiteralPointId)))->
isUnique(value)

Semantics

Given by the transformation from a concrete network to a labeled transition system.
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Notation

A SlipPointInstance is either depicted as a UML object or as a symbol as shown in Fig. 2.34. At
least one of the plus and minus positions of each point has to be marked.

/

Figure 2.34: Single slip point instance

2.5 Routes

Route definitions are based on a track network description. They describe routes for trains on the
basis of sensor sequences. The setting of the first signal for entering the route must be given, just as
the states of all points needed for safe travel on the route. Furthermore, conflicts with other routes
are memorized to guarantee safe traffic on the track network.

<<metaclass>> 0.1 <<stereotype>>
Class SignalSetting
0.1 <<stereotype>>

PointPosition

0.1 <<stereotype>>
RouteConflict

<<enumeration>>
0.1 RouteConflictKind
<<st;re0type>> noAllocation
oute stopSignal
<<metaclass>> 04 <<stereotype>>
InstanceSpecification Routelnstance

Figure 2.35: Stereotypes for modeling routes in networks

2.5.1 PointPosition

Description

PointPosition is used to model requested positions of point instances.

Associations

None.

Attributes

None.
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Constraints

e There is a mandatory property pointld with type Pointld. The property is read-only and has

the multiplicity 1.

inv PointPositionl:
ownedAttribute->one(a | a.

PP

name->includes (’pointId’) and

.type.name->includes(’PointId’) and
.upperBound ()
.lowerBound() = 1 and
.isReadOnly = true)

1 and

e There is a mandatory property pointState with type RouteKind. The property is read-only and

has the multiplicity 1.

inv PointPosition2:
ownedAttribute->one(a | a.

PP

Semantics

name->includes (’pointState’) and

.type.name->includes(’RouteKind’) and
.upperBound() = 1 and

.lowerBound() = 1 and

.isReadOnly = true)

PointPosition combines the pointld with type Pointld of a point and the required pointState with
type RouteKind as route.

Notation

PointPosition is used in class digrams using the UML class notation.

2.5.2 PointPositionInstance

Description

A PointPositionInstance is the instance of a point position.

Associations

None.

Attributes

None.

Constraints

There is one classifier instantiated.

inv PointPositionInstancel:
classifier->size() =1

The instantiated classifier is a

inv PointPositionInstance?2:

kind of Class.

classifier->one(oclIsKindOf (Class))

The instantiated classifier has

the type PointPosition.
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inv PointPositionInstance3:
classifier->one(oclIsTypeOf (PointPosition))

e There is a mandatory slot pointld. The value is given by a LiteralPointId.

inv PointPositionInstance4:
slot->one(sl | sl.definingFeature.name->includes(’pointId’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralPointId))

e There is a mandatory slot pointld. The value is taken from the enumeration RouteKind.

inv PointPositionInstanceb:
slot->one(sl | sl.definingFeature.name->includes(’pointState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
0clIsTypeOf (EnumerationLiteral) and

sl.value->first().oclAsType(InstanceValue) .instance.
oclAsType(EnumerationLiteral) .enumeration.name->

includes (’RouteKind’))

e The value of slot pointld refers to a value of slot pointld or pointldOpp of one SinglePointIn-
stance, SlipPointInstance, or DoubleSlipPointInstance. In other words, the referenced point
exists.

inv PointPositionInstance6:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first().value->first.oclAsType(LiteralPointId) .value
in
SinglePointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first () .value->first().
oclAsType(LiteralPointId) .value = id) or
SlipPointInstance.allInstances->exists(p |
p-slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first() .value->first().
oclAsType(LiteralPointId) .value = id) or
DoubleSlipPointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first() .value->first().
oclAsType(LiteralPointId).value = id) or
DoubleSlipPointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointIdOpp’))->
asSequence->first () .value->first().
oclAsType(LiteralPointId) .value = id)

e The value of slot pointState refers to a valid position of the single point referenced by pointld.
The valid positions of that point are given by the values of slots plus and minus.

inv PointPositionInstance7:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first().value->first.oclAsType(LiteralPointId) .value
in
(
SinglePointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first() .value->first() .oclAsType(LiteralPointId) .value =
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id)
implies
(
let p:SinglePointInstance =
SinglePointInstance.allInstances->select(i | i.slot->
select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first () .value->first() .oclAsType(LiteralPointId) .value =
id)->asSequence () ->first ()
in
p.slot->select(s |
s.definingFeature.name->includes(’plus’))->asSequence () ->
first().value->first().oclAsType(InstanceValue) .
instance.name->union(
p.slot->select(s |
s.definingFeature.name->includes(’minus’))->asSequence () ->
first() .value->first().oclAsType(InstanceValue).
instance.name
)—>includes(self.slot->select(s |
s.definingFeature.name->includes(’pointState’))->
asSequence->first () .value->first() .oclAsType(InstanceValue) .
instance.name->asSequence->first())

)

e The value of slot pointState refers to a valid position of the slip point referenced by pointld.
The valid positions of that point are given by the values of slots plus and minus.

inv PointPositionInstance8:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first () .value->first.oclAsType(LiteralPointId) .value
in
(
SlipPointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first () .value->first () .oclAsType(LiteralPointId) .value =
id)
implies
(
let p:SlipPointInstance =
SlipPointInstance.allInstances->select(i | i.slot->
select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first () .value->first () .oclAsType(LiteralPointId) .value =
id)->asSequence () ->first()
in
p.slot->select(s |
s.definingFeature.name->includes(’plus’))->asSequence ()->
first().value->first().oclAsType(InstanceValue).
instance.name->union(
p-slot->select(s |
s.definingFeature.name->includes(’minus’))->asSequence () —>
first() .value->first().oclAsType(InstanceValue) .
instance.name
)—>includes(self.slot->select(s |
s.definingFeature.name->includes(’pointState’))->
asSequence->first() .value->first().oclAsType(InstanceValue).
instance.name->asSequence->first())

)

e The value of slot pointState refers to a valid position of the first point of a double slip point
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referenced by pointld. The valid positions of that point are given by the values of slots plus
and minus.

inv PointPositionInstance9:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first().value->first.oclAsType(LiteralPointId) .value
in
(
DoubleSlipPointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first () .value->first() .oclAsType(LiteralPointId) .value =
id)
implies
(
let p:DoubleSlipPointInstance =
DoubleSlipPointInstance.allInstances->select(i | i.slot->
select(s | s.definingFeature.name->includes(’pointId’))->
asSequence () ->first() .value->first() .oclAsType(LiteralPointId) .value =
id)->asSequence () ->first()
in
p.slot->select(s |
s.definingFeature.name->includes(’plus’))->asSequence()->
first().value->first().oclAsType(InstanceValue) .
instance.name->union(
p.slot->select(s |
s.definingFeature.name->includes(’minus’))->asSequence()->
first().value->first().oclAsType(InstanceValue).
instance.name
)—->includes(self.slot->select(s |
s.definingFeature.name->includes(’pointState’))->
asSequence->first() .value->first () .oclAsType (InstanceValue) .
instance.name->asSequence->first())

e The value of slot pointState refers to a valid position of the second point of a double slip point
referenced by pointld. The valid positions of that point are given by the values of slots plusOpp
and minusOpp.

inv PointPositionInstancelO:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’pointId’))->
asSequence->first() .value->first.oclAsType(LiteralPointId) .value
in
(
DoubleSlipPointInstance.allInstances->exists(p |
p.slot->select(s | s.definingFeature.name->includes(’pointIdOpp’))->
asSequence () ->first () .value->first() .oclAsType(LiteralPointId) .value =
id)
implies
(
let p:DoubleSlipPointInstance =
DoubleSlipPointInstance.allInstances->select(i | i.slot->
select(s | s.definingFeature.name->includes(’pointIdOpp’))->
asSequence () ->first() .value->first() .oclAsType(LiteralPointId) .value =
id)->asSequence () ->first()
in
p.-slot->select(s |
s.definingFeature.name->includes (’plusOpp’))->asSequence()->
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first().value->first().oclAsType(InstanceValue) .
instance.name->union(
p-slot->select(s |
s.definingFeature.name->includes (’minusOpp’))->asSequence () —>
first() .value->first().oclAsType(InstanceValue) .
instance.name
)—>includes(self.slot->select(s |
s.definingFeature.name->includes(’pointState’))->
asSequence->first() .value->first().oclAsType(InstanceValue).
instance.name->asSequence->first())

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A PointPositionlnstance is either depicted as a UML object or as a tuple, e.g. (P5,STRAIGHT). The
first item of the tuple is the point id, the second one the point position.

2.5.3 Route
Description

Routes define ways through the track network by sequences of sensors to be passed, the first signal
setting needed to enter the route, the requested point positions, and the identifications of conflicting
routes.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property routeld with type Routeld. The property is read-only and has
the multiplicity 1.

inv Routel:

ownedAttribute->one(a | a.name->includes(’routeld’) and
.type.name->includes (’RouteId’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP oo

e There is a mandatory property routeDefinition with type Sensorld. The property is read-only
and ordered and has the multiplicity 1..*, where * is a natural greater than 1.

inv Route2:
ownedAttribute->one(a | a.name->includes(’routeDefinition’) and
.type.name->includes(’SensorId’) and
.upperBound() >= 1 and
.lowerBound() = 1 and
.isOrdered = true and
.isUnique = false and
.isReadOnly = true)

PP
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e There is a mandatory property routeConflict with type RouteConflict. The property is read-
only and has the multiplicity 0..*, where * is a natural greater than 1. The property is ordered
and each value has to be unique. There is an outgoing association whose opposite end is a
RouteConflict.

inv Route3:
ownedAttribute->one(a | a.name->includes(’routeConflict’) and

.upperBound() >= 1 and

.lowerBound() = 0 and

.isOrdered = true and

.isUnique = true and

.isReadOnly = true and

.outgoingAssociation->size()=1 and

.outgoingAssociation.memberEnd->size()=2 and

.outgoingAssociation.memberEnd->excluding(a) .

name->includes(’route’) and

a.outgoingAssociation.memberEnd->excluding(a)->
first.owningClass.oclIsTypeOf (RouteConflict))

PP YRR

e There is a mandatory property pointPos with type PointPosition. The property is read-only
and has the multiplicity 0..*, where * is a natural greater than 1. The property is ordered
and each value has to be unique. There is an outgoing association whose opposite end is a
PointPosition.

inv Route4:
ownedAttribute->one(a | a.name->includes(’pointPos’) and
.upperBound() >= 1 and
.lowerBound() = 0 and
.isOrdered = true and
.isUnique = true and
.isReadOnly = true and
.outgoingAssociation->size()=1 and
.outgoingAssociation.memberEnd->size()=2 and
.outgoingAssociation.memberEnd->excluding(a) .
name->includes(’route’) and
a.outgoingAssociation.memberEnd->excluding(a)->
first.owningClass.oclIsTypeOf (PointPosition)

(O O A A

e There is a mandatory property signalSetting with type SignalSetting. The property is read-only
and has the multiplicity 1. The property is ordered and each value has to be unique. There is
an outgoing association whose opposite end is a SignalSetting.

inv Routeb5:
ownedAttribute->one(a | a.name->includes(’signalSetting’) and

.upperBound() = 1 and

.lowerBound() = 1 and

.isReadOnly = true and

.outgoingAssociation->size()=1 and

.outgoingAssociation.memberEnd->size()=2 and

.outgoingAssociation.memberEnd->excluding(a) .

name->includes(’route’) and

a.outgoingAssociation.memberEnd->excluding(a)->
first.owningClass.oclIsTypeOf (SignalSetting)

PP PP E

Semantics

Routes own one property routeDefinition with type Sensorld that gives a sequence of sensor identifi-
cations defining a route through the network. The signal setting at the beginning of a route is given
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as property signalSetting with the stereotype SignalSetting as type. The point positions required for
a route are defined by an ordered set named pointPos with type PointPosition. Also, routeConflict, a
an ordered set with type RouteConflict, is needed as information to avoid conflicting routes. Routes
have also a routeld of type Routeld.

Notation

Route is used in class diagrams using the UML class notation.

2.5.4 Routelnstance
Description

A Routelnstance is the instance of a route.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv RouteInstancel:
classifier->size() =1

e The instantiated classifier is a kind of Class.

inv RouteInstance2:
classifier->one(oclIsKind0Of (Class))

e The instantiated classifier has the type Route.

inv Routelnstance3:
classifier->one (oclIsTypeOf (Route))

e There is a mandatory slot routeld. The value is given by a LiteralRouteld.

inv RoutelInstance4:
slot->one(sl | sl.definingFeature.name->includes(’routeId’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralRouteId))

e There is a mandatory slot routeDefinition. The value is given by a sequence of ast least 2
LiteralSensorlds.

inv Routelnstance5:
slot->one(sl | sl.definingFeature.name->includes(’routeDefinition’) and
sl.value->size() >= 2 and
s1.value->forAll(oclIsTypeOf (LiteralSensorId)))

e There is a mandatory slot signalSetting. The value is given by a SignalSettingInstance.
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inv Routelnstance6:
slot->one(sl | sl.definingFeature.name->includes(’signalSetting’) and
sl.value->size() = 1 and
sl.value->first.oclIsTypeOf (InstanceValue) and
sl.value->first.oclAsType(InstanceValue) .instance.
slot->select(s2 | s2.value->first().
oclAsType(InstanceValue) .instance.
oclIsKindOf (SignalSettingInstance))->size() = 1)

e There is an optional slot routeConflict. If present, the value is given by a sequence of Route-
ConflictInstances.

inv Routelnstance7:
slot->select(sl | sl.definingFeature.name->includes(’routeConflict’))->
forAll(s2 | s2.value->size() = 1 and
s2.value->forAll(oclIsTypeOf (InstanceValue)) and

s2.value->forAl11(i | i.oclAsType(InstanceValue).instance.

slot->select(s2 | s2.value->first().

oclAsType(InstanceValue) .instance.

oclIsKindOf (RouteConflictInstance))->size() >= 1))

e There is an optional slot pointPosition. If present, the value is given by a sequence of PointPo-
sitionInstances.

inv RoutelInstance8:
slot->select(sl | sl.definingFeature.name->includes(’pointPos’))->
forAll(s2 | s2.value->size() = 1 and
s2.value->forAll(oclIsTypeOf (InstanceValue)) and

s2.value->forAl11(i | i.oclAsType(InstanceValue).instance.

slot->select(s2 | s2.value->first().

oclAsType(InstanceValue) . instance.
oclIsKindOf (PointPositionInstance))->size() >= 1))

e The value of slot pointld refers to a value of slot pointld of one Routelnstance. In other words,
the referenced route exists.

inv Routelnstance9:
RouteInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’routeld’))->
iterate(s:Slot;
result:Set(LiteralRouteId) =
oclEmpty(Set(LiteralRoutelId)) |
result->including(s.value->first.oclAsType(LiteralRouteId)))->
isUnique(value)

o All values of slot routeDefinition refer to values of slot sensorId of one SensorInstance. In other
words, the referenced sensors exist.

inv RouteInstancel0:
let i:Set(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->
asSequence->first() .value->
iterate(v:ValueSpecification;
result:Set (Integer)=oclEmpty(Set(Integer)) |
result->including(v.oclAsType(LiteralSensorId) .value))
in
i->forAl11(id |
SensorInstance.alllnstances->exists(sens |
sens.slot->select(s | s.definingFeature.name->includes(’sensorId’))->
asSequence->first().value->first().
oclAsType(LiteralSensorId) .value = id))

96



e Each pair of sensor ids given by the sequence routeDefinition are the entry and exit sensor of
one track element. In other words, the sequence of sensor ids defines a complete route without
gaps.

inv Routelnstancell:
let i:Sequence(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->
asSequence->first() .value->
iterate(v:ValueSpecification;
result:Sequence(Integer)=oclEmpty(Sequence(Integer)) |
result->including(v.oclAsType(LiteralSensorId) .value))
in
(let sensors:Sequence(SensorInstance) =
i->iterate(id:Integer;
result:Sequence(SensorInstance) =
oclEmpty (Sequence (SensorInstance)) |
result->including(SensorInstance.allInstances->select(
sens | sens.slot->select(s | s.definingFeature.name->
includes(’sensorId’))->asSequence->first() .value->
first().oclAsType(LiteralSensorId) .value = id)->
asSequence->first()))
in
Sequence{l..sensors->size()-1}->iterate
(nr:Integer;
result:Boolean = true |
if (sensors->at(nr).slot->
select(s2 | s2.definingFeature.name->includes(’entrySeg’) or
s2.definingFeature.name->includes(’entryCross’) or
s2.definingFeature.name->includes(’entryPoint’))->
asSequence->first.value.oclAsType(InstanceValue) .instance.
slot->select(s3 | s3.definingFeature.oclAsType(Property).
owningClass.oclIsKindOf (TrackElement))->
first() .value.oclAsType (InstanceValue) .instance =
sensors->at (nr+1) .slot->
select(s2 | s2.definingFeature.name->includes(’exitSeg’) or
s2.definingFeature.name->includes(’exitCross’) or
s2.definingFeature.name->includes(’exitPoint’))->
asSequence->first.value.oclAsType(InstanceValue) .instance.
slot->select(s3 | s3.definingFeature.oclAsType (Property) .
owningClass.oclIsKindOf (TrackElement))->
first().value.oclAsType(InstanceValue) .instance)
then result
else false
endif)

e Each route referenced by slot routeld in the sequence of route conflicts refers to a different
route. In other words, it is not possible to define different route conflicts for one and the same
route.

inv Routelnstancel2:
let i:Sequence(LiteralRouteId) =
slot->select(s | s.definingFeature.name->includes(’routeConflict’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .instance.
slot->select(s2 | s2.definingFeature.oclAsType(Property).
owningClass.oclIsKindOf (RouteConflict))->
iterate(s:Slot;
result:Sequence(LiteralRouteld)=
oclEmpty (Sequence (LiteralRouteId)) |

result->including(
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s.value->first () .oclAsType(InstanceValue) .instance.slot->
select(s2 |

s2.definingFeature.name->includes(’routeld’))->
asSequence->first().value->first().

oclAsType (LiteralRouteId)
)

in
i->isUnique(value)

e No routeld defined by a route conflict refers to the value of route id of this route instance. In
other words, it is not possible for a route to have a conflict with itself.

inv Routelnstancel3:
let i:Sequence(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeConflict’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .instance.
slot->select(s2 | s2.definingFeature.oclAsType(Property).
owningClass.oclIsKindOf (RouteConflict))->
iterate(s:Slot;
result:Sequence(Integer)=oclEmpty(Sequence(Integer)) |
result->including(
s.value->first().oclAsType(InstanceValue) .instance.slot->
select(s2 |
s2.definingFeature.name->includes(’routeId’))->
asSequence->first() .value->first().
oclAsType(LiteralRouteId) .value

in
i->excludes(self.slot->select(s |

s.definingFeature.name->includes(’routeIld’))->asSequence->first() .value->first().
oclAsType (LiteralRouteId) .value)

e The value of slot sigld of the defined signalSetting refers to a value of signalld of one signal
instance. This signal instance must be located at a sensor instance whose sensorld is contained
in the routeDefinition of this route instance. In other words, the referenced signal of the signal
setting must be located at a sensor that belongs to the defined route.

inv RouteInstancel4d:
let r:Sequence(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->
asSequence->first() .value->
iterate(v:ValueSpecification;
result:Sequence (Integer)=oclEmpty(Sequence(Integer)) |

result->including(v.oclAsType(LiteralSensorId) .value))
in

let i:Integer =
slot->select(s | s.definingFeature.name->includes(’signalSetting’))->
asSequence->first () .value->first () .oclAsType (InstanceValue) .instance.slot->
select(s2 | s2.definingFeature.oclAsType (Property) .owningClass.
oclIsKindOf (SignalSetting))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.slot->select(s2 |
s2.definingFeature.name->includes(’sigId’))->asSequence->
first() .value->first().oclAsType(LiteralSignalld).value
in
(

SensorInstance.allInstances->one(sens
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r->includes(sens.slot->select(s |
s.definingFeature.name->includes(’sensorId’))->asSequence->first().
value->first () .oclAsType(LiteralSensorId) .value)
and
sens.slot->select(s | s.definingFeature.name->includes(’signal’))->
asSequence->first().value->first().oclAsType(InstanceValue) .
instance.slot->select(s2 | s2.definingFeature.oclAsType(Property).
owningClass.oclIsKindOf (Sensor))->asSequence->first().value->first().
oclAsType(InstanceValue) .instance.slot-select(s3 |
s3.definingFeature.name->includes(’signalld’))->asSequence—>
first() .value->first().oclAsType(LiteralSignalld).value = i

e Each point referenced by slot pointld in the sequence of point positions refers to a different
point. In other words, it is not possible to define different point positions for one and the same
point.

inv Routelnstancel5:
let i:Sequence(LiteralPointId) =
slot->select(s | s.definingFeature.name->includes(’pointPos’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .instance.
slot->select(s2 | s2.definingFeature.oclAsType(Property).
owningClass.oclIsKindOf (PointPosition))->
iterate(s:Slot;
result:Sequence(LiteralPointId)=
oclEmpty (Sequence (LiteralPointId)) |
result->including(
s.value->first () .oclAsType(InstanceValue) .instance.slot->
select(s2 |
s2.definingFeature.name->includes(’pointId’))->
asSequence->first() .value->first().
oclAsType(LiteralPointId)

in
i->isUnique(value)

e The value of slot pointld of the defined pointPosition refers to a value of pointld of one point
instance. This point instance must be located at a sensor instance whose sensorld is contained in
the routeDefinition of this route instance. In other words, the referenced points of the sequence
of point positions must be located at a sensor that belongs to the defined route.

inv RoutelInstancel6:
let r:Sequence(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->
asSequence->first () .value->
iterate(v:ValueSpecification;
result:Sequence(Integer)=oclEmpty(Sequence(Integer)) |
result->including(v.oclAsType(LiteralSensorId) .value))
in
(
let ids:Sequence(Integer) =
slot->select(s | s.definingFeature.name->includes(’pointPos’))->
asSequence->first().value->first().oclAsType(InstanceValue).
instance.slot->select(s2 |
s2.definingFeature.oclAsType (Property) .owningClass.
oclIsKindOf (PointPosition))->
iterate(s:Slot;
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result:Sequence(Integer) =
oclEmpty (Sequence (Integer)) |
result->including(s.value->first () .oclAsType(InstanceValue).
instance.slot->select(s2 |
s2.definingFeature.name->includes(’pointId’))->
asSequence->first().value->first().
oclAsType(LiteralPointId) .value))
in

ids->forAll(i |
SensorInstance.allInstances->one(sens |
r->includes(sens.slot->select(s |
s.definingFeature.name->includes(’sensorId’))->asSequence->first().value—->
first () .oclAsType(LiteralSensorId) .value)
and
sens.slot->select(s | s.definingFeature.name->includes(’entryPoint’))->
asSequence->first() .value->
first().oclAsType(InstanceValue).instance.slot->select(s2 |
s2.definingFeature.oclAsType (Property) .owningClass.
0c1IsKindOf (Point))->asSequence->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s3 |
s3.definingFeature.name->includes(’pointId’))->
asSequence->first () .value->first().
oclAsType(LiteralPointId) .value = i
)

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A Routelnstance is either depicted as a UML object or in table notation.
As an object, the three sequences routeDefinition, pointPos, and routeConflict are denoted as
sequences (see Fig. 2.36), e.g. pointPos=<(P1,LEFT), (P2,RIGHT) , (P5,STRAIGHT)>.

R1: Route

routeld=R1

routeDefinition=<S200, S201, S202, S210, S211>
routeConflict=<(R2, noAllocation),(R6, stopSignal)>
pointPos=<(P102,STRAIGHT), (P103,STRAIGHT)>
signalSetting=(Sig20, GO, STRAIGHT)

Figure 2.36: Route instance in object notation

In table notation, there are four tables: one describing all routes (see Tab. 2.1), one describing all
point positions for each route (see Tab. 2.2), one describing all signal settings (see Tab. 2.3), and one
describing all conflicts (see Tab. 2.4).

2.5.5 RouteConflict

Description

Routes may have conflicts, either because their point and signal settings are incompatible or because
they travel on the same segments.
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Route | Sensor Sequence
R1 <S5200,5201,5202,5210,5211>
R2 <S5200,5203,5300,5228,5250,5251 >
R3 <5220,5221,5222,5299,5229,5230,5231>
R4 <5220,5221,5223,5250,5251 >
R5 <S5240,5241,5243,5230,5231>
R6 <S5240,5241,5242,5301,5210,5211>
Table 2.1: Route definitions
Route P100 P101 P102 P103 P118 P119
R1 STRAIGHT | STRAIGHT
R2 STRAIGHT LEFT
R3 STRAIGHT | STRAIGHT
R4 LEFT RIGHT
R5 RIGHT LEFT
R6 STRAIGHT RIGHT
Table 2.2: Point positions
Route | Signal Setting
R1 Sig20 | (GO, STRAIGHT)
R2 Sig20 (GO, LEFT)
R3 Sig21 | (GO, STRAIGHT)
R4 Sig21 (GO, RIGHT)
R5 Sig22 (GO, RIGHT)
R6 Sig22 | (GO, STRAIGHT)
Table 2.3: Signal settings
Route R1 R2 R3 R4 R5 R6
1 noAllocation stopSignal
2 noAllocation stopSignal stopSignal stopSignal
3 stopSignal no Allocation | stopSignal stopSignal
4 stopSignal | noAllocation
) stopSignal noAllocation
6 stopSignal stopSignal stopSignal noAllocation
Table 2.4: Route conflicts
Associations
None.
Attributes
None.
Constraints

e There is a mandatory property routeld with type Routeld. The property is read-only and has
the multiplicity 1.

inv RouteConflictl:

ownedAttribute->one(a | a.name->includes(’routeId’) and

a.type.name->includes (’RouteId’) and
a.upperBound() =
a.lowerBound() =
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a.isReadOnly = true)

e There is a mandatory property kind with type RouteConflictKind. The property is read-only
and has the multiplicity 1.

inv RouteConflict2:

ownedAttribute->one(a | a.name->includes(’kind’) and
.type.name->includes (’RouteConflictKind’) and
.upperBound () 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

Semantics

RouteConflict is defined by the routeld with type Routeld of a conflicting route and the kind that is
a RouteConflictKind.

Notation

RouteConflict is used in class diagrams using the UML class notation.

2.5.6 RouteConflictInstance

Description

A RouteConflictInstance is the instance of a route conflict.

Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv RouteConflictInstancel:
classifier->size() =1

e The instantiated classifier is a kind of Class.

inv RouteConflictInstance2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier has the type RouteConflict.

inv RouteConflictInstance3:
classifier->one(oclIsTypeOf (RouteConflict))

e There is a mandatory slot routeld. The value is given by a LiteralRouteld.

inv RouteConflictInstance4:
slot->one(sl | sl.definingFeature.name->includes(’routeId’) and
sl.value->size() = 1 and
sl.value->first.oclIsTypeOf (LiteralRouteld))
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e There is a mandatory slot kind. The value is taken from the enumeration RouteConflict Kind.

inv RouteConflictInstance5:
slot->one(sl | sl.definingFeature.name->includes(’kind’) and

sl.value->size() = 1 and

sl.value->first().oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and

sl.value->first() .oclAsType(InstanceValue) .instance.
oclAsType (EnumerationlLiteral) .enumeration.name->
includes(’RouteConflictKind’))

e The value of slot routeld refers to a value of slot routeld of one Routelnstance. In other words,
the referenced route exists.

inv RouteConflictInstance6:
let id:Set(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeId’))->
iterate(s:Slot; result:Set(Integer) = oclEmpty(Set(Integer)) |
result->including(s.value->first () .oclAsType(LiteralRouteId).value))
in
id->forAll(i |
RouteInstance.allInstances->exists(r |
r.slot->select(s | s.definingFeature.name->includes(’routeId’))->
asSequence->first().value->first().
oclAsType (LiteralRouteId) .value = i))

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A RouteConflictInstance is either depicted as a UML object or as a tuple, e.g. (R1,noAllocationPossible).
The first item of the tupel is the route id, the second one the conflict kind.

2.5.7 RouteConflictKind
Description

RouteConflictKind describes the two kind of possible conflicts between routes: either the routes
cannot be allocated at the same time due to incompatible point or signal states, or the routes can be
allocated at the same time but only one train may proceed while all other trains on the conflicting
routes have to wait due to signals with state STOP.

Semantics

The literals defined by RouteConflictKind are used as values of properties with type RouteConflic-
tKind. These literals are:

e noAllocation

e stopSignal

Notation

The defined literals are used as values of properties with type RouteConflictKind, e.g. kind =
noAllocation.
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2.5.8 SignalSetting
Description

SignalSettings model required signal settings, i.e. required states of signals.

Associations

None.

Attributes

None.

Constraints

e There is a mandatory property sigld with type Signalld. The property is read-only and has the
multiplicity 1.

inv SignalSettingl:

ownedAttribute->one(a | a.name->includes(’sigId’) and
.type.name->includes(’Signalld’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is a mandatory property sigState with type PermissionKind. The property is read-only
and has the multiplicity 1.

inv SignalSetting?2:

ownedAttribute->one(a | a.name->includes(’sigState’) and
.type.name->includes(’PermissionKind’) and
.upperBound() = 1 and
.lowerBound() = 1 and
.isReadOnly = true)

PP

e There is an optional property dirState with type RouteKind. If present, the property is read-
only and has the multiplicity 0..1 or 1.

inv SignalSetting3:
(ownedAttribute->one(a | a.name->includes(’dirState’) and
a.type.name->includes(’RouteKind’) and
a.upperBound()=1 and
a.lowerBound() >= 0 and
a.isReadOnly = true)) or
(not ownedAttribute->exists(a | a.name->includes(’dirState’)))
Semantics
SignalSetting has three properties, the sigld of a signal that must be set to enter a route, the required
signal state sigState, and optionally the required direction dirState.

Notation

SignalSetting is used in class diagrams using the UML class notation.

2.5.9 SignalSettingInstance
Description

A SignalSettingInstance is the instance of a signal setting.
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Associations

None.

Attributes

None.

Constraints

e There is one classifier instantiated.

inv SignalSettingInstancel:
classifier->size() =1

e The instantiated classifier is a kind of Class.

inv SignalSettingInstance?2:
classifier->one(oclIsKindOf (Class))

e The instantiated classifier has the type SignalSetting.

inv SignalSettingInstance3:
classifier->one(oclIsTypeOf (SignalSetting))

e There is a mandatory slot sigld. The value is given by a LiteralSignalld.

inv SignalSettingInstance4:
slot->one(sl | sl.definingFeature.name->includes(’sigId’) and
sl.value->size()= 1 and
sl.value->first.oclIsTypeOf (LiteralSignalld))

e There is a mandatory slot sigState. The value is taken from the enumeration PermissionKind.

inv SignalSettingInstanceb:
slot->one(sl | sl.definingFeature.name->includes(’sigState’) and

sl.value->size()= 1 and

sl.value->first().oclAsType(InstanceValue).instance.
0oclIsTypeOf (EnumerationLiteral) and

sl.value->first () .oclAsType(InstanceValue) .instance.
oclAsType (EnumerationLiteral) .enumeration.name->

includes(’PermissionKind’))

e There is an optional slot dirState.If present,the value is taken from the enumeration RouteKind.

inv SignalSettingInstance6:
slot->select(sl | sl.definingFeature.name->includes(’dirState’))->
forAl1(s2 | s2.value->size()= 1 and
s2.value->first() .oclAsType(InstanceValue) .instance.
oclIsTypeOf (EnumerationLiteral) and
s2.value->first () .oclAsType(InstanceValue) . instance.
oclAsType (EnumerationlLiteral) .enumeration.name->
includes(’RouteKind’)) and
slot->select(sl | sl.definingFeature.name->includes(’dirState’))->size <= 1

e The value of slot sigld refers to a value of slot signalld of one Signallnstance. In other words,
the referenced signal exists.
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inv SignalSettingInstance7:

let id:Integer =

slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalIld) .value

in
SignalInstance.allInstances->exists(sig |

sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld) .value = id)

e The value of slot sigDir is STRAIGHT if the signal instance referenced by sigld is located at a
segment instance.

inv SignalSettingInstance8:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigld’))->
asSequence->first() .value->first.oclAsType(LiteralSignalld) .value
in
Signallnstance.alllnstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first() .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entrySeg’))->
size()=1))
implies
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->first ()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)

e The value of slot sigDir is STRAIGHT if the signal instance referenced by sigld is located at a
crossing instance.

inv SignalSettingInstance9:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalld) .value
in
Signallnstance.alllnstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property).owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryCross’))->
size(D=1))
implies
self .slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->first()->
oclAsType(InstanceValue) .instance.name->includes(’STRAIGHT’)

e If the signal instance referenced by sigld is located at slot elEntry of a single point instance,
the value of slot sigDir is consistent with the possible directions at that point that are given by
slot plus and minus of that single point instance.
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inv SignalSettingInstancelO:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalIld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryPoint’))->
asSequence->first() .value->first() .oclAsType(InstanceValue).
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SinglePoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1))
implies
SinglePointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first().oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id
and
p-slot->select(s | s.definingFeature.name->includes(’plus’))->
asSequence->first () .value->first () .oclAsType(InstanceValue).
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minus’))->
asSequence->first() .value->first().oclAsType(InstanceValue) .
instance.name)->includes(
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) . instance.name->
asSequence->first()))

e If the signal instance referenced by sigld is located at slot e2Entry or e3Entry of a single point
instance, the value of slot sigDir is STRAIGHT.

inv SignalSettingInstancell:

let id:Integer =

slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalld) .value

in
SignalInstance.allInstances->exists(sig |

sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
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oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal) ) ->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryPoint’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SinglePoint))->
asSequence->first() .value->first.oclAsType (InstanceValue).
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’) or
s.definingFeature.name->includes(’e3Entry’))->size()=1))
implies
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->first ()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)

o If the signal instance referenced by sigld is located at slot elEntry of a slip point instance, the
value of slot sigDir is consistent with the possible directions at that point that are given by slot
plus and minus of that slip point instance.

inv SignalSettingInstancel2:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalIld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryS1Point’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1))
implies
SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKind0Of (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first() .value->
first() .oclAsType (InstanceValue) .instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id

108



and
p.slot->select(s | s.definingFeature.name->includes(’plus’))->
asSequence->first().value->first().oclAsType(InstanceValue) .

instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minus’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name)->includes(
self .slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) .instance.name->
asSequence->first()))

o If the signal instance referenced by sigld is located at slot e2Entry or e3Entry of a single point
instance, the value of slot sigDir is STRAIGHT.

inv SignalSettingInstancel3:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigld’))->
asSequence->first() .value->first.oclAsType(LiteralSignalId) .value
in
Signallnstance.alllnstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first() .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryS1Point’))->
asSequence->first() .value->first().oclAsType(InstanceValue).
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (SlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’) or
s.definingFeature.name->includes(’e3Entry’))->size()=1))
implies
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->first()->
oclAsType(InstanceValue) . instance.name->includes (’ STRAIGHT’)

o If the signal instance referenced by sigld is located at slot e4Entry of a slip point instance, the
value of slot sigDir is consistent with the possible directions at that point that are given by slot
plus and minus of that slip point instance. If tbe plus and minus positions of that point allow
for directions RIGHT and STRAIGHT, sigDir may be LEFT or STRAIGHT as the slip point
is entered from the opposite end. Vice versa, if the plus and minus positions allow for directions
LEFT and STRAIGHT, sig DIR may be RIGHT or STRAIGHT.

inv SignalSettingInstancel4:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first () .value->first.oclAsType(InstanceValue) .instance.
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slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal) ) ->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryS1Point’))->
asSequence->first() .value->first () .oclAsType (InstanceValue).
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (S1ipPoint))->
asSequence->first() .value->first.oclAsType (InstanceValue).
instance.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->size()=1))
implies
SlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKind0f (Sensor))->first () .value->first().
oclAsType (InstanceValue) . instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first () .oclAsType (InstanceValue) .instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id
and
p-slot->select(s | s.definingFeature.name->includes(’plus’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minus’))->
asSequence->first() .value->first () .oclAsType(InstanceValue).
instance.name)->excluding (’STRAIGHT’)->excludes(
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) .instance.name->
asSequence->first()))

e If the signal instance referenced by sigld is located at slot elEntry of a double slip point instance,
the value of slot sigDir is consistent with the possible directions at that point that are given by
slot plus and minus of that double slip point instance.

inv SignalSettingInstancel5:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first() .value->first.oclAsType(LiteralSignalld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first() .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal) ) ->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first () .value->first() .oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->

110



asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->size()=1))
implies
DoubleSlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’elEntry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first().oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalIld) .value->first() = id
and
p-slot->select(s | s.definingFeature.name->includes(’plus’))->
asSequence->first().value->first().oclAsType(InstanceValue).
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minus’))->
asSequence->first() .value->first() .oclAsType(InstanceValue).
instance.name)->includes(
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) . instance.name->
asSequence->first()))

o If the signal instance referenced by sigld is located at slot e2Entry of a double slip point instance,
the value of slot sigDir is consistent with the possible directions at that point that are given by
slot plusOpp and minusOpp of that double slip point instance.

inv SignalSettingInstancel6:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal))->asSequence->first () .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first() .value->first() .oclAsType(InstanceValue).
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e2Entry’))->size()=1))
implies
DoubleSlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e2Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
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s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first().value->first().

oclAsType(InstanceValue) .instance.slot->select(s |

s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oc1IsKind0f (Sensor))->asSequence->first() .value->
first().oclAsType(InstanceValue) .instance.slot->

select(s | s.definingFeature.name->

includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id
and
p.slot->select(s | s.definingFeature.name->includes(’plusOpp’))->
asSequence->first () .value->first().oclAsType(InstanceValue) .
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minusOpp’))->
asSequence->first() .value->first() .oclAsType(InstanceValue) .
instance.name)->includes(
self .slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) .instance.name->
asSequence->first()))

e If the signal instance referenced by sigld is located at slot e4Entry of a double slip point instance,
the value of slot sigDir is consistent with the possible directions at that point that are given by
slot plus and minus of that double slip point instance. If tbe plus and minus positions of that
point allow for directions RIGHT and STRAIGHT, sigDir may be LEFT or STRAIGHT as the
double slip point is entered from the opposite end. Vice versa, if the plus and minus positions
allow for directions LEFT and STRAIGHT, sig DIR may be RIGHT or STRAIGHT.

inv SignalSettingInstancel7:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first () .value->first.oclAsType(LiteralSignalld) .value
in
SignalInstance.allInstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first() .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property) .owningClass.
oclIsTypeOf (Signal) ) ->asSequence->first() .value->
first.oclAsType(InstanceValue).instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->size()=1))
implies
DoubleSlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e4Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKind0f (Sensor))->first () .value->first().
oclAsType (InstanceValue) . instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
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first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->asSequence->first () .value->
first() .oclAsType (InstanceValue) .instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id
and
p-slot->select(s | s.definingFeature.name->includes(’plus’))->
asSequence->first() .value->first () .oclAsType(InstanceValue) .
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minus’))->
asSequence->first() .value->first () .oclAsType (InstanceValue) .
instance.name)->excluding (’STRAIGHT’)->excludes(
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) .instance.name->
asSequence->first()))

o If the signal instance referenced by sigld is located at slot e3Entry of a double slip point instance,
the value of slot sigDir is consistent with the possible directions at that point that are given by
slot plusOpp and minusOpp of that double slip point instance. If the plusOpp and minusOpp
positions of that point allow for directions RIGHT and STRAIGHT, sigDir may be LEFT or
STRAIGHT as the double slip point is entered from the opposite end. Vice versa, if the plusOpp
and minusOpp positions allow for directions LEFT and STRAIGHT, sig DIR may be RIGHT
or STRAIGHT.

inv SignalSettingInstancel8:
let id:Integer =
slot->select(s | s.definingFeature.name->includes(’sigId’))->
asSequence->first().value->first.oclAsType(LiteralSignalld) .value
in
Signallnstance.alllnstances->exists(sig |
sig.slot->select(s | s.definingFeature.name->includes(’signalld’))->
asSequence->first () .value->first().
oclAsType(LiteralSignalld).value = id and
(sig.slot->select(s | s.definingFeature.name->includes(’sensor’))->
asSequence->first() .value->first.oclAsType(InstanceValue) .instance.
slot->select(s | s.definingFeature.oclAsType(Property).owningClass.
oclIsTypeOf (Signal))->asSequence->first() .value->
first.oclAsType(InstanceValue) .instance.slot->
select(s | s.definingFeature.name->includes(’entryDbS1Point’))->
asSequence->first () .value->first().oclAsType(InstanceValue).
instance.slot->select(s | s.definingFeature.
oclAsType (Property) .owningClass.oclIsTypeOf (DoubleSlipPoint))->
asSequence->first() .value->first.oclAsType(InstanceValue) .
instance.slot->select(s |
s.definingFeature.name->includes(’e3Entry’))->size()=1))
implies
DoubleSlipPointInstance.allInstances->exists(p | p.slot->select(s |
s.definingFeature.name->includes(’e3Entry’))->asSequence->first().
value.oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
oclIsKindOf (Sensor))->first () .value->first().
oclAsType(InstanceValue) .instance.slot->select(s |
s.definingFeature.name->includes(’signal’))->asSequence->
first().value->first().oclAsType(InstanceValue).
instance.slot->select(s |
s.definingFeature.oclAsType(Property) .owningClass.
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oclIsKindOf (Sensor))->asSequence->first () .value->
first () .oclAsType (InstanceValue) .instance.slot->
select(s | s.definingFeature.name->
includes(’signalld’))->asSequence->first().
value.oclAsType(LiteralSignalld) .value->first() = id
and
p.-slot->select(s | s.definingFeature.name->includes(’plusOpp’))->
asSequence->first () .value->first () .oclAsType(InstanceValue) .
instance.name->union(
p.slot->select( s | s.definingFeature.name->includes(’minusOpp’))->
asSequence->first() .value->first () .oclAsType(InstanceValue).
instance.name)->excluding (’STRAIGHT’)->excludes(
self.slot->select(s | s.definingFeature.name->
includes(’sigDir’))->asSequence->first () .value->
first()->oclAsType(InstanceValue) .instance.name->
asSequence->first()))

Semantics

Given by the transformation from a concrete network to a labeled transition system.

Notation

A SignalSettingInstance is either depicted as a UML object or as a tuple, e.g. (Sigl,G0, LEFT) or
(8ig2,G0). The first item of the tuple is the signal id, the second one the signal state, and the last
one the (optional) direction.
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Chapter 3

Tram Specification Using the
Profile

The stereotypes and data types defined in the profile are used in UML diagrams. A class diagram
is used to model a concrete problem in the railway domain, e.g. trams. The concrete track networks
are object diagrams related to the class diagram.

3.1 Generic Track Network

In our example, a tram track network is given in a class diagram as shown in Fig. 3.1.

<<Sensor>> 1
TramSensor sensor
0.1 0.1
e3Entry| sensorld:Sensorld {readOnly} [e3Exit ignall 0.1
0..1| actualState:SensorStateKind |, 1 Signa’] 9.
e2Entry| sentTime:Timelnstant e2Exit <<Signal>>
0..1| counter:Integer 0.1 TramSignal
elEntry| delta_l:Duration {readOnly} elExit - -
0..1| delta_tram:Duration {readOnly} |5 ; signalld:Signalld {readOnly}
eBEni'ry SAEXT actualState:SignalStateKind
0.1 0.1 requestedState:PermissionKind
o CT=ve requestTime:Timelnstant
1Enti 2EXxit .
€ nnl/ i X delta_s:Duration {readOnly}
elEntry e2EXit direction:RouteKind
requestedDir:RouteKind
<<Segment>>
TramSegment
1| maxNumberOfTrains:Integer=1 {readOnly} |1 __ <<Route>>
entrySeg| jimit:Integer[0..1] {readOnly} exitSeg TramRoute
routeld:Routeld {readOnly}
routeDefinition:Sensorld[0..*] {readOnly, ordered}
1| <<Crossing_>> 1
entryCross TramCrossing exitCross
maxNumberOfTrains:Integer=1 {readOnly}
limit:Integer{0..1] {readOnly}
1
{readOnly}|signalSetting
<<SignalSetting>>
<<SinglePoint>> Signals
1 TramPoint 1 signalld:Signalld {readOnly}
entryPoint | pointld:Pointld {readOnly} exitPoint sigState:PermissionKind {readOnly}

dirState:RouteKind[0..1] {readOnly}

* *

plus:RouteKind {readOnly}
minus:RouteKind {ReadOnly}

actualState:PointStateKind routeConflict|{readOnly} {readOnly} | pointPos
requestedState:RouteKind <<RouteConflict>> <<PointPosition>>
requestTime:Timelnstant Conflicts Points
delta_p:Duration {readOnly} - -
maxNumberOfTrains:Integer=1 {readOnly} r(_)uteld:Routeld _{rea_dOnIy} po!ntld:PomtId {ree_ldOnIy}
limit:Integer[0..1] {readOnly} kind:RouteConflictKind {readOnly} pointState:RouteKind {readOnly}

Figure 3.1: Generic tram network

The interrelationships between the different stereotypes from RCSD are concretized for trams:
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there are no automatic running systems and no slip points, all segments are used unidirectionally,
and signals do not use speed limits. The maximal number of trains allowed on each segment is 1.

3.2 Concrete Track Network

The network description of a concrete tram track network to be controlled is an object diagram that
is based on the class diagram given above. We show a track layout diagram and route definitions as
an object diagram in RCSD profile notation in Fig. 3.2. This diagram has to be complemented by a
table that gives property values for constant such as delta_s for TramSignal.

G200 G3all

- G23.0L}

w119
G20.3 G229} G24.3

ROUTE 5: §22-G23.1

S22 TRAM MAINTENANCE SITE
ROUTE 3 ne-
$21-G23. - -
\ ’ G24.1 G24.0
ROUTE L: ROUTE 2: G30.0
20-G21 $20-G251  gpgol | G229 G20 G251

G30.1 T T T
‘W101
ROUTE 6:
S22-G21.
AUTE 4:521-G25.1

G209 G208

G222l G22.3
w103
G210~ wiis

G2l G220}

Figure 3.2: Concrete tram network

In Fig. 3.3, the same track network is shown in usual UML notation, i.e. an object diagram. For
the sake of brevity, several values for properties have been left out, e.g. requestedState and requestTime
of TramSignal. Note that this object diagram is not fully specified without these values.

Comparing the two figures, it is obvious that the RCSD profile notation is more comprehen-
sible and therefore preferable in the communication process between domain experts and software
designers.
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:<<Segment>>TramSegment

<<Segment>>TramSegment

‘GQDO

“ S20: ramsignal

sensorld=200

‘sensur

‘ signalld=20

BET

e

S22:<<Signal>>TramSignal
signalld=22

[ :<<SinglePoint>>Trampoint__| [c243: [wi00.<<singlepoints>Trampoin] [ G24.1:<<sensor>>Tramsensor]
‘ pointd=119 [ | sensonozzea [ pointd=100 ey sensorid=241
o B
ezem:
:<<Sensor>>TramSensor
sensorld=229
entn] exi esex
Jw102:<<singlepoint>>Trampoint | . I‘GZDG <<Sensor>>TramSensor ‘ ent ‘ <<Crossing>>TramCrossing ‘ . u‘ <<Sensor>>TramSensor ‘ ‘ G24.2 <<5ensuv>>TvamSensor‘ ‘ G24.0 <<Sensor>>TramSensor‘
‘ pointig=102 B Sensorid=203 Sy ‘ Xt sensorld=300 sensorld=242 ‘ sensorid=240
E emnﬂ 36|
esennf e
[ :<<sensor>>Tramsensor | [ :<<Crossing>>TramCrossing_|ent
exit
Sensorld=299
e e
exit edexit] e2exit]
[ :<<Crossing>>TramCrossing | [ <<sensor>>Tramsensor | [ <<sensor>Tramsensor | [ 625.1:<<Sensor>>Tramsensor|
exi
4‘ ‘E"W ‘ sensorld=301 sensorld=228 ‘ sensorld=251
eniy| SZentn] 2o
elentr exit
622.2:<<Sensor>>TramSensor
sensorid=222
edexi xi] enn
[:<<singlepoint>>TramPoint__| ‘ ‘ [<<sing rampoint__| ‘ 6223 } [:<<singlepoint>>Trampoint__| ) ‘ G25.0 <<Sensor>>TramSenSor‘
‘ pointid=103 ‘9""\/ ‘ sensorid=208 ‘ ‘ pointid=118 ‘9"“ ‘ sensorld=223 ‘ T pointid=101 exit senosrld=250
B e
etentn]

‘GZl 0:<<Sensor>>TramSensor ‘

‘ S21:<<Signal>>Tramsignal ‘

‘ G22.1:<<Sensor>>TramSensor

sensorld=210

signalld=21 ‘3‘9"3‘

[ somsori-za1. \

G21.1:<<Sensor>>TramSensor

sensorld=211

<<Segment>>TramSegment

G22.0:<<Sensor>>TramSensor

sensorld=220

<<Segment>>TramSegment

R1:<<Route>>TramRoute

R2:<<Route>>TramRoute

R3:<<Route>>TramRoute

Ra:<<Route>>TramRoute

fouteConfiict oAllocati t >

pointPos=<(102,LEFT) (101, STRAIGHT)>

(102, STRAIGHT), (103, STRAIGHT)>
(2,

1,noAllocation)

(45t0pSignal), (6,stopSignal)>

routeld=1 routeld=2 routeld=3 routeld=4
10,211> teDr 03,300,228, 1> 1 9,230,231> 1,223,250,251>
signalSeting=(20,GO,STRAIGHT) signalSetting=(20,GO,LEFT) signalSeting=(21,GO,STRAIGHT) signalSetting=(21,GO,RIGHT)

pointPos=<(118 STRAIGHT), (119, STRAIGHT)>
routeConflict=<(2,stopSignal),(4,noAllocation),
(5.stopSignal) (6 stopSignal)>

RS:<<Route>>TramRoute

R6:<<Route>>TramRoute

routeld=5
routeDefinition=<240,241,243,230,231>
signalSeting=(22.GO,RIGHT)

(100,RIGHT), (119, LEFT)>
fouteConflict=<(3,stopSignal), (6 noAllocation)>

routeld=6

routeDefinition=<240,241,242,301,210,211>

signalSetting=(22,GO,STRAIGHT)

(100, STRAIGHT), (103, RIGHT)>
(1 stopSignal), (2.stopSignal),

pointPos
routeConfl

(3stopsigna). (5.noAllocation),

pointPos=<(118,RIGHT),(101,LEFT)>
routeConfict=<(2,stopSignal).(3,noAllocation)>

Figure 3.3: Concrete tram network

117



Bibliography

[FKvV98]

[HPO2]

[HPO3]

[HunO6]

[JPDO04]

[OMGO05a]
[OMGO5b)
[OMGO6]
[Pac02]

[PBHOO]

[PHK*+06]

[rai]

[RIBO4]

W. J. Fokkink, G. P. Kolk, and S. F. M. van Vlijmen. EURIS, a specification method
for distributed interlockings. In Proceedings of SAFECOMP 98, volume 1516 of LNCS,
pages 296-305. Springer-Verlag, 1998.

A. E. Haxthausen and J. Peleska. A Domain Specific Language for Railway Control
Systems. In Proceedings of the Sixth Biennial World Conference on Integrated Design
and Process Technology, (IDPT2002), Pasadena, California, June 23-28 2002.

A. E. Haxthausen and J. Peleska. Automatic Verification, Validation and Test for Railway
Control Systems based on Domain-Specific Descriptions. In Proceedings of the 10th IFAC
Symposium on Control in Transportation Systems. Elsevier Science Ltd, Oxford, 2003.

Hardi Hungar. UML-basierte entwicklung sicherheitskritische systeme im bahnbereich.
In Dagstuhl Workshop MBEES - Modellbasierte Entwicklung eingebetteter Systeme, In-
formatik Bericht, pages 63—64, TU Braunschweig, Jan 2006.

Anne E. Haxthausen Jan Peleska, Daniel Grofle and Rolf Drechsler. Automated Ver-
ification for Train Control Systems. In Eckehard Schnieder and Géza Tarnai, editors,
FORMS/FORMAT 2004. Formal Methods for Automation and Safety in Railway and
Automotive Systems, pages 296—303, Braunschweig, December 2004. Proceedings of Sym-
posium FORMS/FORMAT 2004, Braunschweig, Germany, 2nd and 3rd December 2004.
ISBN 3-9803363-8-7.

Object Management Group. Unified Modeling Language: Superstructure, version 2.0.
http://www.omg.org/docs/formal /05-07-04.pdf, July 2005.

Object Management Group. Unified Modeling Language (UML) Specification: Infras-
tructure, version 2.0. http://www.omg.org/docs/ptc/04-10-14.pdf, July 2005.

Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification.
http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

Joern Pachl. Railway Operation and Control. VTD Rail Publishing, Mountlake Terrace
(USA), 2002. ISBN 0-9719915-1-0.

J. Peleska, A. Baer, and A. E. Haxthausen. Towards Domain-Specific Formal Specification
Languages for Railway Control Systems. In Proceedings of the 9th IFAC Symposium on
Control in Transportation Systems 2000, June 13-15, 2000, Braunschweig, Germany,
pages 147-152, 2000.

Jan Peleska, Anne E. Haxthausen, Sebastian Kinder, Daniel Grofle, and Rolf Drechsler.
Model-driven development and verification in the railway domain. 2006. submitted to
SAFECOMP2006.

A grand challenge for computing science: Towards a domain theory of railways.
http://www.railwaydomain.org.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language —
Reference Manual, 2nd edition. Addison-Wesley, July 2004.

118


http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/ptc/04-10-14.pdf
http://www.omg.org/docs/formal/06-01-01.pdf

	1 Introduction
	1.1 A Domain Specific Formalism for Railway Control Systems
	1.2 Elements of the Railway Domain
	1.2.1 Track Elements
	1.2.2 Sensors
	1.2.3 Signals
	1.2.4 Automatic Train Running
	1.2.5 Route Definition

	1.3 The UML 2.0 RCSD Profile

	2 UML 2.0 Profile for the Railway Control System Domain
	2.1 Primitives and Literals
	2.1.1 AutoRunId
	2.1.2 Duration
	2.1.3 LiteralAutoRunId
	2.1.4 LiteralDuration
	2.1.5 LiteralId
	2.1.6 LiteralPointId
	2.1.7 LiteralRouteId
	2.1.8 LiteralSensorId
	2.1.9 LiteralSignalId
	2.1.10 LiteralTimeInstant
	2.1.11 PointId
	2.1.12 RouteId
	2.1.13 SensorId
	2.1.14 SignalId
	2.1.15 TimeInstant

	2.2 Network Elements
	2.2.1 ActivationKind
	2.2.2 AutomaticRunning
	2.2.3 AutoRunKind
	2.2.4 Crossing
	2.2.5 DoubleSlipPoint
	2.2.6 PermissionKind
	2.2.7 Point
	2.2.8 PointStateKind
	2.2.9 RouteKind
	2.2.10 Segment
	2.2.11 Sensor
	2.2.12 SensorStateKind
	2.2.13 Signal
	2.2.14 SignalStateKind
	2.2.15 SinglePoint
	2.2.16 SlipPoint
	2.2.17 TrackElement

	2.3 Associations
	2.3.1 AutoRunAssociation
	2.3.2 SensorAssociation
	2.3.3 SignalAssociation

	2.4 Instances
	2.4.1 AutomaticRunningInstance
	2.4.2 AutoRunLink
	2.4.3 CrossingInstance
	2.4.4 DoubleSlipPointInstance
	2.4.5 SegmentInstance
	2.4.6 SensorInstance
	2.4.7 SensorLink
	2.4.8 SignalInstance
	2.4.9 SignalLink
	2.4.10 SinglePointInstance
	2.4.11 SlipPointInstance

	2.5 Routes
	2.5.1 PointPosition
	2.5.2 PointPositionInstance
	2.5.3 Route
	2.5.4 RouteInstance
	2.5.5 RouteConflict
	2.5.6 RouteConflictInstance
	2.5.7 RouteConflictKind
	2.5.8 SignalSetting
	2.5.9 SignalSettingInstance


	3 Tram Specification Using the Profile
	3.1 Generic Track Network
	3.2 Concrete Track Network


