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Chapter 2

HL3 – Motivation and
Concepts

2.1 Some Observations About Existing For-
malisms for Hybrid Systems

Though today numerous formalisms and verification approaches are available
for hybrid systems (see references in the related-work section below), their ap-
plication in an industrial “real-world”-context is still rare. According to our
analysis, two main causes are responsible for this situation:

• The syntax developed for hybrid formalisms within research communities
was too specialized and not supported by conventional software engineer-
ing tools available to practitioners.

• While the underlying theories focused on specification semantics and for-
mal verification by theorem proving or model checking, there was insuffi-
cient support for the development of optimized code for embedded control
systems.

With respect to the first cause we suggest to augment existing well-accepted
formalisms of software engineering by new specification constructs describing
time-continuous behavior. This has led to the development of the HybridUML
profile described in Part I of this document.

The second cause is related to both practical and theoretical considerations:
From a practitioner’s point of view, the effort invested into formal specification
and verification – which will certainly be considerably higher than the effort
spent on elaborating informal conventional specifications – is only justified if
the specifications can be easily transformed into executable systems. In princi-
ple, two approaches are available for this task: Stepwise refinement according
to the invent and verify paradigm relies on software developers to generate a se-
quence of increasingly concrete refinements of the initial specification and prove
that each of these is consistent with the more abstract one according to some
refinement relation; the refinement series ends when the concrete code level is
reached. The second, so-called transformational or model-driven, approach aims

1



2 CHAPTER 2. HL3 – MOTIVATION AND CONCEPTS

at “compiling” the specification automatically into executable code, without in-
teractive participation of programmers.

From our experience with industrial projects we do not think that refine-
ment strategies will have a fair chance of becoming the principal development
methodology in real-world projects. Though a few notable and highly suc-
cessful examples exist – such as the Paris Metro control software development
performed by Matra using the B-method – there is no indication that these
approaches will become widely-spread industrial standard techniques.

In contrast to this, we are convinced that the model-driven development ap-
proach allowing to transform semantically well-defined specification models into
executable code is highly promising: The effort spent on constructing a com-
plete and consistent specification is rewarded by considerably – if not completely
– reducing the programming effort. But also this approach has its pitfalls: If
the specification formalism is associated with a high-level semantics in the sense
that its syntactic constructs are directly associated with denotational or oper-
ational mathematical models, the consistency between code and specification
still has to be verified; this has the quality of a “1-step refinement approach”:
The semantics of a general programming language like C, C++, Java or as-
sembler differs from that of the specification formalism, and therefore a proof
is necessary that the executable code, interpreted in the appropriate low-level
semantics, is a correct refinement or “simulation” of the specification model.
This task will be rather hard in general and may become infeasible if the code
generator has not been built with these verification objectives in mind.

Our suggestion to overcome this problem associated with the transforma-
tional approach is based on two main ideas:

• Restrict the infinite variety of possible compilation targets for hybrid spec-
ifications according to a Hybrid Low-Level Language Framework HL3, so
that the compilation target consists of recurring and well-understood de-
sign patterns and its semantic interpretation is feasible,

• associate a transformational semantics with each high-level specification
by the same compilation process used to generated the executable system.

First, the HL3 framework fixes a specific hard real-time runtime environ-
ment which avoids uncertainties introduced by using arbitrary operating sys-
tems. Second, all specifications written in a given hybrid high-level formalism
have to be compiled using a transformation function which generates instances
of abstract classes pre-defined by the framework. As a consequence, the vari-
able compilation targets depending on formalism and specification are restricted
with respect to software architecture and interfaces to the runtime environment.
Therefore the behavioral semantics of the executable target can be given more
easily than for an unrestricted compilation into a programming language. If
the high-level formalisms have been introduced informally, the transformation
defines the semantics as well. If, however, the transformation has only been
created in order to translate specifications with given high-level semantics into
executable code, the consistency between abstract specification behavior and
executable compilation target still has to be verified. Due to the restrictive
structure of compilation targets and runtime environment, this proof obliga-
tion is at least easier to discharge within the HL3 framework than for arbitrary
transformations designed in an intuitive way.
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2.2 The HL3 Approach to Model-Based Devel-
opment

The HL3 framework developed by the authors consists of a re-usable hard real-
time runtime environment R and a design pattern P for compilation targets
of arbitrary hybrid specifications. Given a high-level formalism H – such as
HybridUML – for the description of hybrid systems, transformations ΦH from
high-level specifications S into instances ΦH (S ) of the HL3 pattern P can be
developed. For (ΦH (S ),R), a formal semantics S(ΦH (S ),R) is defined so that
the transformation both provides a semantic definition of S and an executable
program whose behavior will be consistent with S(ΦH (S ),R). Similar to ma-
chine code, HL3 should not be used for manual programming, but as a target
language for automated transformations. In contrast to machine code, the real-
time semantics of HL3 programs can be determined in a direct way, thereby
assigning formal meaning to the high-level specification used as the transfor-
mation source. This is achieved by using a very limited range of instructions
for multi-threading, timing control, and consistent handling of global state in
presence of concurrency.

2.3 Related Work

Hybrid systems have been studied extensively in various research communi-
ties since the early nineties. The definition and investigation of the Duration
Calculus (see [ZRH93, RRS03] and further references given there) provided
fundamental contributions to understanding Hybrid Systems. The introduc-
tion of Hybrid Automata [Hen96] demonstrated the feasibility of verification by
model checking for hybrid specifications. The applicability of hybrid automata
to large-scale systems was improved by the introduction of hierarchical hybrid
specifications [AGLS01]. Alternative hierarchical approaches closer to the State-
charts formalism have been described in [KMP00] (together with a proof theory)
and [BBB+99] (verification by model checking).

We mention GIOTTO [HHK03] as today’s most prominent example of a hard
real-time language with well-defined semantics. Similar to our HL3 framework,
GIOTTO follows the time-triggered systems paradigm described in [Kop97a].
The time-triggered approach is particularly well-suited for real-time programs
discretising time-continuous evolutions, since it guarantees bounded timing jit-
ter for periodic schedules. In contrast to this, other approaches to hard real-time
focus on the fast response to external interrupts, see [RTA, RTL] for popular
real-time variants of the Linux operating system.

HL3 differs from GIOTTO in the following way:

• The framework approach of HL3 offers a “recipe” how to construct trans-
formation for new hybrid high-level formalisms in a systematic routine.

• The communication mechanism of HL3 has been explicitly designed to
facilitate the implementation of visibility and atomicity requirements for
actions on global observables, as they are often required by high-level
formalisms.



4 CHAPTER 2. HL3 – MOTIVATION AND CONCEPTS

• The HL3 runtime environment has been optimized for execution of high-
speed multi-CPU cluster architectures.

2.4 Overview of Part II

In the next chapter we define the HL3 Low-Level Framework in a detailed way.
A formal operational semantics is given for the execution of HL3 models.

HL3 Framework

HybridUML

HybridUML
Graphical Notation

HybridUML
Textual Notation

HybridUML
XMI (XML Metadata Interchange)

HybridUML
Mathematical Meta-Model

HybridUML
Expression Language

Φ

HL3 Program

HL3 – Hybrid Low-Level Framework

Chapter 4 defines the starting point for the transformation of HybridUML
models to their executable semantics. Instead of using the graphical HybridUML
syntax directly, we define a mathematical structure that exactly represents Hy-
bridUML models syntactically, but non-graphically. The benefits of this sep-
aration of the mathematical model from the graphical representation are that
(1) the mathematical model is directly usable for transformation Φ, and that
(2) the HybridUML semantics is independent from the graphical notation.

The description of the HybridUML model is completed with the definition
of the HybridUML Expression Language (HybEL), defining the syntax of ex-
pressions that can be used within HybridUML specifications. Its syntax and
intuitive semantics are explained in Chapter 5.

Finally, Chapter 6 provides the specific transformation ΦHUML from Hy-
bridUML models to instances of the HL3 design pattern. The transformation is
defined formally, therefore the HybridUML executable semantics results. The
resulting semantics is the HybridUML simulation semantics – it defines the
behavior of a self-contained simulation of the complete HybridUML model.

The transformation results are separated into two parts: (1) Independently
from the specific model, HybridUML-specific behavior definitions are given.
(2) Corresponding to the specific HybridUML model, the entities of HL3 model,
as well as their dependencies, are defined.

Explicit programs are part of the resulting HL3 model, they are defined by
HybEL expressions contained in the HybridUML model. The transformation
rules for expressions into programs are presented separately.

For the definition of the static structure of the HL3 model, an evaluation
semantics of HybEL expressions in the context of given HybridUML models is
defined.



Chapter 3

HL3 – Hybrid Low-Level
Framework

The Hybrid Low-Level Framework HL3 is a generic compilation target for hybrid
high-level formalisms. It is designed to support the transformation of high-level
specifications into executable code, thereby assigning a formal semantics to the
generated HL3 model. The HL3 model (also called HL3 program) is suitable for
hard real-time execution, to be used either for developing embedded applications
or for their automated test in hardware-in-the-loop configurations.

In the following, we focus on the execution of HL3 models – we define an
operational semantics for the execution of HL3 models.

Operational Semantics of HL3. The operational semantics of HL3 mod-
els is given by a state transition system (STS). The transition system sts =
(S , s0,T ) defines the semantics of a specific HL3 model. It consists of a set S
of states, an initial state s0 ∈ S , and a transition relation T ⊆ S × S .

The utilization of STS instead of labeled transition systems (LTS) empha-
sizes the fact that HL3 just operates on states. Events – which would occur as
labels of an LTS – are considered as a higher level concept, to be “implemented”
in HL3 as state changes of dedicated variables.

For the operational semantics of HL3 the state space S is built by a cross
product

S = CONST ×VAR

The sub-vector c ∈ CONST of states (c, v) ∈ S represents the HL3 model
which results from the transformation of a high-level model into the HL3 frame-
work. It is the same for every state s ∈ S , thus it remains constant under any
transition of sts. Nevertheless, it is useful to consider c as part of the state
space, since application conditions for transitions of the STS may depend on its
values.

The dynamic part of the states of sts is then given by v ∈ VAR. This is the
“conventional” part, encoding control state, valuations, etc. Both CONST and
VAR are presented in detail in sections 3.2 and 3.3, respectively.

The details of sts are provided in the subsequent sections. They are struc-
tured as follows: We start with an informal overview of the HL3 framework in

5



6 CHAPTER 3. HL3 – HYBRID LOW-LEVEL FRAMEWORK

section 3.1, which particularly identifies the entities of HL3 models. Sections
3.2 and 3.3 then formally define the state space S of the operational semantics
of HL3 models. The transitions t ∈ T of the operational semantics, that define
the system’s behavior, are defined in sections 3.4ff – section 3.4 provides the
system’s overall behavior, i.e. the scheduling of active entities, and sections 3.5
and 3.6 contain the behavior of active entities themselves.

3.1 HL3 Overview

HL3 provides a re-usable hard real-time processing infrastructure – the run-
time environment – and a design pattern for the formalism- and specification-
dependent components to be executed within the runtime environment. A HL3
model then consists of a set of passive objects that constitute the runtime envi-
ronment, and a set of active objects that implement the design pattern.

«Singleton»
TimeService

+ modelTime : TimeTick
+ physTime : Real

«Singleton»
Schedulerupdates

Channel

+getData
+insertData

Figure 3.1: Runtime Environment of the HL3 framework.

3.1.1 Runtime Environment

The HL3 runtime environment provides pre-defined entities that are available
for the instantiation of a HL3 model.

TimeService. At the heart of a real-time system, there is a notion of time.
The runtime environment provides a TimeService which relates the physical
time to a model time. Both are synchronized during the execution of a HL3
model, such that the model execution is based on the model time, which is a
discretized view on the physical time.

Physical time is a global time, since we assume that HL3 models are executed
locally, i.e. on a cluster connected by high-speed local area networks. Therefore,
relativistic effects between cluster nodes are neglected. Model time can be ob-
tained by all objects of the model as a pair t0.t1, with component t0 representing
the discretized physical time. As long as t0 is kept constant, calculations take
place in zero time, from the model’s perspective. The second component t1 is
then used to distinguish causally related calculations which occur during the
same time tick t0. Consequently, t1 is always reset when t0 is incremented.

Channel. In order to model a consistent view on global model data which
can be transparently distributed over the (hardware) system, the data struc-
ture Channel is available. Channels can store several copies of values for differ-
ent recipients, such that specific values are published at different model times.
Typically, on read access, the newest value which is addressed to the respective
recipient is obtained. That is, among all data items contained in the channel
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for which the recipient is within their scope, the most recent entry associated
with a visibility time that is less or equal to the current model time, is chosen.

Different requirements on HL3 executions can be satisfied by use of channels:
(1) Racing conditions between calculations that are executed in parallel can
be avoided, by publishing calculation results in the model future. Since read
access always takes place in model presence, there are different values for the
same channel, and they do not conflict. (2) Simultaneous calculations from the
model view can be executed sequentially, such that the results of the former
calculations are published after the last one is finished. (3) For the execution on
(cluster) hardware architectures, the distribution of data takes physical time.
By choosing an appropriate delay for data publication, a consistent view of data
at all (cluster) nodes can be achieved: Every write access to a channel leads to
immediate distribution of the data within the whole cluster. As long as the
distribution is completed before the data becomes visible, all cluster nodes will
have a consistent view on this data.

Further, specific causalities wrt. time, as required by specific high-level for-
malisms, can be modeled. For example, different publication times can be used
for formalisms where changes shall become immediately visible within the local
context of an executing entity, but are published later to external ones.

Scheduler. The central instance of the model execution is the Scheduler, since
it defines the cooperation of the active objects from the design pattern. The
scheduler defines an execution loop with specific execution phases, it defines the
sequence of object executions and their distribution to CPUs (or cluster nodes).
For periodic executions, a system period is determined at compile time, such
that the execution loop is synchronized with physical time.

Implementations of the HL3 scheduler require a set of reserved CPUs on
which the active objects can be executed without interruptions from an under-
lying operating system.

Flow

+ guard : bool

+integrate

InterfaceModule

+poll
+transmit

«Singleton»
Selector

+getSelection:Selection
+init:bool

Transition

+action

AbstractMachine

+ isFlowEnabled : bool

+notifyTrans
+update
+init

1 0..*

enabledTrans

1 0..*controls

1..*

coordinates

1

0..*

controls

Figure 3.2: Design Pattern of the HL3 framework.
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3.1.2 Design Pattern

For hybrid high-level formalisms there are two fundamentally different kinds of
behavioral steps which occur within an execution of a model: (1) Flows define
continuous evolutions of values wrt. time. For example, they can represent
algebraic or differential equations from a high-level formalism. (2) Discrete
steps represent instantaneous calculations and have no time duration – they
are atomic state transformers. Discrete steps are usually called transitions.
Transitions within HL3 are different from e.g. statechart transitions, in that
they represent discrete steps in an abstract way. There are neither source or
target states for transitions, nor are transitions equipped with signals/events or
guard conditions. These are specific concepts of particular high-level formalisms
to be implemented in HL3.1

The flows and transitions of a high-level formalism are coordinated by control
behavior, which can be sequential and/or parallel. For the representation of
control behavior from the high-level formalism, the HL3 framework provides
sequential control components called abstract machines. The abstract machines
of a HL3 model are always executed concurrently, such that parallel behavior
can be modeled, too.

Flows, transitions, and abstract machines are active objects within the HL3
framework. We constrain them such that each flow and each transition is con-
trolled by a specific abstract machine. Further, within a HL3 model a central
instance is required which coordinates the set of concurrent abstract machines
– the selector. Its name is motivated by the fact that its purpose is to make a
selection from a set of possible steps, in certain situations. It enforces global
behavioral constraints on the concurrent abstract machines, such as the syn-
chronous execution of transitions. Since these constraints do not depend on
the concrete high-level specifications, the selector has to be defined only per
high-level formalism. Nevertheless, it can be useful to apply different selectors
for the same formalism: (1) For application development, a selector will usually
resolve nondeterministic transition selection – which may be allowed accord-
ing to the high-level formalism – to deterministic execution sequences. (2) In
contrast to this, a simulation or testing system will require a selector which is
capable of producing all transition schedules possible according to the high-level
formalism.

For the usage of HL3, it is required that the intended behavior of the applied
high-level formalism can be decomposed into these components, i.e. into flows,
transitions, abstract machines, and a selector. We expect that this is the case
for all reasonable hybrid high-level formalisms.

Additionally, since hybrid specifications are mostly useful when they are
connected to a physical environment, a hardware abstraction layer is given which
hides driver-specific details and the location of hardware interfaces – so-called
interface modules encapsulate external interfaces.

The flows, transitions, abstract machines, interface modules, and the selector
constitute the entire set of active objects of a HL3 model. Within the HL3
framework their responsibilities are defined, but their behavior is not. This
has to be defined by use of an instantiation rule which depends on the applied
high-level formalism. According to this rule, models of the high-level formalism

1Further note that HL3 transitions are part of the state space S and are distinct from the
transitions t ∈ T of our HL3 operational semantics.
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are then transformed into HL3 models and define specific active HL3 objects.
Therefore, the definition of their responsibilities is called design pattern.

«Singleton»
TimeService

Channel

AbstractMachine

reads

Flow

readsuses

InterfaceModule

reads

uses

Transition

uses reads

«Singleton»
Selector

reads

Figure 3.3: Channels and the time service are accessible to the active objects of
the design pattern.

The responsibilities of the active objects are:

Flow Since the aim of the HL3 framework is to provide executable models,
flows are discretized. HL3 flows require integration functions which can be called
with regular frequency, such that each flow may be activated with this specific
frequency. Its guard attribute then determines whether the flow is actually
activated or not. The single responsibility of a flow is:

integrate() A flow provides an operation integrate() which calculates a
single discrete step for the approximation of its continuous specification.
The calculation’s pre-state is retrieved from channels, and the calculation’s
results (i.e. the post-state) is written (back) to channels, for publication
in the future.

Transition The effect of a transition is an inherently discrete calculation:

action() The transition’s action is the effect of the operation action(). It
is implemented as a function reading channel data pre-state and setting
post state via channels, in the same fashion as flow steps are. In contrast,
it is executed exactly once when selected. Further, the publication time
depends on the high-level formalism, such that parallel transitions can be
modeled, or interleaved ones.

AbstractMachine Abstract machines are more elaborate than flows or tran-
sitions. They are assumed to have an internal state, which has to be updated
at regular intervals. As a result, the external state denotes whether flows or
transitions are enabled or disabled.

The external state consists of a set of transitions which are enabled, as well
as a flag that denotes if the passing of time is admissible wrt. the internal state.
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This distinction is made, because flows can only be executed for the complete
model, since we assume a global time, and flows evolve wrt. time. Nevertheless,
the abstract machine may activate or deactivate the set of currently enabled
flows, which may change because of its internal state.

The abstract machines’ internal state and therefore its behavior depends on
the high-level formalism. For example, a concept of partitioning the high-level
model state into discrete locations could be encoded within.

The external state is always determined from the internal state, i.e. an ab-
stract machine may indicate whether in the current internal state only transi-
tions, only flows, or one of both may be performed.

We expect that in every conceivable high-level formalism the execution of
flows or transitions is mutually exclusive. Otherwise racing conditions might
prevent the discrete change of observables due to simultaneous changes by flows.
Therefore, the abstract machine’s external state can be seen as a constraint for
the complete system’s execution. An example for high-level formalisms based
on the maximal progress concept, or for high-level formalisms allowing the def-
inition of urgent transitions, is the disabling of flows: Whenever an urgent
transition is enabled, it is required that the transition has to be executed before
time passes. Therefore, the abstract machine prevents the system from taking
continuous steps. This implies that (model) time cannot evolve.
The responsibilities of abstract machines are:

init() The abstract machine initializes its internal state.

update() The purpose of this operation is to update the abstract machine’s
internal state, along with its external state. It is activated for all abstract
machines whenever global state encoded in channels has been potentially
modified, i.e. after transitions or flows have been performed.
This operation thus determines the current set of enabled transitions and
the current value of the flow flag, depending on the internal pre-state as
well as the global state.

notifyTrans() The abstract machine updates its internal state, corresponding
to the execution of a specific associated transition. For example, if the
internal state encodes locations, the execution of a particular transition
probably implies a change between locations inside the respective abstract
machine, therefore this operation is activated.

InterfaceModule Interface modules are software components which abstract
from hardware2 interfaces.

Interface modules are treated in a similar fashion as flows; from the model
perspective, they are interpreted as discretized continuous evolutions of values.
They are scheduled with fixed frequency and perform an abstraction from raw
data received on hardware interfaces to channel data and vice versa. Since
hardware interfaces are sources and/or sinks of data in a natural way, sending
and receiving of data is distinguished here:

poll() This reads data from the associated interface and places it into a cor-
responding channel. Polling of data is associated with publication times,

2Although the main purpose of interface modules is the abstraction from hardware inter-
faces, technically also software components can be represented.
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such that it is ensured that the data will have been distributed to all
recipients before it becomes visible.

transmit() This sends data to the associated (hardware) interface. In con-
trast to poll(), each interface module retrieves the current data when
scheduled and transmits this data immediately to its hardware interface.

Selector The selector is the single component that coordinates the abstract
machines’ external states. It selects transitions and/or flows, when it is acti-
vated:

getSelection() The selector chooses a set of transitions and sets a single flow-
enabling flag, on the basis of the external states of the abstract machines.
The set of transitions is the result of a selection procedure among all pos-
sible transitions offered by the abstract machines in their current state,
such that all selected transitions shall be executed subsequently. The se-
lector must therefore ensure, that no conflicting transitions exist within
this selection. For high-level formalisms with a notion of nondeterminism,
each (sequential) abstract machines may offer more than one transition
for selection, and it is the selector’s responsibility to make the choice.
Further, the set of transitions can be empty, which means that no discrete
step can be taken. Since the possibility of a subsequent flow step is con-
trolled by the flow flag, the selector’s choice also defines how to proceed
with the execution – by a discrete or flow step.

init() The selector may have an internal state, which is initialized with this
operation. Additionally, initialization constraints can be checked on the
state space; the operation is expected to give a boolean result that denotes
if the state space is initially well-formed or not.

The selector is different from the other objects in that it shall not be instantiated
for the particular high-level model, but for the high-level formalism. Therefore,
every model-specific control behavior must be encoded into the abstract ma-
chines of the HL3 representation.

ProgramSubjectAbstractSubject

InterfaceModule FlowAbstractMachine «Singleton»
Selector

Transition

Figure 3.4: Executable objects are grouped into abstract subjects and program
subjects.

The active objects of a HL3 model are also called subjects. We distinguish
two different kinds of subjects – (1) Abstract machines and the selector can be
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arbitrarily complex, therefore abstract definitions of their functionality are as-
sumed. They are abstract subjects. (2) Flows, transitions, and interface modules
are supposed to be less elaborate. Particularly, they have no internal state, such
that they can be given by while-programs. These are called program subjects.

AbstractMachine FlowInterfaceModule

«Singleton»
Selector

«Singleton»
Scheduler

activates activatesactivates

activates

Transition

activates

Figure 3.5: The HL3 Scheduler schedules the active objects of the design pat-
tern.

3.2 CONST – Constant State Components

An element c ∈ CONST of the constant part of the state space S defines
one particular HL3 model. It consists of (1) the active and passive entities
described in section 3.1, (2) structural aspects of the high-level model, as well
as (3) physical constraints specifications.

Formally, the constant state components are given by the set

CONST = {scheduler} × SELECTOR ×
P(AM )× P(IFM )× P(FLOW )× P(TRANS )×
P(VAR)× P(CHAN )× P(PORT )× P(LWP)×
AmTrans ×AmFlow × SubjectVar ×
ChanPort × InitValPort × SubjectPort × SelPort ×
VisibilitySetFlow ×VisibilitySetIfm ×VisibilitySetTrans ×
LwpSubjabs × ProgramSubjprog ×
SysPeriod × PeriodFlow × PeriodIfm,poll × PeriodIfm,tmit

The detailed description is given below. For convenience, named projec-
tions3 are given. The following mapping names are available for access to the

3Projections are defined as πi X : X1 × . . . × Xn → Xi with (x1, . . . , xn ) 7→ xi for X =
X1 × . . .×Xn and 1 ≤ i ≤ n.
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coordinates of c ∈ CONST :

sched = π1 CONST , sel = π2 CONST , am = π3 CONST ,
ifm = π4 CONST ,flow = π5 CONST , trans = π6 CONST ,
var = π7 CONST , chan = π8 CONST , port = π9 CONST ,
lwp = π10 CONST , amtrans = π11 CONST , amflow = π12 CONST ,
subjectvar = π13 CONST , chanport = π14 CONST , initvalport = π15 CONST ,
subjectport = π16 CONST , selport = π17 CONST , visflow = π18 CONST ,
visifm = π19 CONST , vistrans = π20 CONST , lwpsubj = π21 CONST ,
prgsubj = π22 CONST , δperiod = π23 CONST , periodflow = π24 CONST ,
periodifm,poll = π25 CONST , periodifm,tmit = π26 CONST

Similarly, access to the constant state components c of states (c, v) ∈ S is given
by constS = π1 S .

Only dedicated parts of the constant state space are accessible from the
subjects of the HL3 model, as used in section 3.6. These are

CONSTm = SubjectVar × ChanPort × SubjectPort

3.2.1 Entities

The entities of a HL3 model are the union of the entities given by the design
pattern and runtime environment, as described in section 3.1. Additionally, a set
of light weight processes is given. This represents the extent of true parallelism
that is available for the model’s execution.

We define the sets of possible entities that can be contained by HL3 models
c ∈ CONST . Additionally, we explicitly assume a specific model c that contains
specific sets of entities. Therefore, we can tailor the definitions of dependencies
and physical constraints in the subsequent sections to the entities of c, and can
omit all possible entities that are not part of the specific model.

scheduler identifies the pre-defined HL3 scheduler. There is exactly one
scheduler for all particular HL3 models with a fixed behavior, leading to the
operational rules given in section 3.4.

SELECTOR is the set of selectors that exist for all possible hybrid systems
specification formalisms. The selector sel(c) ∈ SELECTOR is tailored for the
applied high-level formalism, i.e. for the high-level formalism from which the
HL3 model c ∈ CONST originates. We abbreviate it as selector = sel(c).

AM is the set of possible abstract machine identifiers. The set am(c) ⊆ AM is
derived from high-level specification, such that the sequential and parallel con-
trol aspects from the high-level specification are implemented by these abstract
machines. We use Am = am(c) as an abbreviation.

IFM contains interface modules identifiers. They implement (hardware) inter-
faces according to the high-level specification. The available interface modules
of HL3 model c ∈ CONST are Ifm = ifm(c) with Ifm ⊆ IFM .



14 CHAPTER 3. HL3 – HYBRID LOW-LEVEL FRAMEWORK

FLOW are flow identifiers. The flows of c ∈ CONST which implement the
high-level model’s time-continuous calculations are Flow = flow(c) with Flow ⊆
FLOW .

TRANS are transition identifiers. The transitions that represent the discrete
steps of the high-level model are Trans = trans(c) with Trans ⊆ TRANS .

VAR is the set of available variable symbols. Each local variable which is
used in the HL3 model c ∈ CONST is contained in Var = var(c) ⊆ VAR.

CHAN is the set of channel identifiers. Each global or shared variable from
the high-level model c ∈ CONST is represented by a channel in Chan =
chan(c) ⊆ CHAN .

PORT provides port identifiers for channel access: Data is not read or written
directly on channels, but through ports. Particularly, subjects that act as data
recipients are abstracted by the ports they read. Therefore, the addressing of
recipients is done in a uniform way. For a HL3 model c ∈ CONST , the available
ports are given by Port = port(c) ⊆ PORT .

LWP. The HL3 has an execution model which explicitly supports true par-
allelism: An HL3 program is executed on one or more light weight processes
(LWP). There are specific light weight processes Lwp = lwp(c) ⊆ LWP for
models c ∈ CONST . Each LWP runs exclusively on a dedicated CPU, i.e. there
is a fixed mapping cpu : Lwp�Cpu. Each LWP executes without any interfer-
ence of an underlying operating system4. Each subject is allocated on one of the
available LWPs in order to be executed. If several subjects shall be allocated
to the same LWP, only one of them may be active at a time. Active subjects
operating on different LWPs are running simultaneously, having simultaneous
access to all resources (memory, interfaces etc.). Subjects running on the same
LWP only access resources one after another, since only one of them is active
at any point in time.

For the subjects, i.e. the active objects of the HL3 model, the distinction into
abstract subjects and program subjects is not encoded explicitly, because it is
given implicitly:

Subject = Subjabs ∪ Subjprog
Subjabs = Am ∪ {selector}
Subjprog = Flow ∪ Trans ∪ Ifm

3.2.2 Dependencies

For the entities of a HL3 model, static dependencies exist:

4An implementation based on the Linux operating system is provided in [Efk05]
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AmTrans. Each transition of the model is exclusively controlled by one ab-
stract machine:

AmTrans = Trans"Am

AmFlow. The same holds for flows – each one is controlled by a dedicated
abstract machine:

AmFlow = Flow"Am

SubjectVar. A local variable is only accessible for one subject:

SubjectVar = Var" Flow ∪ Trans ∪ Ifm ∪Am

ChanPort. A port provides access to exactly one channel. There is no distinc-
tion between read and write access, i.e. always read/write access is provided.

ChanPort = Port" Chan

InitValPort. For each port, there is an initial data value which is read before
any further value is published for this port through the corresponding channel.

InitValPort = Port"Data

SubjectPort. Each particular port of a channel is assigned to a set of subjects.
This defines the subjects which are allowed to access the port.

SubjectPort = Port" P(Am ∪ Flow ∪ Trans ∪ Ifm)

SelPort. The selector may access ports for special purposes. For example,
the resetting of signals from a high-level formalism could be the selector’s re-
sponsibility.

SelPort = P(Port)

VisibilitySetFlow. Each flow has a specific visibility set, which is used to
define a maximal set R ⊆ Port of recipients for the calculation results of the
flow. When the flow writes data to a channel cn, the actual recipients are the
ports {p ∈ Port | chanport(c)(p) = cn} ∩ R.
The time component t of the visibility set acts as a constant publication delay
per recipient: Basically, before integrate() is executed, the scheduler will
choose publication times such that the data will be visible for all recipients as
soon as time increases. Then, the scheduler adds the specified delays to these
publication times. The resulting visibility set is passed as input parameter for
integrate().

VisibilitySetFlow = Flow"VisibilitySet

VisibilitySetIfm. The visibility sets which are given for interface modules
are similar to the flows’ visibility sets, i.e. a recipient set {p ∈ Port |
chanport(c)(p) = cn} ∩R for the specified recipient set R results, and the given
times are regarded as delays.

VisibilitySetIfm = Ifm"VisibilitySet
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VisibilitySetTrans. The visibility sets associated with transitions are also
similar to the flows’ and interface modules’ visibility sets, but with a single
difference: The basic publication times originate from the selector, rather than
from the scheduler, and therefore depend on the selection policy of the applied
high-level formalism.

VisibilitySetTrans = Trans"VisibilitySet

LwpSubjabs
. Abstract subjects s ∈ Subjabs are statically assigned to LWPs:

LwpSubjabs = Subjabs" Lwp

This is due to the fact that abstract subjects can have internal state. The HL3
framework does not constrain the implementation of abstract subjects, therefore
it is not guaranteed that the internal state is accessible from arbitrary LWPs.
In contrast, program subjects do not have internal state and can be scheduled
dynamically to any available LWP.

ProgramSubjprog . Within the HL3 framework, program subjects s ∈ Subjprog
are given in more detail than abstract subjects. Their behavior is explicitly
specified by while-programs, which are defined wrt. the subject’s operations.
The available operations are listed in section 3.3.

ProgramSubjprog = (Flow ×OpFlow ) ∪ (Trans ×OpTrans) ∪ (Ifm ×OpIfm)
"Program

The program is given by a program string. The semantics of program strings is
discussed in section 3.6.

3.2.3 Physical Constraints

For the representation of a hybrid high-level model in HL3, a discretization
takes place. This is a necessity, because HL3 models shall be executable on real
hardware, which inherently work in a discrete fashion. Therefore, the periods
which define the time durations for subsequent calculation steps of continuous
evolutions from the model are significant:

SysPeriod. The internal scheduling period δperiod(c) is the smallest time du-
ration which the execution of the HL3 model can observe. Therefore, all con-
tinuous calculations, i.e. flow and interface module activations, have to occur at
time intervals which are multiples of δperiod(c).
It is a physical time duration, i.e.:

SysPeriod = PhysicalTime

Physical time is defined in section 3.3.

PeriodFlow. For a flow f , value periodflow (f ) denotes the multiple of δperiod(c),
such that pf = δperiod(c) · periodflow (f ) is the flow’s scheduling period:

PeriodFlow = Flow" N
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PeriodIfm,poll. Analogously, function periodifm,poll defines the scheduling pe-
riod for the polling of data from interface modules:

PeriodIfm,poll = Ifm" N

PeriodIfm,tmit. Function periodifm,tmit defines the scheduling period for the
transmitting of data to interface modules:

PeriodIfm,tmit = Ifm" N

3.3 VAR – Variable State Components

The variable portion VAR of the state space S is structured into the following
sub-components:

VAR = PhysicalTime ×ModelTime × FailStatus × ΣLWP ×
Sched × ΣSubjprog × ΣSubjabs × ΣFlow × ΣAm ×
ΣVar × ΣChan

As for CONST , named projections are given for VAR:

physTime = π1 VAR,modelTime = π2 VAR, fail = π3 VAR,
κLWP = π4 VAR, sched = π5 VAR, κSubjprog = π6 VAR,
κSubjabs = π7 VAR, κFlow = π8 VAR, κAm = π9 VAR,
σVar = π10 VAR, κChan = π11 VAR

For states (c, v) ∈ S , the projection varS = π2 S provides the variable compo-
nents v .

For use in section 3.6, the portions of the variable state space that can be
read or written, respectively, by the subjects of the HL3 model are given:

VARmread = ModelTime × ΣVar × ΣChan

VARmwrite = ΣVar × ΣChan

In the following, the components of VAR are defined and explained. Ad-
ditionally, constraints on the initial state s0 = (c, v0) of the state transition
system sts = (S , s0,T ) are given, per component.

PhysicalTime – Global Physical Time. Physical time PhysicalTime is
modeled by the non-negative real numbers:

PhysicalTime = R+
0

It is observed within an execution of a HL3 model, exclusively by the HL3
scheduler. The HL3 subjects cannot evaluate it.

Init State. Physical time is observed relatively to system start:
physTime(v0) = 0
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ModelTime – Logical HL3 Time. The logical HL3 time is modeled by
time ticks which are pairs of non-negative integral numbers:

ModelTime = N0 × N0

For convenience, named projections are defined: t0 = π1 ModelTime, t1 =
π2 ModelTime

Component t0(t) of t ∈ ModelTime represents a discretized abstraction of
the physical time as visible to the HL3 subjects. It is always ensured that
t0(modelTime(v)) ≤ physTime(v), but – depending on the high-level formalism
to be encoded in HL3 – t0(modelTime(v)) may be kept constant for some inter-
val of modelTime(v), in order to simulate the execution of transitions in zero
time. The second component t1(t) of the logical HL3 time is used to distinguish
causally related events which occur during the same time tick t0(t). Component
t1(t) is reset when t0(t) is increased.

Alternatively to (t0, t1) ∈ ModelTime, we write t0.t1 ∈ ModelTime, because
the natural ordering of values t0.t1 is almost similar to the ordering of real
numbers: a0.a1 ≤ b0.b1 iff a0 < b0 ∨ a0 = b0 ∧ a1 ≤ b1.
The addition of two time ticks is defined as:

+ : ModelTime ×ModelTime → ModelTime
(t0.t1, 0.u1) 7→ t0.t1+u1

(0.t1, u0.u1) 7→ u0.t1+u1

(t0.t1, u0.u1) 7→ t0+u0.0 if t0 6= 0 ∧ u0 6= 0

Init State. Model time starts at zero: modelTime(v0) = 0.0

FailStatus – Execution Failure. For all variants of hard real-time applica-
tions, it is important to detect violations of timing restrictions. To record that
such a violation has happened, we use set

FailStatus = {ok , failed}

An execution starts in state ok and performs a transition to failed if any violation
of timing restrictions occurs. The detailed conditions for failure are modeled in
the operational rules in section 3.4.

In addition to timing failure, the model execution may fail within an explicit
initialization phase (see description of Sched below) to indicate that there is
no valid execution for the init state of the HL3 model.

Init State. Initially, every execution is ok: fail(v0) = ok

ΣLWP – Light Weight Processes. State component ΣLWP reflects the
present activation state of subjects. It is modeled as a mapping from avail-
able LWPs to active subjects, such that for each LWP, the currently allocated
subject is given. If an LWP l ∈ Lwp has no subject, then ΣLWP (l) = scheduler
denotes that the scheduler is in control of l , in order to schedule some inactive
subject or to leave l idle.

ΣLWP = Lwp" Subjabs ∪ Subjprog ∪ {scheduler}
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Init State. At system start, no subject is running: ranκLWP (v0) = {scheduler}

Sched – The Schedule. When an active subject releases its LWP p, the
scheduler will obtain control of p. During its activation time, it will examine
the Sched state component modeling the current state of the HL3 program
schedule.

We assume symmetric multi-processing for any implementation of the sched-
uler, i.e. the logical scheduler is distributed redundantly to all available LWPs.
All local schedulers synchronize wrt. the global HL3 program schedule.
The relevant data structure for the operations of the scheduler is

Sched = (P(Am ×OpAm) ∪ P(Trans ×OpTrans)
∪P((Flow ×OpFlow ) ∪ (Ifm ×OpIfm))
∪{{(selector , op)} | op ∈ Opselector})
×sched phase

with

OpAm = {init , update,notifyTrans}
OpTrans = {action}
OpFlow = {integrate}
OpIfm = {poll , transmit}

Opselector = {init , getSelection}
Op = OpAm ∪OpTrans ∪OpFlow ∪OpIfm ∪Opselector

and

sched phase = {init phase, update phase, selection phase,flow phase,

transition phase,notify phase}

We have a set subjsched = π1 Sched which provides pairs (s, op) of subjects
and operations, such each subject s has to be scheduled in order to execute
its operation op. Further, phase = π2 Sched indicates which processing phase
of the HL3 execution model is active. If subjsched(sched(v)) = � in a state
(c, v) ∈ S , then there is nothing more to do for the current processing phase,
and a switch to the next phase is to follow.

Init State. A system execution starts with initialization of abstract machines
and the selector: sched(v0) = ((Am ∪ {selector})× {init}, init phase)

ΣSubjprog – The Execution State of Program Subjects. The execution
state models for each operation of a program subject the remaining statements
to be executed. Following the standard concepts for explaining operational
semantics of sequential programs [AO97], the execution state of one sequential
unit is modeled as the string prg ∈ Program of programming statements s ∈
Stmt still to be performed:

Program = seqStmt

Since we are modeling executions on real hardware, all atomic statements will
complete in finite time. There is an interval [δ0, δ1] for each statement with
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δi ∈ R+, such that δ ∈ [δ0, δ1] whenever the associated subject is scheduled and
the statement is not yet completed. Therefore the time value δ ∈ R+

0 ∪ {∞}
is attached to the string of programming statements, denoting the remaining
execution time needed to process the actual atomic statement. However, while
the object is not running, this time value is set to∞, until the object is allocated
on an LWP.

Finally, a parameter p ∈ Paramprog may be given for the current execution
of the program. The only possible parameter for operations of program sub-
jects is a visibility set, which is applied to the operations action, integrate, and
poll , on transitions, flows, and interface modules, respectively. The absence of
parameters is denoted by λ.

Paramprog = VisibilitySet ∪ {λ}

Then, the execution state of program subjects is defined as

ProgState = Program × (R+
0 ∪ {∞})× Paramprog

ΣSubjprog = Subjprog ×Op" ProgState

For convenience, the coordinates of ProgState are given by stringProgState =
π1 ProgState, δProgState = π2 ProgState, and visProgState = π3 ProgState.

Init State. At the beginning of a model run, no program subject is running:
ranκSubjprog (v0) = {(〈〉,∞, λ)}

ΣSubjabs
– The Execution State of Abstract Subjects. The execution

state of an abstract subject consists of an internal state component s ∈ IntState,
as well as a time value δ ∈ R+

0 ∪ {∞} denoting the remaining execution time
needed to process its current task, similarly to the execution of program subjects.
The value ∞ denotes that the object is not allocated on an LWP.

Possible execution parameters p ∈ Paramabs are a single transition each,
which is needed for the notifyTrans operations on abstract machines:

Paramabs = Trans ∪ {λ}

The execution state of abstract subjects is given by

AbsState = IntState × (R+
0 ∪ {∞})× Paramabs

ΣSubjabs = Subjabs"AbsState

For convenience, the coordinates of AbsState are given by intStateAbsState =
π1 AbsState, δAbsState = π2 AbsState, and transAbsState = π3 AbsState.

Init State. At the beginning of a model execution, no abstract subject is run-
ning: ranκSubjprog (v0) ⊆ {(s,∞, λ) ∈ AbsState}. The internal states s are unde-
termined, but will be initialized during the init phase.

ΣFlow – The Flow State. The flow state specifies for each flow whether it
is currently enabled, and, if this is the case, the absolute point in physical time
for its next periodic execution.

FlowState = R+
0 ∪ {∞}

ΣFlow = Flow" FlowState
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For (c, v) ∈ VAR and f ∈ Flow , κFlow (v)(f ) = ∞ indicates that the flow
is currently disabled and shall not be scheduled. A value κFlow (v)(f ) ∈ R+

0

indicates that f shall be scheduled at some time t ∈ PhysicalTime with
κFlow (v)(f ) ≤ t < κFlow (v)(f ) + δperiod(c). If the scheduler cannot manage to
reserve an LWP for f for such a time, a transition to (c, v ′) with fail(v ′) = failed
is performed. A transition into the failure state is also performed if the flow is
scheduled correctly at time t , but terminates later than κFlow (v)(f )+δperiod(c).
That means, that the flow must be also completed within the specified system
period.

Init State. In the beginning, all flows are disabled: ranκFlow (v0) = {∞}

ΣAm – The Abstract Machine State. The abstract machine status indi-
cates its enabledness for continuous or discrete steps:

AmState = B× P(Trans)
ΣAm = Am"AmState

with named projections flowAmState = π1 AmState and transAmState =
π2 AmState.

Continuous Step. The abstract machine m ∈ Am indicates, whether it admits
a continuous step of the complete system. This decision is made internally and
depends on the applied high-level formalism.

Since time passes for all abstract machines Am of the system, a continuous
step can only be taken by all abstract machines together. Therefore, each ab-
stract machine indicates its enabledness for this by a boolean flag, such that
the conjunction of all flags defines whether a continuous step is possible for the
complete system.

Whether the system actually switches to a flow phase is the choice of the
scheduler, based on the selector’s selection. Which set of flows is executed in
such a case is defined by the flow entities themselves.

Discrete Step. The abstract machines’ status also contains, whether a discrete
step is possible. Unlike continuous steps, discrete steps may be executed for a
subset Amdstep ⊆ Am of all abstract machines. A discrete step consists of the
execution of a set of transitions.

Transitions t are either enabled or disabled, depending on the current
state (c, v) ∈ S . This is chosen internally within the abstract machine
m = amtrans(c)(t), i.e. the abstract machine that is responsible for the par-
ticular transition.

For a composition of a discrete step, each abstract machine indicates which
of its transitions are available, i.e. it provides the set of its enabled transitions.

The selector determines which enabled transitions are to be fired within a
discrete step. Since abstract machines are designed as sequential components,
every admissible selector will select at most one transition per abstract machine.
The scheduler will then allocate the actions associated with all selected tran-
sitions on an LWP and notify the corresponding abstract machines about the
transitions which have been fired.
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The abstract interface postulated for an abstract machine m requires that
a call to its update() method will calculate the set of enabled transitions (as
well as the boolean flag for continuous step-enabledness) again. Observe that
abstract machines may label more than one transition as enabled if the under-
lying high-level formalism admits nondeterministic behavior. Moreover, if the
formalism contains the concept of urgent transitions, this can be reflected by a
non-empty set of enabled transitions in combination with the disabling of con-
tinuous steps. This causes the selector to select a discrete step, rather than a
flow phase.

Init State. Abstract machines do not select anything, initially: ranκAm(v0) =
{(false,�)}

ΣVar – Local Variable Valuations. Valuations of local variables are spec-
ified in the conventional way which is also applied when defining operational
semantics to sequential programs: A valuation σ : Var" Val maps each local
variable symbol x ∈ Var to its current value σ(x ) ∈ typeVar (x ), i.e. the variables
are typed, and Val is the union of all these types:

ΣVar = Var → Val
typeVar : Var → P(Val)

Init State. There is no initial valuation for local variables. Therefore, every
program that uses local variables must initialize them explicitly.

ΣChan – HL3 Channels. The HL3 framework supports a notion of visibility
and publication of variable values, based on the concept of HL3 channels. This
is modeled as the current state ΣChan of channels.

ChanState = ModelTime × Port�Data
ΣChan = Chan" ChanState

When inserting a data item into a channel, a visibility set is specified for this
item. A visibility set is a collection of visibilities, that are time ticks with an
associated recipient:

Visibility = ModelTime × Port
VisibilitySet = P(Visibility)

For convenience, we define an operation +∩ that builds the intersection of two
visibility sets wrt. the recipients, and adds the corresponding time ticks:

+∩ : VisibilitySet ×VisibilitySet → VisibilitySet
(v1, v2) 7→ {(t , p) ∈ ModelTime × Port

| ∃(t1, p) ∈ v1, (t2, p) ∈ v2 • t = t1 + t2}

When data is retrieved from a channel through a port p ∈ Port , access to either
the most recent data item visible for p, or to the second most recent item is
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provided. Thus, visibility sets v ∈ VisibilitySet are used to specify when data
values should become visible to specific recipients.

The types of application-specific data are transparent to the HL3 frame-
work, since the data is never interpreted or changed by operational rules of the
framework. Therefore application-specific data are modeled just as sequences
of bytes:

Data = seq Bytes

We assume that there is a unique byte representation for every application-
specific data value:

dataVal : Val�Data
valData = data−1

Val

New Entry Insertion. A new data value is inserted into a channel through a
port, such that for each receiving port from the visibility set, an entry is created
with the according visibility time:

ChanEntry = Data ×VisibilitySet
insertPort : Port × ChanEntry × CONSTm ×VARmread

→ (Chan × ChanState)
(pwrite , (data, vis), c, v) 7→

(chanport(c)(pwrite),
κChan(v)(chanport(c)(pwrite))⊕
{ (tick , pread) 7→ data | (tick , pread) ∈ vis })

Only one data value is stored for each combination (t , p) of visibility time and
recipient port. Therefore, racing conditions take effect on writing into the chan-
nel, if data is written concurrently for (t , p). This is the desired behavior for
the HL3 semantics. It is the responsibility of the applied high-level formalism
to avoid this, if it is required.

Current Entry Access. Access to the currently visible entry in a channel is
defined by:5

entryPort,cur : Port × CONSTm ×VARmread�ModelTime ×Data
(p, c, v) 7→ (tcur , κChan(v)(chanport(c)(p))(tcur , p))
with tcur =

µ(t : ModelTime | t ≤ modelTime(v)
∧ (t , p) ∈ dom κChan(v)(chanport(c)(p))
∧ (∀ u : ModelTime • (u, p) ∈ dom κChan(v)(chanport(c)(p))
⇒ u ≤ t ∨ modelTime(v) < u))

5We use the notation q = µ(x : X | p) for a set X , a bound variable x and a predicate p
over x as a shorthand for |{x ∈ X | p}| = 1 ⇒ q ∈ {x ∈ X | p}. Further, q = µ(X ) is an
abbreviation for q = µ(x : X | true).
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The above mapping retrieves a pair (tcur , data) ∈ ModelTime × Data from the
channel chn ∈ Chan that is associated with the given port p ∈ Port . The
system’s state (c, v) ∈ S determines the current valuation κChan(v)(chn) of the
channel, as well as the (constant) dependency chanport(c)(p) between port and
channel. (tcur , data) is chosen such that tcur is the dedicated time stamp that
(1) is not in the (model) future, that (2) actually appears in the channel for the
port, and that (3) is the newest of such time stamps.

Channel

Port0

ModelTime

Port1

Port2

Port3
(val1, t1, {Port3})

s0 : Flow

s1 : Transition

s2 : AbstractMachine

s3 : Transition

entryPort,cur (. . .)

entryPort,cur (. . .)

insertPort (. . .)

insertPort (. . .)

insertPort (. . .)

Port1

modelTime(v)

(val0, t0,
{Port2,Port3})

(val2, t2, {Port2})

Figure 3.6: Illustration of a HL3 Channel – subjects s0, s1 have written values
with different visibility sets to the channel, therefore in state (c, v) ∈ S , subjects
s2, s3 receive different values.

Access to the currently visible data and visibility time is then given by

dataPort,cur : Port × CONSTm ×VARmread�Data
(p, c, v) 7→ π2 (ModelTime ×Data)(entryPort,cur (p, c, v))

tickPort,cur : Port × CONSTm ×VARmread�ModelTime
(p, c, v) 7→ π1 (ModelTime ×Data)(entryPort,cur (p, c, v))

Previous Entry Access. In addition to the access to the currently visible entry,
channels permit reading of the previous entry:

entryPort,prev : Port × CONSTm ×VARmread�ModelTime ×Data
(p, c, v) 7→ (tprev , κChan(v)(chanport(c)(p))(tprev , p))
with Tprev = {t ∈ ModelTime |

∃ tcur ∈ ModelTime • t < tcur ≤ modelTime(v)
∧ {(t , p), (tcur , p)} ⊆ dom κChan(v)(chanport(c)(p))
∧ (∀ u : ModelTime • (u, p) ∈ dom κChan(v)(chanport(c)(p))
⇒ u ≤ t ∨ modelTime(v) < u)}

∧Tprev 6= �⇒ tprev = µ(Tprev )
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∧Tprev = �⇒ tprev = tickPort,cur (p, c, v)

This mapping provides an entry (tprev , data) such that tprev is the dedicated
time stamp from the model presence or past that is the second newest of all
time stamp occurrences for the given port. Alternatively, iff there is only tcur
available (as defined above), this is chosen.
Similarly to entryPort,cur , the projections to data and time components are
given:

dataPort,prev : Port × CONSTm ×VARmread�Data
(p, c, v) 7→ π2 (ModelTime ×Data)(entryPort,prev (p, c, v))

tickPort,prev : Port × CONSTm ×VARmread�ModelTime
(p, c, v) 7→ π1 (ModelTime ×Data)(entryPort,prev (p, c, v))

Init State. At system start, every channel contains exactly the initial values
for its associated ports, with time stamp zero: κChan(v0) = {c 7→ {(0.0, p) 7→
initvalport(c)(p) | p 7→ c ∈ chanport} | c ∈ Chan}

3.4 Scheduling Rules

In this section, a high-level view on the system execution is given. First, it is
described informally, how the assignment of subjects to LWPs evolves wrt. time,
in order to perform their respective tasks – i.e. the scheduling is given. This
is structured into scheduling phases (also called execution phases), which are
roughly divided into discrete and flow phase, as well as additional housekeeping.

Second, operational rules define the scheduling formally. This includes the
switching between complete phases as well as the scheduling of single subjects
within phases. The rules that determine the subjects’ internal operation are
provided in the subsequent sections.

Scheduling Intuition. There are two different aspects of scheduling for a
HL3 system: (1) Conceptually, the system resides within an execution loop, that
sequentially steps through scheduling phases. Within each iteration, exactly
one of flow phase or discrete phase is chosen. (2) With respect to physical time,
there is a fixed period δperiod(c) (for all states (c, v) ∈ S ) that defines the points
in time for which the (discretized) flow calculations have to be started. This
restricts and requires when flow phases must occur. As long as the system’s
choice for flow phases within the execution loop is synchronized with the period
δperiod(c), i.e. the choice for a flow phase is always in time, the system’s timing
is ok – fail(v) = ok . Otherwise, a timing failure is detected, i.e. fail(v) = failed .

Execution Loop. An iteration of the system’s execution loop starts (1) in
phase update phase, followed by (2) selection phase. Based on the resulting
selection, (3) a choice between flow phase and transition phase is made. (4) A
notify phase is appended, iff previously a transition phase was chosen, other-
wise skipped:

update phase During this phase, the decision for the next flow or discrete step
is made. Since the control logic of the system is coded into the set of
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available abstract machines am(c), all of them update their internal state
and provide their resulting choice for discrete and flow steps (alias abstract
machine state) s ∈ AmState.

selection phase According to the high-level formalism, a resulting set of transi-
tions and a flag denoting flow-enabledness is determined from the abstract
machine’s states. From this, either flow phase or transition phase is cho-
sen for the next phase.

flow phase At the beginning of this phase, the synchronization with the physi-
cal time is done – the system waits for the expiration of the current system
period. Afterwards, all flows f ∈ flow(c) which are (1) enabled and (2) for
which the current time fits to their respective period are recalculated. In-
terface modules md ∈ ifm(c) are treated similarly, they are triggered to
put/get data to/from their respective interface.

transition phase This phase executes all discrete actions that were given by the
transitions selected in phase selection phase.

notify phase Following phase transition phase, during this phase each abstract
machine for which a transition was selected, is notified. This is necessary,
because the firing of a transition t ∈ trans(c) can have an impact on the
internal state of the associated abstract machine m ∈ amtrans(v)(t). Each
notified abstract machine then adjusts its internal state correspondingly.

Before the first iteration of the execution loop, i.e. at the start of the model
execution, an init phase is executed exactly once:

init phase Within this phase, the subjects which contain internal state are ini-
tialized, such that they have a defined internal state afterwards. The
affected subjects are the abstract machines and the selector.

Illustrated Scheduling Example. An example run of a HL3 system for
|lwp(c)| = 3, i.e. for a system which has three CPUs for parallel execution
of subjects, is given in figures 3.7, 3.8, and 3.15. Each figure shows one of
three subsequent periods, showing the evolution of physical time from top to
bottom. The vertical extent of the boxes denoting the execution of the subjects
corresponds to the execution duration of the respective subject. The vertical
space between boxes is just for clearness of the presentation, it shall not denote
time durations. The horizontal position assigns each execution to one of the
available LWPs, the horizontal extent has no meaning. Different phases are
separated by dashed lines.

In figure 3.7, a successful execution of two consecutive flow phases as well
as of two transition phases in between is shown: (1) The first flow phase shows
the scheduling of flows and interface modules. Each flow or interface module is
immediately executed once; whenever an idle LWP is found, one of the remaining
subjects is assigned and started. (2) Next, a new iteration of the execution
loop starts with the update phase. All abstract machines m are scheduled for
update, each one on the statically assigned LWP p = lwpsubj (c)(m). (3) Then,
the selector selects the succeeding phase and determines the subjects to be
scheduled within. Since this is a centralized activity, only one LWP is active,
the others are idle. (4) The selector has decided to continue with a transition
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Figure 3.7: Scheduling example: between two consecutive flow phases, two tran-
sition phases (along with notification phases) are scheduled.

phase, therefore all actions of the transitions of the selection are executed. Like
for flows, each transition is assigned to the first idle LWP found. (5) Afterwards,
the notification of abstract machines is done. Again, the assignment of abstract
machines and LWPs is fixed. Here, all abstract machines are affected, because
for each one, a transition was taken.

Further, a second execution loop iteration with transition phase is shown.
Since only one transition is chosen, there is only one abstract machine to notify.
The third iteration chooses a flow phase, therefore the timing wrt. the period
is ok. Note that this choice is determined from the abstract machines and the
selector, i.e. from the model, and cannot be enforced by the HL3 environment.

The successive period is shown in figure 3.8. Here, the first execution loop
iteration chooses a flow phase. Therefore, the complete system is idle for the rest
of this period, since flows take place in the beginning of the following period.

Finally, in figure 3.15 a scenario is given that violates the timing: the third
iteration of the execution loop chooses a transition phase again, which is yet
active when the point in time is reached at which the next flow phase should
have been scheduled.



28 CHAPTER 3. HL3 – HYBRID LOW-LEVEL FRAMEWORK

t0

PhysicalTime

t0 + δperiod

t0 + 2 · δperiod

t0 + 3 · δperiod

update phase

am1.upd

am4.updam3.updam2.upd

flow phase

select phaseselect

flow1 flow3 flow4

ifm1

LWP 1 LWP 2 LWP 3

t0 + δperiod flow phase

t0 + 2 · δperiod flow1

ifm1

flow2 flow3

flow6 flow7

PhysicalTime

Figure 3.8: Scheduling example: two consecutive flow phases, but no transition
phases in between.

3.4.1 Timing

Since the HL3 framework is designed for hard real-time systems, timing is a key
issue for the execution of an HL3 model. For arbitrary HL3 models, it cannot
be guaranteed that every run meets its timing requirements, because it depends
on the transformation from the high-level formalism on the one hand, and on
the particular high-level model on the other. Therefore, it is important that
during execution, violations of timing requirements are detected.

The purpose of this section is to identify the timing constraints that must
hold for states s ∈ S for a successful HL3 model execution. Correspondingly,
the state space S is partitioned into valid states and fail states.

Discretization of Time

For the execution of a HL3 model c ∈ CONST , physical time is discretized.
In the states of the operational semantics (c, v) ∈ S , the physical time it-
self is contained as physTime(v) ∈ PhysicalTime, whereas the model time
modelTime(v) ∈ ModelTime is the discretized notion of time. The first com-
ponent t0(t) of t ∈ ModelTime corresponds to physical time in that the op-
erational semantics will set t0(modelTime(v)) = bphysTime(v)c at dedicated
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synchronization points in physical time. The second model time component
t1(t) of t ∈ ModelTime is not relevant for the considerations of this section and
therefore not discussed here.

Along with the discretized evolution of time, continuous calculations repre-
sented by flow and interface module operations (Flow×OpFlow )∪(Ifm×OpIfm)
have to be computed discretely. An ideal discretization would synchronize the
model time and would calculate operations in zero time, exactly for multiples
of the system period δperiod(c). Of course, a real discretized execution needs
some time duration for calculations, and fortunately, there is time – between
each two consecutive multiples n ·δperiod(c) and (n +1) ·δperiod(c) of the system
period, the time duration δperiod(c) can be spent for this.

Physical Time Frame. Therefore, physical time is partitioned into fixed-
sized frames of duration δperiod(c), beginning with t = 0 for system start. Each
frame frame(c,n) = (tbegin , tend) defines a physical time interval [tbegin , tend [,
and frames are numbered by n ∈ N0:

frame : CONST × N0 → PhysicalTime × PhysicalTime
(c,n) 7→ (n · δperiod(c), (n + 1) · δperiod(c))

For convenience, we define low = π1 (PhysicalTime × PhysicalTime) and up =
π2 (PhysicalTime × PhysicalTime) to access the lower and upper bound of the
intervals, respectively.

Then, for each time value t , the frame number n for which t ∈
[low(frame(c,n)), up(frame(c,n))[ holds, is given by

fnotime : CONST × PhysicalTime → N0

(c, t) 7→
⌊

t
δperiod(c)

⌋

Flow Execution Interval. The major uncertainty for the execution of the
HL3 model is the amount of time needed for the calculations within (and be-
tween) discretized steps. This cannot be predetermined in general, because
abstract machines control dynamically the enabledness of calculations, in a way
that depends on the specific high-level model and its specific transformation
into HL3.

For every frame, a set of flow operations and interface module operations
have to be executed. A superset is predefined by the period factors periodflow (c),
periodifm,poll(c), and periodifm,tmit(c), but flows can be dynamically disabled
by abstract machines. Depending on the number of available LWPs, on the
execution times of the calculations, and of their exact activation times, a flow
execution interval results for each frame number, such that all corresponding
operations are executed within:

fexecint : CONST × N0 → PhysicalTime × PhysicalTime
∀(c,n) ∈ CONST × N0 • low(fexecint(c,n)) ≥ low(frame(c,n))

Note that the flow execution interval also does not end before its frame:

∀(c,n) ∈ CONST × N0 • up(fexecint(c,n)) ≥ low(frame(c,n))
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The operational semantics will not execute the operations of a flow execution
interval before the respective frame has begun: The flow execution interval is
embedded into the scheduling phase flow phase, such that their end times coin-
cide. However, the flow phase generally begins earlier than the flow execution
interval, such that the system execution waits for its beginning.

Model Time Synchronization. Directly after the executions of the opera-
tions within the flow execution interval are finished, the operational semantics
will synchronize the model time wrt. the physical time. The synchronization
points in physical time as they are observed for a particular HL3 model execu-
tion, are given for the corresponding frame number:

synctime : CONST × N0 → PhysicalTime
(c,n) 7→ up(fexecint(c,n))

Successful Discretization. The discretization is successful for the execution
of a HL3 model c ∈ CONST , iff for every frame number, the model time
synchronization takes place within that frame:

∀(c,n) ∈ CONST × N0 •
synctime(c,n) ∈ [low(frame(c,n)), up(frame(c,n))[

Therefore, a successful model execution will have exactly one time synchroniza-
tion per frame. Because we assume (see above) that flow execution intervals do
not start too early, it suffices to monitor that a least one synchronization exists
per frame:

∀(c,n) ∈ CONST × N0 • ∃m ∈ N0 •
synctime(c,m) ∈ [low(frame(c,n)), up(frame(c,n))[

Monitoring of Successful Discretization

In order to monitor the success or failure of discretization during a HL3 model
execution, we define a constraint on the state space S of the operational
semantics. Since we observe states (cob , vob) ∈ S during model execution,
only those states are accessible that reflect the current physical time t , i.e.
physTime(vob) = t . The model time modelTime(vob) then reflects the most
recent time from the past at which a time synchronization has taken place.

Because the time synchronization is monitored during the complete execu-
tion, it is not necessary to consider all past frames. In fact, only for the last
elapsed frame, the time synchronization has to be checked. All preceding frames
have been checked in the past already. Therefore,

∃m ∈ N0 • synctime(cob ,m) ∈
[low(frame(cob , fnotime(physTime(vob))− 1)),
up(frame(cob , fnotime(physTime(vob))− 1))[

must always hold.
For successful executions, the model time modelTime(vob) always re-

flects a synchronization time from either the current frame with number
fnotime(physTime(vob)), or the last elapsed frame fnotime(physTime(vob)) − 1.
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The current frame is not relevant, because by definition, it is not finished yet,
and time synchronization may occur within the frame in the future. However,
the detection of a time synchronization for the current frame must not denote
a failure, therefore we relax the constraint to

∃m ∈ N0 • synctime(cob ,m) ∈
[low(frame(cob , fnotime(physTime(vob))− 1)),
up(frame(cob , fnotime(physTime(vob))))[

Then, when checking this constraint at some time physTime(vob) >
low(frame(c, fnotime(physTime(vob)))), i.e. after the current frame has begun,
it can be satisfied even if the last elapsed frame has failed to synchronize time.
But directly at the frame’s beginning, i.e. at points in time physTime(vob) =
low(frame(c, fnotime(physTime(vob)))), this failure is detected.

In order to check the constraint, the value of modelTime(vob) can be used
to check it wrt. the given interval, because its first component directly encodes
the existence of a corresponding time synchronization (see above):

t0(modelTime(vob)) ∈
[low(frame(cob , fnotime(physTime(vob))− 1)),
up(frame(cob , fnotime(physTime(vob))))[

We define a mapping that checks this constraint on states (c, v) ∈ S and ex-
plicitly states whether (c, v) is synchronized or not. Thereby, the expression is
expressed directly, i.e. by resolving the definitions of frame and fnotime :

chktsync : S → B

(c, v) 7→
⌊
physTime(v)

δperiod(c)

⌋
− 1 ≤ t0(modelTime(v))

δperiod(c)
<

⌊
physTime(v)

δperiod(c)

⌋
+ 1

Discretization Examples. Figure 3.9 illustrates a successful synchronization
sequence. For all physical times t in a frame fnotime(c, t), the model time is
either a time of the preceding frame fnotime(c, t) − 1, or of the current frame
fnotime(c, t).

In contrast, a scenario is given in figure 3.10, with synchronization missing
in frame fnotime(c, t) = 3. This denotes a model execution that misses a dis-
cretization step and therefore fails to execute some continuous calculations in
time.

A successful scheduling scenario is shown in figure 3.11: Calculations of all
phases are fast enough. Different shades of grey denote the idle part of the flow
phase (light) and the flow execution interval (dark). A failure scenario is given
in figure 3.14: The flow phase (and flow execution interval) is started in time,
but takes too much time.

We have left out the discussion of non-flow phases in this section, because
they affect the discretization of time only in a straight-forward way: The set of
execution phases between two consecutive flow phases can also take too much
physical time. This is illustrated in figure 3.13.
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Figure 3.9: Model time must be synchronized within each frame for a successful
execution of the HL3 model. The model time is the time of synchronization,
therefore it identifies the frame of synchronization.

Time-Triggeredness

As a further restriction on admissible runs of a HL3 model, we require that
every flow execution interval must be started with the beginning of its frame:

∀(c,n) ∈ CONST × N0 • low(fexecint(c,n)) = low(frame(c,n))

See for example figures 3.12 and 3.15: Wrt. to the given constraints, these sce-
narios would be successful runs of a HL3 model. Nevertheless, we disallow the
delay of flows, because we realize the time-triggered execution of flow calcula-
tions. See [Kop97b] for a discussion about time-triggered vs. event-triggered
systems.

In order to check time-triggeredness, we have a second constraint on states
(c, v) ∈ S :

chkttrig : S → B
(c, v) 7→ nexttime1(c, v) < physTime(v) ⇒ phase(sched(v)) = flow phase

where the function nexttime1 is defined as:

nexttime1 : S → R+
0

s 7→ nexttime(1, s)
nexttime : N× S → R+

0

(k , (c, v)) 7→
(⌊

t0(modelTime(v))
k · δperiod(c)

⌋
+ 1
)
· k · δperiod(c)

This calculates the physical time value tfexint at which the subjects of the
next flow phase shall be actually executed. tfexint is the smallest multiple of
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Figure 3.10: Model time synchronization scenario that fails in frame 3: at the
beginning of frame 4, the model time is a time of frame 2 and therefore is too
old.

the system period δperiod(c) which is bigger than current model time, i.e. the
beginning of the next frame.

The constraint chkttrig then ensures that as soon as the time tfexint is
reached, a flow phase must be active. There is no need to ensure that this
is no previous flow phase, because chktsync includes this.

Note that nexttime is the generalization of nexttime1, which considers mul-
tiples of δperiod(c). It is used for the assignment of flows and interface modules
to flow phases. nexttime is illustrated in figure 3.16.

Synchronized and Fail States

Corresponding to the timing constraints given above, we have states Ssync ⊂ S
within the state space that are synchronized, i.e. Ssync = {s ∈ S | chktsync(s)∧
chkttrig(s)}. The remaining states Sfail = S \ Ssync are fail states. If the
system execution ever passes one of the fail states, the fail flag fail(v) will be
set explicitly.

3.4.2 Switching between Execution Phases

In this section, transitions t ∈ T of the state transition system are defined, which
represent the switching of execution phases. Each of these transitions require
that there is nothing more to do for any subject in the pre-state (c, v) ∈ S , i.e.
that the schedule is empty and that the scheduler controls every LWP (which
means that they are idle):

subjsched(sched(v)) = � ∧ ∀ p ∈ lwp(c) • κLWP (v)(p) = scheduler
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Figure 3.12: Timing failure: Flow
execution is delayed.

The switching of execution phases always takes some (small amount of) time
δswitch ∈ R+.

Switching to update phase. The update phase is preceded by either a
notify phase, a flow phase, or the init phase. When all scheduled transitions
have been executed and their abstract machines are notified, or all active flows
have been executed for one duration step, or all abstract subjects are initialized,
respectively, the update phase is started. All abstract machines are scheduled
to determine their enabled transitions and flows. Depending on the preceding
phase, the model time is adjusted: (1) With a previous notify phase, the visible
time remains constant, but only the causality tick is incremented. This provides
a zero-time execution of transitions for the model. (2) After a flow phase, the
visible time is synchronized with the physical time, such that for the model,
time increases. (3) Succeeding the init phase, model time is not adjusted, i.e.
it remains zero.

Let (c, v) ∈ S where for all LWPs p ∈ lwp(c) we have that κLWP (v)(p) =
scheduler .

Rule 3.4.1 If sched(v) = (�,notify phase), then we have a transition
(c, v) −→ (c, v ′) with v = v ′, except for

sched(v ′) = (am(c)× {update}, update phase)
physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+

modelTime(v ′) = t0(modelTime(v)).(t1(modelTime(v)) + 1) �

Rule 3.4.2 If sched(v) = (�,flow phase) and physTime(v) ≥ nexttime1(c, v),
then a transition (c, v) −→ (c, v ′) exists which has

sched(v ′) = (am(c)× {update}, update phase)
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Figure 3.13: Timing failure: Non-
flow phases take too long.
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Figure 3.14: Timing failure: Flow
phase takes too long.

physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+

modelTime(v ′) = bphysTime(v)c.0

and otherwise v = v ′. �

Note that flow phases cannot be left before the physical time for flow execution
is reached. This ensures, that empty flow phases, i.e. flow phases which will
neither schedule flows nor interface modules, are treated the same way as non-
empty ones are.
Finally,

Rule 3.4.3 if sched(v) = (�, init phase), then a transition (c, v) −→ (c, v ′)
exists which modifies v only by

sched(v ′) = (am(c)× {update}, update phase)
physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+ �

Switching to selection phase. After an update phase, a selection phase
follows. Control is taken over by the selector, in order to create a selection of
discrete or flow steps from the abstract machine’s states.

Rule 3.4.4 Let (c, v) ∈ S where for all LWPs p ∈ lwp(c) we have that
κLWP (v)(p) = scheduler , and moreover that sched(v) = (�, update phase).
We thus have a transition (c, v) −→ (c, v ′) with v = v ′, except for

sched(v ′) = ({(selector , getSelection)}, selection phase)
physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+ �
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Figure 3.15: Scheduling example: timing failure.

Switching to transition phase or flow phase. The transition to
transition phase or flow phase depends on the selector’s choice. Therefore it is
defined with the selection rule in section 3.5.

Switching to notify phase. A transition phase is always succeeded by a
notify phase. All abstract machines for which a transition was taken are sched-
uled to update their internal states accordingly.

Rule 3.4.5 Let (c, v) ∈ S where for all LWPs p ∈ lwp(c) we have that
κLWP (v)(p) = scheduler , and moreover that sched(v) = (�, transition phase).
We thus have a transition (c, v) −→ (c, v ′) with v = v ′, except for

sched(v ′) = ({m ∈ am(c) | transAbsState(κSubjabs (m)) 6= λ}
×{notifyTrans},
notify phase)

physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+ �



3.4. SCHEDULING RULES 37

0

nexttime(k , (c, v3))

modelTime(v3)

nexttime(k , (c, v2))

physTime(v3)

physTime(v2)

physTime(v1)

modelTime(v1)

k · δperiod(c) PhysicalTime

nexttime(k , (c, v1))

modelTime(v2)

Figure 3.16: Illustration of the mapping nexttime, with factor k = 3: For every
state (c, v) ∈ S and k , the beginning of the next frame such that fnotime(c, t)
is a multiple of k is calculated. However, during the flow execution interval of
that frame, its own start time results, as for (c, v2) in this example.

3.4.3 Scheduling within Execution Phases

Within execution phases, single subjects have to be scheduled, depending on
the schedule sched(v) of the current state (c, v) ∈ S , and depending on the
availability of LWPs lwp(c). Therefore, in this section transitions t ∈ T are
defined that each represent the allocation of a single subject on an available
LWP. For the allocation of a subject, the corresponding LWP needs a time
duration δalloc ∈ R+ before the execution of the subject’s operation begins. We
model this by adding δalloc to the execution duration δs ∈ R+ of the operation
or program, respectively.

The deallocation is not presented here, since it is a direct result of the ter-
mination of subject execution, and thus is included in the definitions of sections
3.5 and 3.6.

The way of how single subjects are allocated is different for abstract subjects
and program subjects. Within each execution phase, only either kind of subjects
can be executed, therefore we distinguish the allocation rules by these both
kinds.

Further, there is a specific rule that lets time pass for idle LWPs. This is
done exactly when a flow phase is active, but the next (physical time) frame is
not reached yet. Thus, the system waits for the next flow execution interval.

Dynamic LWP Assignment for Program Subjects. Program subjects
s ∈ Subjprog in the schedule sched(v) are scheduled immediately on any idle
LWP in order to execute operations op ∈ Op:

Let (c, v) ∈ S for some LWP p ∈ lwp(c), such that κLWP (v)(p) = scheduler ,
and moreover that sched(v) = (sset , sphase) with (s, op) ∈ sset . Then subject
s is selected and p is assigned to s, and s is immediately removed from the
schedule. The program string is reset, i.e. the complete program string for
operation op as defined in the HL3 model is assigned, and a remaining duration
for the first statement (including the duration needed for allocation) is set. The
program’s (optional) parameter is not modified.

If additionally, sphase = transition phase (which implies s ∈ Trans), then
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the transition is set as the parameter for the next execution of the associated
abstract machine, which will be the notification of the transition’s execution.
Internal state and duration are kept for the abstract machine.

Rule 3.4.6 Thus, for sphase = transition phase we have a transition
(c, v) −→ (c, v ′) with v = v ′, except for

κLWP (v ′) = κLWP (v)⊕ {p 7→ s}
sched(v ′) = ((sset \ {s}), sphase)
κSubjprog (v

′) = κSubjprog (v)⊕ {(s, op) 7→
(prgsubj (c)(s, op), δs + δalloc , visProgState(κSubjprog (v)(s, op)))}
with δs , δalloc ∈ R+

κSubjabs (v
′) = κSubjabs (v)⊕ {amtrans(c)(s) 7→

(intStateAbsState(κSubjabs (v)(amtrans(c)(s))),
δAbsState(κSubjabs (v)(amtrans(c)(s))),
s)} �

Rule 3.4.7 For all phases sphase 6= transition phase, we have a transition
(c, v) −→ (c, v ′) that does not affect the execution state of abstract machines,
i.e. v = v ′, except for

κLWP (v ′) = κLWP (v)⊕ {p 7→ s}
sched(v ′) = ((sset \ {s}), sphase)
κSubjprog (v

′) = κSubjprog (v)⊕ {(s, op) 7→
(prgsubj (c)(s, op), δs + δalloc , visProgState(κSubjprog (v)(s, op)))}
with δs , δalloc ∈ R+ �

There is an additional restriction for sphase = flow phase – the above transition
is only allowed, if physTime(v) ≥ nexttime1(c, v). That means, within a flow
phase, the subjects in the schedule are scheduled as recently as the physical
time for the next flow executions has come. Previously, physical time just has
to pass.

Waiting for Flow Execution. A flow phase is idle and lets time pass, as
long as the physical time for the next flow executions wrt. the system period is
not reached yet.

Rule 3.4.8 Let (c, v) ∈ S with phase(sched(v)) = flow phase and
physTime(v) < nexttime1(c, v). Then some time δ ∈ R+ passes, i.e. transi-
tions (c, v) −→ (c, v ′) ∈ T exist with v = v ′, but

physTime(v ′) = physTime(v) + δ

with δ ≤ nexttime1(c, v)− physTime(v) �

Static LWP Assignment for Abstract Subjects. An abstract subject
s ∈ Subjabs in the schedule sched(v) is scheduled for operation op ∈ Op on its
statically assigned LWP p, as soon as it is available:
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Rule 3.4.9 Let (c, v) ∈ S for sched(v) = (sset , sphase) with (s, op) ∈ sset ,
and let κLWP (v)(lwpsubj (c)(s)) = scheduler . Then p is mapped to subject
s, and s is removed from the schedule. The internal state and the subject’s
(optional) parameter are retained, but a remaining duration for the allocation
and execution of the operation is set. We have a transition (c, v) −→ (c, v ′)
with v = v ′, except for

κLWP (v ′) = κLWP (v)⊕ {lwpsubj (c)(s) 7→ s}
sched(v ′) = ((sset \ {s}), sphase)
κSubjabs (v

′) = κSubjabs (v)⊕ {s 7→ (intStateAbsState(κSubjabs (v)(s)),
δs + δalloc , transAbsState(κSubjabs (v)(s)))}
with δs , δalloc ∈ R+ �

3.5 Abstract Subject Execution

In this section, the execution of abstract subjects is defined by transitions t ∈ T .
Abstract subjects are executed in that a specific operation of the corresponding
subject is run. The execution of the operation takes some time before it is
terminated. The operation’s effect on the state space becomes effective with its
termination.

Further, for |lwp(c)| > 1 it is possible that several abstract subjects are
executed in parallel, i.e. time evolves for all active subjects in common. This
is defined for all possible abstract subject operations by the progress rule given
below.

As a side effect of progress, the timing constraints identified in section 3.4.1
may be violated. This is regarded in the progress rule, and leads to the setting
of the fail flag.

In contrast to the progress of operations, the effect of operations depends
on the specific operation and the corresponding kind of subject. Therefore,
different termination rules are provided for the possible operations, i.e. for

op ∈ {(Am, init), (Am, update), (Am,notifyTrans), (selector , init),
(selector , getSelection)}

3.5.1 Progress of Abstract Subject Execution

Operations of abstract subjects are executed, as soon as a maximum subset
from the schedule is allocated on LWPs, such that there is no idle LWP left or
the schedule is empty. Then, operations take some time.

Let (c, v) ∈ S with phase(sched(v)) ∈
{update phase, selection phase,notify phase}. Given that all ac-
tive subjects have a positive remaining execution duration, i.e.
∀ s ∈ ranκLWP (v) • δAbsState(κSubjabs (v)(s)) ∈ R+, and that there are no
more idle LWPs left that could be used to execute some subject in the schedule,
i.e. ¬∃ s ∈ subjsched(sched(v)) • κLWP (v)(lwpsubj (c)(s)) = scheduler . Then
arbitrary time durations can elapse, as long as the first subject is not completed,
yet.
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Consider the potential successor states Suc ⊆ S , which are given for all δ ≤
δmin , whereas δmin is the minimum value of the set of all remaining durations
{δ ∈ R+ | ∃ s ∈ dom κSubjabs (v) • δ = δAbsState(κSubjabs (v)(s))}, such that v = v ′

holds for (c, v ′) ∈ Suc, except for

κSubjabs (v
′) = κSubjabs (v)⊕ {s 7→

(intStateAbsState(κSubjabs (v)(s)), δAbsState(κSubjabs (v)(s))− δ,

transAbsState(κSubjabs (v)(s))
| s ∈ dom κSubjabs (v) ∧ δAbsState(κSubjabs (v)(s)) ∈ R+}

physTime(v ′) = physTime(v) + δ

Since between (c, v) and (c, v ′) physical time elapses, time synchronization (see
section 3.4.1) is monitored here. The successor states are therefore divided into
Sucsync = Suc ∩ Ssync and Sucfail = Suc ∩ Sfail .

Rule 3.5.1 For all (c, v ′) ∈ Sucsync , there are transitions (c, v) −→ (c, v ′) ∈ T
that let the respective time durations δ ≤ δmin pass. �

Rule 3.5.2 For the states (c, v ′) ∈ Sucfail we have transitions (c, v) −→
(c, v ′′) ∈ T that represent the evolution of time durations in the same way,
but also set the fail flag. Therefore, v ′ = v ′′ holds, with the exception of

fail(v ′′) = failed �

Note that timing failures are thus detected in finite time, which happens with
at most the delay of δmin .

3.5.2 Termination of Abstract Subject Execution

Termination of Abstract Machines’ Initialization. Initialization of ab-
stract machines assigns a pre-defined internal state to the corresponding abstract
machine, provided by the mapping

initAm : Am → IntState

Rule 3.5.3 Then, for states (c, v) ∈ S with an abstract machine m for
which the current execution time has elapsed in the init phase, that is
δAbsState(κSubjabs (v)(m)) = 0 and phase(sched(v)) = init phase, there is a tran-
sition (c, v) −→ (c, v ′) ∈ T with

κSubjabs (v
′) = κSubjabs (v)⊕ {m 7→ (initAm(m),∞, λ)}

κLWP (v ′) = κLWP (v)⊕ {p 7→ scheduler | κLWP (v)(p) = m} �

such that the internal state is assigned, and the formerly used LWP is released.

Termination of Abstract Machines’ Update. The effect of the operation
update is that the abstract machine (1) has an actual internal state, (2) has an
actual abstract machine state, and (3) each of the flows it controls is enabled
or disabled, corresponding to the actual internal state. Input for the update
operation is the previous internal state of the abstract machine, along with the
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parts of the state space that are visible to subjects, including the current channel
valuations.

Formally, the effect is given by a mapping from the internal abstract machine
state and the model-accessible portion of the state space S to a succeeding
abstract machine state, along with a flow enabling function:

UpdStatepre = Am × IntState × CONSTm ×VARmread

UpdStatepost = IntState ×AmState × (Flow� B)
update : UpdStatepre → UpdStatepost

The resulting components are accessible through

updateIntState : UpdStatepre → IntState
s 7→ π1 UpdStatepost(update(s))

updateAmState : UpdStatepre → AmState
s 7→ π2 UpdStatepost(update(s))

updateFlow : UpdStatepre → (Flow� B)}
s 7→ π3 UpdStatepost(update(s))

Rule 3.5.4 For states (c, v) ∈ S which have an abstract machine m ∈ am(c)
whose current operation is about to terminate within the update phase, i.e.
δAbsState(κSubjabs (v)(m)) = 0 and phase(sched(v)) = update phase, we have a
transition (c, v) −→ (c, v ′) ∈ T with

κSubjabs (v
′) = κSubjabs (v)⊕ {m 7→ (updateIntState(preState),∞, λ)}

κLWP (v ′) = κLWP (v)⊕ {p 7→ scheduler | κLWP (v)(p) = m}
κAm(v ′) = κAm(v)⊕ {m 7→ updateAmState(preState)}
κFlow (v ′) = κFlow (v)⊕

({f 7→ ∞ | f ∈ dom(updateFlow (preState))
∧¬updateFlow (preState)(f ) ∧ amflow (c)(f ) = m}
∪
{f 7→ nexttimeflow (f , (c, v)) | f ∈ dom(updateFlow (preState))
∧updateFlow (preState)(f ) ∧ amflow (c)(f ) = m})

where

preState = (m, intStateAbsState(κSubjabs (v)(m)),
(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v))) �

Here, (1) the internal state of m is updated, and the remaining execution du-
ration is reset. (2) m is deallocated from its current LWP. (3) The abstract
machine state is updated. (4) All flows under control of m are either disabled,
or get their new execution time. Here a new value is assigned to indicate when
flows are to be scheduled. A flow is supposed to get scheduled at the next
instance where its period would allow its execution:

nexttimeflow : Flow × S → R+
0

(f , (c, v)) 7→ nexttime(periodflow (c)(f ), (c, v))
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Termination of Abstract Machines’ Notification. The effect of the op-
eration notifyTrans is that the abstract machine has an updated internal state,
which regards the previous execution of one of its controlled transitions. In-
put for the notifyTrans operation is the previous internal state of the abstract
machine, along with the executed transition.

Formally, the effect is given by a mapping from the internal abstract machine
state and the executed transition t to a succeeding internal abstract machine
state:

notify : Am × IntState × Trans → IntState

Rule 3.5.5 For states (c, v) ∈ S which have an abstract machine m ∈ am(c)
whose current operation is about to terminate within the notify phase, i.e.
δAbsState(κSubjabs (v)(m)) = 0 and phase(sched(v)) = notify phase, we have a
transition (c, v) −→ (c, v ′) ∈ T with

κSubjabs (v
′) = κSubjabs (v)⊕ {m 7→ (notify(m,

intStateAbsState(κSubjabs (v)(m)),
transAbsState(κSubjabs (v)(m))),
∞, λ)}

κLWP (v ′) = κLWP (v)⊕ {p 7→ scheduler | κLWP (v)(p) = m} �

The execution state of the abstract machine is modified, such that (1) the in-
ternal state is updated, (2) the remaining execution duration is reset, (3) and
the parameter entry, which was the executed transition, is removed. The corre-
sponding LWP is released, i.e. it is controlled by the scheduler now.

Termination of Selector’s Initialization. The initialization of the selector
assigns a pre-defined internal state to it, and further determines if the state
space is well-formed, corresponding to constraints which depend on the selector’s
high-level formalism. This is given by the mapping

initsel : S → IntState × B

and the corresponding projections

intStateinitsel : S → IntState
s 7→ π1 initsel(s)

wellFormedinitsel : S → B
s 7→ π2 initsel(s)

Rule 3.5.6 Then, for states (c, v) ∈ S for which the selector’s execution time
has elapsed in the init phase, that is δAbsState(κSubjabs (v)(selector)) = 0 and
phase(sched(v)) = init phase, there is a transition (c, v) −→ (c, v ′) ∈ T with

κSubjabs (v
′) = κSubjabs (v)⊕ {selector 7→ (intStateinitsel(c, v),∞, λ)}

κLWP (v ′) = κLWP (v)⊕ {p 7→ scheduler | κLWP (v)(p) = selector}

fail(v ′) =
{

ok if wellFormedinitsel(c, v)
failed else �



3.5. ABSTRACT SUBJECT EXECUTION 43

such that the internal state is assigned, the formerly used LWP is released, and
the fail flag is set according to the initialization’s result.

Termination of Selector’s Selection. The actual behavior of the selector
component depends on both the high-level formalism (and the respective trans-
formation function to HL3) and a user-defined selection policy determined by
the context which the real-time execution is investigated in. The selector ’s be-
havior thus is treated as an abstract subject which takes time for its execution
and provides a selection upon termination. The selection is mainly determined
from the states κAm(v) of the abstract machines, along with its internal state.
Additionally, the model time as well as a dedicated set of ports may be accessed.

Selection = B× (Trans�VisibilitySet)
select : ModelTime × P(Port)× IntState × ΣAm

→ IntState × Selection × ChanState

The selection consists of (1) a boolean value denoting whether a flow step is
possible and (2) a set of transitions that constitute a possible discrete step. The
set of transitions is given by the domain of a mapping, which also provides a
visibility set for each of the transitions. The time stamps at which the results of
the transitions’ actions become effective for the respective recipients therefore
depend on the high-level formalism. (3) Further, a new internal state results for
the selector. (4) As a side-effect, data can be written to channels.
The components of the selection are directly given by

selflow : ModelTime × P(Port)× IntState × ΣAm → B
(tick ,P , si , sam) 7→ π1 (π2 select(tick ,P , si , sam))

seltrans,vis : ModelTime × P(Port)× IntState × ΣAm

→ (Trans�VisibilitySet)
(tick ,P , si , sam) 7→ π2 (π2 select(tick ,P , si , sam))

Transitions without visibility sets are directly accessible by

seltrans : ModelTime × P(Port)× IntState × ΣAm → P(Trans)
(tick ,P , si , sam) 7→ dom seltrans,vis(tick ,P , si , sam)

The new internal state can be accessed through

selintState : ModelTime × P(Port)× IntState × ΣAm → IntState
(tick ,P , si , sam) 7→ π1 select(tick ,P , si , sam)

The resulting channel state is given by

selchanEntry : ModelTime × P(Port)× IntState × ΣAm → ChanState
(tick ,P , si , sam) 7→ π3 select(tick ,P , si , sam)

There are several constraints that must hold for the results of the select effect:
(1) The set of selected transitions is chosen according to the sets of enabled
transitions of the abstract machines. (2) In this set there is at most one asso-
ciated transition for each abstract machine. (3) The selector is only allowed to
allow a flow step, if all abstract machines agree. (4) The selector is not allowed
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to mischievously block the execution of a HL3 program – in case that no flow is
possible, but some abstract machines do have transitions enabled, at least one
transition will be selected.

∀(tick ,P , si , sam) ∈ dom select •
seltrans(tick ,P , si , sam) ⊆

⋃
m∈dom sam

transAmState(sam(m))

∀(tick ,P , si , sam) ∈ dom select •
∀ t1, t2 ∈ seltrans(tick ,P , si , sam) • ∃m1,m2 ∈ dom sam •

t1 ∈ transAmState(sam(m1)) ∧ t2 ∈ transAmState(sam(m2))
∧ (t1 6= t2 ⇒ m1 6= m2)

∀(tick ,P , si , sam) ∈ dom select •
selflow (tick ,P , si , sam) ⇒ ∀m ∈ dom sam • flowAmState(sam(m))

∀(tick ,P , si , sam) ∈ dom select •( ⋃
m∈dom sam

transAmState(sam(m)) 6= � ∧ ¬selflow (sam)

)
⇒ seltrans(s) 6= �

Let (c, v) ∈ S where within the selection phase, the selector’s current
operation is about to terminate, i.e. sched(v) = (�, selection phase) and
δAbsState(κSubjabs (v)(selector)) = 0. Further, let the current internal state of
the selector si = intStateAbsState(κSubjabs (v)(selector)). Then, the selector’s op-
eration getSelection is finished, and provides a selection.

Rule 3.5.7 If this selection contains any transitions, that means if
seltrans(si , κAm(v)) 6= �, we have a transition tdisc = (c, v) −→ (c, v ′) with
v = v ′, except that the transitions of the selection constitute the scheduled
subjects now, and further the visibility sets are set as parameters for the transi-
tions’ execution states, in combination with the transitions’ static visibility sets
(see section 3.3 for operation +∩ ):

sched(v ′) = (seltrans(modelTime(v), selport(c), si , κAm(v))× {action},
transition phase)

physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+

κSubjprog (v
′) = κSubjprog (v)⊕

{(t , action) 7→ (stringProgState(κSubjprog (v)(t , action)),
δProgState(κSubjprog (v)(t , action)), vistrans(c)(t) +∩ vis)
| (t 7→ vis) ∈ seltrans,vis(modelTime(v), selport(c), si , κAm(v))}

κSubjabs (v
′) = κSubjabs (v)⊕

{selector 7→ (selintState(modelTime(v), selport(c), si , κAm(v)),∞, λ)}
κChan(v ′) = κChan(v)⊕

{insertPort(p, (data, {tick , p}),
(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v))))
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| (tick , p) 7→ data
∈ selchanEntry(modelTime(v), selport(c), si , κAm(v))} �

Additionally, the selector’s internal state is updated, and the data values are
inserted into the respective channels.

Rule 3.5.8 We have another transition tflow = (c, v) −→ (c, v ′′) provided that
selflow (si , κAm(v)), i.e. that the selection allows a flow step.

sched(v ′′) =
(({f ∈ flow(c) | κFlow (v)(f ) = nexttime1(c, v)} × {integrate})
∪({md ∈ ifm(c) | nexttimeifm,poll(md , (c, v)) =

nexttime1(c, v)} × {poll})
∪({md ∈ ifm(c) | nexttimeifm,tmit(md , (c, v)) =

nexttime1(c, v)} × {transmit})
,flow phase)

physTime(v ′) = physTime(v) + δswitch

with δswitch ∈ R+

κSubjprog (v
′′) = κSubjprog (v)⊕

{(f , integrate) 7→ (stringProgState(κSubjprog (v)(f , integrate)),
δProgState(κSubjprog (v)(f , integrate)), visflow (c)(f ) +∩ (port(c)× {0.1}))
| f ∈ flow(c) • κFlow (v)(f ) = nexttime1(c, v)}
∪{(md , poll) 7→ (stringProgState(κSubjprog (v)(md , poll)),

δProgState(κSubjprog (v)(md , poll)), visifm(c)(md) +∩ (port(c)× {0.1}))
| md ∈ ifm(c) • nexttimeifm,poll(md , (c, v))

= nexttime1(c, v)}
κSubjabs (v

′) = κSubjabs (v)⊕
{selector 7→ (selintState(modelTime(v), selport(c), si , κAm(v)),∞, λ)}

κChan(v ′) = κChan(v)⊕
{insertPort(p, (data, {tick , p}),

(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v)))

| (tick , p) 7→ data
∈ selchanEntry(modelTime(v), selport(c), si , κAm(v))} �

Here, (1) flows and interface modules are set to the schedule. For interface
modules, the fixed periods determine which of them are scheduled, whereas for
flows, the flows’ execution states denote this. (2) Additionally, visibility sets
are generated from the static visibility sets of flows and interface modules, such
that the calculation results will be published in the model future. The visibility
sets are set as parameters to the flows’ and interface modules’ execution states.
(3) The selector’s new internal state is inserted. (4) Data is written to the
corresponding channels.

The calculation of the scheduling time ticks for the polling of interface mod-
ules as well as the transmission of data to them is defined in the same fashion
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as the calculation of the scheduling time ticks of flows:

nexttimeifm,poll : Ifm × S → R+
0

(md , (c, v)) 7→ nexttime(periodifm,poll(c)(f ), (c, v))
nexttimeifm,tmit : Ifm × S → R+

0

(md , (c, v)) 7→ nexttime(periodifm,tmit(c)(f ), (c, v))

Note that (1) one of transitions {tdisc , tflow} is non-deterministically chosen,
if seltrans(si , κAm(v)) 6= �∧ selflow (si , κAm(v)), and that (2) a deadlock occurs,
if seltrans(si , κAm(v)) = � ∧ ¬selflow (si , κAm(v)). A well-formed model of the
applied high-level formalism should avoid the second situation.

3.6 Program Subject Execution

This section defines the behavior of program subjects by transitions t ∈ T .
Program subjects are similar to abstract subjects in that they have operations
which can be executed, which takes some time before the execution terminates.

In contrast to abstract subjects, the operations of program subjects are
given in a more concrete way – by programs. Such a program is a sequence of
statements, therefore the execution of an operation is given by the sequence of
executions of these statements.

Each statement execution then has its own duration, and its own effect
on the state space on termination of the statement. Therefore, we define the
progress of parallel statement executions by one progress rule which applies to
any set of statements. According to abstract subjects, for |lwp(c)| > 1 time
evolves in common for several operations and therefore for several statements.
Here, timing constraints (see section 3.4.1) may be violated, too, leading to the
setting of the fail flag.

The effects are defined per statement. We provide the corresponding termi-
nation rule in the following. The termination of a complete program is defined
for the empty program string, which results when the last statement in a pro-
gram is terminated, as well as for an explicit return statement, separately.

3.6.1 Progress of Statement Execution

Statements of program subjects are executed, as soon as a maximum subset
from the schedule is allocated on LWPs, such that there is no idle LWP left or
the schedule is empty. Then, statements take some time.

Let (c, v) ∈ S with phase(sched(v)) ∈ {flow phase, transition phase}. Sup-
pose that all active subjects have a positive remaining execution duration,
i.e. ∀ s ∈ ranκLWP (v) • δProgState(κSubjprog (v)(s)) ∈ R+, and that a maxi-
mum subset of program subjects from the schedule is allocated on LWPs,
such that there is no idle LWP left or the schedule is empty. That is,
scheduler 6∈ ranκLWP (v) ∨ subjsched(sched(v)) = �. Then some time can pass
for the currently active statements to complete.

Rule 3.6.1 Let δmin denote the minimal value of all remaining execution times
of active statements captured by {δ ∈ R+ | ∃(s, op) ∈ dom κSubjprog (v) • δ =



3.6. PROGRAM SUBJECT EXECUTION 47

δProgState(κSubjprog (v)(s, op))}. Then for all δ ≤ δmin , states (c, v ′) ∈ Suc ⊆ S
exist with the difference between v and v ′ of

κSubjprog (v
′) = κSubjprog (v)⊕ { (s, op) 7→

(stringProgState(κSubjprog (v)(s, op)), δProgState(κSubjprog (v)(s, op))− δ

visProgState(κSubjprog (v)(s, op))) | (s, op) ∈ dom κSubjprog (v)
∧δProgState(κSubjprog (v)(s, op)) ∈ R+}

physTime(v ′) = physTime(v) + δ �

Similarly to the progress of abstract subject operations, the progress of state-
ments may cause a timing failure. Therefore, the successor states are partitioned
into Sucsync = Suc ∩ Ssync and Sucfail = Suc ∩ Sfail .

Rule 3.6.2 Transitions (c, v) −→ (c, v ′) ∈ T exist for states (c, v ′) ∈ Sucsync ,
whereas for (c, v ′) ∈ Sucfail we have transitions (c, v) −→ (c, v ′′) ∈ T , such
that the fail flag is set: v ′ = v ′′ holds, except for

fail(v ′′) = failed �

3.6.2 Termination of Statement Execution

Suppose that in state (c, v) ∈ S a program statement stmt ∈ Stmt \ {return}
is about to terminate, i.e. program subject s is active, s ∈ ranκLWP (v), and
there is an operation (s, op) ∈ dom κSubjprog (v) with

κSubjprog (v)(s, op) = (〈stmt〉 � prg , 0, pvis)

Then the termination of stmt has an effect on the state space, given by the
effect function

ε : Program × Paramprog × Subject × CONSTm ×VARmread

→ Program ×VARmwrite

From a given program, a parameter, as well as the part of the state space that
is readable from HL3 models, a remaining program along with the (potentially)
modified state space portion with write access from the model results. The
effect’s resulting components are given by

εprg : Program × Paramprog × Subject × CONSTm ×VARmread → Program
(prg , param, s, c, v) 7→ π1 ε(prg , param, c, v)

εvar : Program × Paramprog × Subject × CONSTm ×VARmread → ΣVar

(prg , param, s, c, v) 7→ π1 (π2 ε(prg , param, c, v))
εchan : Program × Paramprog × Subject × CONSTm ×VARmread → ΣChan

(prg , param, s, c, v) 7→ π2 (π2 ε(prg , param, c, v))
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Rule 3.6.3 From this, a transition (c, v) −→ (c, v ′) ∈ T is defined with v = v ′,
except for

σVar (v ′) = εvar (〈stmt〉 � prg , pvis , s,
(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v)))

κChan(v ′) = εchan(〈stmt〉 � prg , pvis , s,
(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v)))

κSubjprog (v
′) = κSubjprog (v)⊕ {(s, op) 7→ (εprg(〈stmt〉 � prg , pvis , s,

(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v))), δ, pvis)} with δ ∈ R+ �

The transition updates the local variable valuations and the channel valuations
according to the effect of the statement. Further, the remaining program string,
which is also part of the effect, is inserted for (s, op).

For different kind of statements, the respective effects differ. In the following
subsections, the definition of the effect function ε is given incrementally, per
statement.

Write Access to Channels

The writing of data into a channel is defined by the statement put.

put. The effect of a statement put(pwrite , vis, data), where local variables
vis, x ∈ Var hold a visibility set visset ∈ VisibilitySet and a data value
val ∈ Val , and pwrite ∈ Port is a port which is accessible by subject s, i.e.
s ∈ subjectport(c)(pwrite), is defined by

ε(〈put(pwrite , vis, x )〉 � prg , param, s, c, v) = (prg , (σVar (v), κChan(v)⊕
{insertPort(pwrite , (dataVal(σVar (v)(x )), σVar (v)(vis)), c, v)}))

On the one hand, the data is written to the channel through the given port, with
the attached visibilities. On the other hand, the put statement is consumed and
removed from the program string.

Read Access to Channels

The reading of data from a channel is provided by different statements: (1) get
retrieves the data value that is currently visible for a specific port. (2) getTime
gets the publication time stamp for that data value. (3) getPrevious provides
the second newest data value for a specific port. (4) getPreviousTime reads
the publication time stamp for the second newest value.

get. A get statement is an assignment of the form x:=get(pread) with a local
variable x ∈ Var of subject s, i.e. subjectvar (c)(x ) = s, and a port pread ∈ Port
which is accessible by subject s, i.e. s ∈ subjectport(c)(pread).
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Then the current data value for the given port is retrieved and assigned to
the local variable x , if x is of corresponding type, and the get statement is
removed from the operation’s program string:

ε(〈x:=get(pread)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ valData(dataPort,cur (pread , c, v))}, κChan(v)))

The variable must have a fitting type, that is, valData(dataPort,cur (pread , c, v)) ∈
typeVar (x ).

getTime. Similarly to the retrieval of the current data, the associated publi-
cation time stamp can be read. This may be used while calculating integration
steps, when the evolution of a value wrt. time is needed. Additionally, the pre-
vious value and time also have effect on the calculation; these are given in the
succeeding paragraphs.

The effect of a statement t:=getTime(pread) is that the time stamp is read
and assigned to a (correctly typed) local variable t ∈ Var of subject s, i.e.
typeVar (t) ⊇ ModelTime and subjectvar (c)(t) = s. The time stamp is read for a
port pread ∈ Port which is accessible by subject s, i.e. s ∈ subjectport(c)(pread).
Further, the getTime statement is removed from the operation’s program string.

ε(〈t:=getTime(pread)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {t 7→ tickPort,cur (pread , c, v)}, κChan(v)))

getPrevious. A getPrevious statement is an assignment which is very similar
to the get assignment; the only difference is, that instead of the newest value
for the given port, the second newest one is retrieved.

For a statement x:=getPrevious(pread) with a local variable x ∈ Var of
subject s, i.e. subjectvar (c)(x ) = s, and a port pread ∈ Port accessible by
subject s, i.e. s ∈ subjectport(c)(pread), the previous data value of the current
one for the given port is retrieved and assigned to the local variable x , and the
getPrevious statement is removed from the operation’s program string:

ε(〈x:=getPrevious(pread)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ valData(dataPort,prev (pread , c, v))}, κChan(v)))

The variable must have a fitting type, that is,
valData(dataPort,prev (pread , c, v)) ∈ typeVar (x ).

getPreviousTime. The time stamp of the second newest value is accessed in
the analogous way as the time stamp of the current value is.

The effect of a statement t:=getPreviousTime(pread) is that the time stamp
is read and assigned to the a local variable t ∈ Var of correct type and of
subject s, i.e. typeVar (t) ⊇ ModelTime and subjectvar (c)(t) = s. The time
stamp is read for a port pread ∈ Port which is accessible by subject s, i.e.
s ∈ subjectport(c)(pread). Further, the getPreviousTime statement is removed
from the operation’s program string.

ε(〈t:=getPreviousTime(pread)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {t 7→ tickPort,prev (pread , c, v)}, κChan(v)))
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Read Access to Model Time

The statement getCurrentTime retrieves the model time for use in the program:

getCurrentTime. The effect of a statement t:=getCurrentTime() is that the
current model time is read and assigned to a local variable t ∈ Var , which is
accessible for subject s, i.e. subjectvar (c)(t) = s, supposed that typeVar (t) ⊇
ModelTime. Anyway, the getCurrentTime statement is removed from the op-
eration’s program string.

ε(〈t:=getCurrentTime()〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {t 7→ modelTime(v)}, κChan(v)))

Read Access to the Visibility Set Parameter

The statement getVisParam retrieves the program’s visibility set parameter:

getVisParam. The effect of a statement of the form vis:=getVisParam() is
that the visibility set parameter is read and assigned to the local variable vis ∈
Var of subject s, i.e. subjectvar (c)(vis) = s. The type of vis must fit, and a
parameter value must be available: typeVar (vis) ⊇ VisibilitySet and param 6= λ.
Further, the getVisParam statement is removed from the operation’s program
string:

ε(〈vis:=getVisParam()〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {vis 7→ param}, κChan(v)))

The Operational Rules of Standard Commands

In this section, we briefly list the effects of the conventional statements of while-
programs, as they are discussed in detail in [AO97]. We do not repeat the se-
mantics of arithmetic and boolean expressions, but assume that they are known,
along with the notations used in [AO97].

Assignment. An assignment statement evaluates an expression exp and as-
signs the value to a variable x ∈ Var of subject s, i.e. subjectvar (c)(x ) = s. The
statement is removed from the program string.

ε(〈x:=exp〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ σ(exp)}, κChan(v)))

Conditional Statement. A conditional statement chooses one of two
(sub-)programs sub1 and sub2, depending on the valuation of a boolean ex-
pression bexp. Then the effect of the statement is defined as

ε(〈if (bexp) {sub1} else {sub2}〉 � prg , param, s, c, v) ={
(sub1 � prg , (σVar (v), κChan(v))) if σVar (v) |= bexp
(sub2 � prg , (σVar (v), κChan(v))) if σVar (v) |= ¬bexp
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While-Loop Statement. A while-loop repeatedly executes a (sub-)program
sub, as long as a boolean expression bexp evaluates to true. Then the effect of
the statement is given by

ε(〈while (bexp) {sub}〉 � prg , param, s, c, v) = (sub � 〈while (bexp) {sub}〉 � prg ,
(σVar (v), κChan(v))) if σVar (v) |= bexp

(prg , (σVar (v), κChan(v))) if σVar (v) |= ¬bexp

Set Operations

We introduce special statements to support the handling of set values within
programs. These are the adding and retrieving of entries, as well as the clearing
of sets and the reading of the set size.

clear. For a variable s ∈ Var that can have the empty set as current value,
i.e. with � ∈ typeVar (s), the operation clear assigns it:

ε(〈clear(s)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {s 7→ �}, κChan(v)))

addEntry. For a variable s ∈ Var with a current set value, i.e. ∃S •
σVar (v)(s) ∈ P(S ), the operation addEntry adds the value given by the variable
x ∈ Var :

ε(〈addEntry(s, x )〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {s 7→ σVar (v)(s) ∪ {σVar (v)(x )}}, κChan(v)))

This is only defined, if the new set also fits to the variable’s type, that means if
σVar (v)(s) ∪ {σVar (v)(x )} ∈ typeVar (s).

getEntry. The reading of entries from a set value is defined by the statement
getEntry, such that one element of the set of the variable s ∈ Var is assigned
to variable x ∈ Var .

For this, a mapping anyseqSET : P(SET ) 7→ seqSET is supposed to define
an arbitrary sequence for all elements of a given finite set set ⊆ SET , i.e.
∀ set ⊆ SET•|set | ∈ N0 ⇒ ran(anyseqSET(set)) = set∧|anyseqSET(set)| = |set |.

Then, the variable i ∈ Var defines an index of this sequence, which identifies
the element to be read:

ε(〈x:=getEntry(s, i)〉 � prg , param, s, c, v) = (prg , (σVar (v)⊕
{x 7→ anyseqσVar(v)(s)(σVar (v)(s))(σVar (v)(i) + 1)}, κChan(v)))

The variable i must hold an index that maps to a set entry: σVar (v)(i) ∈
N0 ∧ |σVar (v)(s)| > σVar (v)(i). Finally, the resulting set must fit to the type of
x : anyseqσVar(v)(s)(σVar (v)(s))(σVar (v)(i) + 1) ∈ typeVar (x )

size. The statement size accesses the size of a set value that is held by
a variable s ∈ Var , and assigns it to a variable x ∈ Var , provided that
typeVar (x ) ⊇ N0:

ε(〈x:=size(s)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ |σVar (v)(s)|}, κChan(v)))
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Pair Operations

In order to read and modify pairs of values within a program, the operations
left, right, setLeft, and setRight are defined:

left. Read access to the first projection of a pair of values is provided by the
statement left for a variable p ∈ Var with ∃(l , r) ∈ (L×R)•σVar (v)(p) = (l , r).
The value is then stored in a variable x ∈ Var of corresponding type, i.e. with
l ∈ typeVar (x ):

ε(〈x:=left(p)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ π1 σVar (v)(p)}, κChan(v)))

right. Read access to the second projection of a pair of values is provided
analogously to left, with the corresponding assumptions.

ε(〈x:=right(p)〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ π2 σVar (v)(p)}, κChan(v)))

setLeft. Write access to the first projection of a pair of values is provided by
the statement setLeft for variables p, x ∈ Var :

ε(〈setLeft(p, x )〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {p 7→ (σVar (v)(x ), π2 σVar (v)(p))}, κChan(v)))

The previous value of p must be a pair already: ∃(l , r) ∈ (L × R) •
σVar (v)(p) = (l , r). The new value must fit to the type of p again:
(σVar (v)(x ), π2 σVar (v)(p)) ∈ typeVar (p).

setRight. Write access to the second projection of a pair of values is provided
by the statement setRight for variables p, x ∈ Var :

ε(〈setRight(p, x )〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {p 7→ (π1 σVar (v)(p), σVar (v)(x ))}, κChan(v)))

The previous value of p must be a pair already, and the new value must
fit to the type of p again: ∃(l , r) ∈ (L × R) • σVar (v)(p) = (l , r) and
(π1 σVar (v)(p), σVar (v)(x )) ∈ typeVar (p).

Non-Determinism

The statement random provides non-determinism by assigning a random natural
number (or 0) to a local variable.

random. A random statement is an assignment x:=random() of a local variable
x ∈ Var , which is accessible for subject s, i.e. subjectvar (c)(x ) = s. The assigned
value is an arbitrary natural number or 0. The random statement is consumed.

∃ val ∈ N0 • ε(〈x:=random()〉 � prg , param, s, c, v) =
(prg , (σVar (v)⊕ {x 7→ val}, κChan(v)))

The variable x must be of corresponding type: val ∈ typeVar (x )



3.7. PROPERTIES OF THE HL3 FRAMEWORK 53

3.6.3 Program Termination

The termination of a complete program, and therefore of the associated opera-
tion, takes place when either the program string is empty, or the explicit return
is reached. Since the termination itself may also take some (small amount of)
time, it is treated in a similar way as statements are.

Suppose that in state (c, v) ∈ S an operation (s, op) ∈ dom κSubjprog (v) with
an empty program string or a program string beginning with return has an
elapsed execution time:

κSubjprog (v)(s, op) = (prg , 0, pvis)
with prg = 〈〉 ∨ head(prg) = return

As a result, the remaining program string is empty:

ε(prg , param, s, c, v) =
(〈〉, (σVar (v), κChan(v)))

Further, the corresponding LWP is released, i.e. it is controlled by the scheduler
now. Additionally, the execution time is unset, and the visibility set parameter
is removed.

Rule 3.6.4 Therefore, we have a transition (c, v) −→ (c, v ′) ∈ T with v = v ′,
except for

κSubjprog (v
′) = κSubjprog (v)⊕ {(s, op) 7→ (εprg(prg , pvis , s,

(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v))),∞, λ)}

κLWP (v ′) = κLWP (v)⊕ {p 7→ scheduler | κLWP (v)(p) = s} �

3.7 Properties of the HL3 Framework

In this section, we discuss observations on the behaviour of the HL3 framework.

3.7.1 Timeliness of the HL3 Execution

The following invariant holds for all (valid) states (c, v) ∈ S which are reachable
in a HL3 execution. The first component of the model time is never ahead of
the integral part of a global physical time value:

bphysTime(v)c ≥ t0(modelTime(v))

This is proven by an inductive argument: In the initial state v0 we have
modelTime(v0) = 0.0 and physTime(v0) = 0. For all rules transferring a state
(c, v) to (c, v ′) except for Rules 3.4.1 and 3.4.2, we have that modelTime(v ′) =
modelTime(v) while physTime(v ′) ≥ physTime(v), thus preserving the invari-
ant. In case of Rule 3.4.1, still t0(modelTime(v ′)) = t0(modelTime(v)) holds. In
case of Rule 3.4.2, we indeed have a new value for t0(modelTime(v ′)), but since
modelTime(v ′) = bphysTime(v)c.0, we conclude immediately bphysTime(v ′)c ≥
t0(modelTime(v ′)).
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For all valid states (c, v) ∈ Ssync we also have that

t0(modelTime(v)) ≥ bphysTime(v)c − δperiod(c)

which is immediately implied by condition chktsync.

3.7.2 Scheduler Guarantees

In order to get a faithful execution of a high-level model, the underlying system
must not corrupt this execution by either introducing delays or causing blocking
of the system not related to the model itself.

No unbounded delay None of the rules may allow a process to occupy a
CPU for an unbounded time, i.e., we have to show that any rule application
requires at most some maximal duration δmax .
This is guaranteed by the rules of Section 3.4.2 for δswitch ≤ δmax where δswitch

is some bounded duration which depends on the implementation . A similar
argument holds for the rules of Section 3.4.3 except for Rule 3.4.8: while execu-
tion time of these rules is included into the duration of the respective execution
subjects, it is still bounded as long as δalloc ≤ δmax , again with δalloc depending
on implementation details. For Rule 3.4.8, we observe that the waiting time δ
is always bounded by the system period.

The progress rule of Section 3.5.1 has a duration δ bounded by some δmin

calculated from the (again bounded) durations for the calculation of abstract
subjects.

The duration of the termination rules for abstract machines in Section 3.5.2
is 0, as termination and release of an LWP is seen as last operation of that
abstract machine execution. Thus, these rules can be applied without any delay.
The duration of the termination rules for the selector is again bounded by some
δswitch , a value which depends on the implementation.

No Zeno-execution on scheduler rules The HL3 rules define the simula-
tion of a hybrid system. But as these are defined to incorporate the behavior
of the underlying computer system, certain observations on hybrid systems do
not carry over to HL3. A phenomenon of hybrid automata is the existence of
Zeno-executions, where infinitely many transitions are followed in a finite time
interval. While there are various reasons for a model to allow Zeno-executions,
physical systems are not Zeno [JLSE99].

The HL3 rules do not allow an infinite number of transitions within a fixed
duration. This can be seen as follows: Most of the rules in Section 3.4 and 3.5
already have some explicit δ > 0 for execution itself.For those rules without an
explicit duration we have to analyze if it is possible to apply them in an arbitrary
number without being forced to apply some rule with a minimal duration after
an upper bound n.

This is true for Rule 3.4.6, as it requires sset(v) to be non-empty and
κLWP (v)(p) = scheduler . The rule removes one element of this list sset and
assigns the associated program subject to that LWP. Once no more elements
are in sset or no free LWP is available, the HL3 model has to apply a rule which
executes a program statement of a transition - which takes time. The same
argument holds for Rule 3.4.7.
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For the rules of Section 3.5.2 on termination of abstract machines’ operations,
we distinguish the cases whether some abstract subjects are still listed to be
scheduled, i.e., whether sset(v) 6= �. In this case the next applied transition
is either the progress rule (taking time), or Rule 3.4.7, which also leads to a
situation that requires time to elapse. In case sset(v) = �, the next applied
transition is either the progress rule (taking time), or some rule of Section 3.4.2,
as all abstract machines have finished execution in the respective phase.

If the high-level model transformed to HL3 exhibits some Zeno behaviour
related to model time, the resulting HL3 execution will reach a fail state. As-
sume a model with a Zeno-execution. In the HL3 model then a transition phase
exists, where an infinite number of transition are to be executed. As the execu-
tion of the transformed transitions do take time, the duration of that particular
transition phase exceeds δperiod(c), leading to an application of Rule 3.6.2 which
sets the fail flag to failed . Thus, occurence of a Zeno-execution can be detected.
HL3 currently does not offer to continue the simulation using some extension
model for Zeno-executions as suggested in [JLSE99].

Blocking analysis An execution of a HL3 model may end in a deadlock,
i.e., a safe state where no rule can be applied, when the selector component
observes that no transition of the high-level model is enabled and no time-
passing execution of flow is allowed. In this case, the HL3 model correctly
reflects a deadlock situation of the high-level model.

For all other safe states (c, v) ∈ Ssync which result from the application of a
HL3 rule, there is no deadlock possible, as some rule can continue execution by
construction of the phase cycle model.

An execution of a HL3 model may reach a state (c, v) with fail(v) =
failed .The fail(v) flag can be set to failed by Rule 3.5.6 if there is no initial
valuation of the model. Again, this accurately reflects a failure of the high-level
model.

A HL3 execution can end in a fail state by exceeding the allowed duration of
its respective execution phase, postulated by Rules 3.5.2 and 3.6.2. In this case,
the implementation may exhibit a failure of the simulation for an admissible
model. Among the possible causes for this we have (1) the actual scheduling
algorithm, distributing program subjects in an unfavorable fashion. While the
execution of the high-level operations is possible within a certain duration, the
associated sequence of operations of program subjects exceeds this limit. (2) the
HL3 scheduler accumulates small delays associated with scheduler-related tran-
sitions, which again can make the difference between a successful execution and
a failed one. (3) the actual execution duration for activities of subjects allows
only for a limited number of operation, insufficient to complete an update or
flow phase in time. (4) insufficient number of CPUs preventing the scheduler to
process all operations within a certain phase in time.

3.7.3 Program Execution

As long as program subjects terminate regulary, they do not harm the HL3 exe-
cution. Any change of the program state is controlled by the HL3 environment.
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Termination Provided the involved program segments do not deadlock, have
no infinite loop, and no run-time error occurs, execution of a program statement
within the HL3framework terminates in bounded time.

This is a consequence of the following observations:
• The duration a program requires for termination (i.e., returning CPU control,
Rule 3.6.4) is included in the excecution time of its last statement, which is less
than some duration δmax ∈ R+.
• All atomic statements (assignments, guard evaluation, channel access, etc.)
take some duration less than δmax , and the remaining program text has less
statements than the text before the transition.
• Only the while statement extends the program text. But since the number
nloop of loops is finite, its execution in terms of program statements is equal to
the execution of its program body as often as the number of loops nloop . As
the excecution duration of the program body is bounded, so is the excecution
duration of the entire while statement.

Note that in case of a program blocking, entering an infinite loop, or en-
countering a run-time error, the HL3 model will eventually reach a fail state,
as the respective execution phase exceeds the limit of that its frame.

HL3 Control A program subject can change its program to be executed (as
string) only if this subject occupies a CPU in between.

Given a program subject P ∈ Subjprog , we consider an execu-
tion (c, v) →∗ (c, v ′) such that stringProgState(κSubjprog (v)(P , op)) 6=
stringProgState(κSubjprog (v

′)(P , op)). Note that only the Rule 3.6.3 actually
changes the program string, hence v ′′, v ′′′ exist such that (c, v) →∗ (c, v ′′),
(c, v ′′′) →∗ (c, v ′) and the transition (c, v ′′) → (c, v ′′′) has been made by an
application of Rule 3.6.3. A prerequisite for application of that rule is the fact
that P ∈ ranκLWP (v ′′), i.e., P is running on some CPU.

3.7.4 Data Consistency

A get() operation at model time t0.t1 never reads data to be published at t ′0.t
′
1

with t ′0 > t0 or t ′0 = t0 ∧ t ′1 > t1. This is discussed already in Section 3.3.

3.7.5 Timeliness for Flows and Transitions

A successful execution complies to the constraints of flows which are enabled, the
HL3 model immediately enforces the timely calculation for continous evaluations
that are permanently enabled.

A flow which is always enabled, will eventually occupy a CPU. Assume
a flow f which is enabled for all states - as a simple example this could represent
a clock. In terms of the HL3 model, this means that from the current state
(c, v) on, this flow marked with a time value indicating when this flow is due
to be executed, i.e. we have nexttimeflow (f , (c, v)) 6= ∞. Note that this value
is set only as a result of the update phase in Rule 3.5.4 and that the value
does not change until the intended scheduling time is reached (for all time
instances t in the interval [n · k · δperiod(c), (n + 1) · k · δperiod(c)[ the same value
of nexttimeflow (f , (c, v)) is calculated). With tsched = nexttimeflow (f , (c, v)),
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we get f selected for execution by Rule 3.5.8 whenever this rule is invoked in
the interval [tsched − δperiod(c), tsched [, as for this interval κFlow (v)(f ) = tsched
holds. It remains to show that Rule 3.5.8 is actually applied within the interval
[tsched −δperiod(c), tsched [. Note that we consider only successful executions, i.e.,
executions that do not reach a fail state. For these admissible runs, we discussed
in Section 3.4.1 that the predicate chkttrig holds for all states, ensuring that the
flow phase is active after tsched . Since the flow phase can only be invoked by an
application of Rule 3.5.8, this moment of application has to be in the interval
above.

Enforced transitions are taken without delay in model time. A typi-
cal technique to enforce taking a certain transition at a particular time instant
within the model disables the option to let time pass within the model at this mo-
ment unless the transition is taken. This enforcement of transitions is mapped
by the HL3 model in Rules 3.5.7 and 3.5.8, where ¬selflow (si , κAm(v)) disables
Rule 3.5.8, while Rule 3.5.7 ensures that some transition is taken. Rule 3.5.7
may be invoked several times before the enforced transition is actually selected,
yet there is no change of model time t0(modelTime(v)), as this is changed only
at the end of a flow phase (Rule 3.4.2), which can only be reached via an invo-
cation of Rule 3.5.8.
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Chapter 4

HybridUML Mathematical
Meta-Model

This chapter defines a syntax for HybridUML specifications – the Mathematical
Meta-Model, which is the HybridUML meta-model in terms of UML. In contrast
to the illustration given in section ??, the syntax is defined non-graphically, but
formally in the mathematical sense. The main reason for this is that the focus
of this thesis is on the transformation Φ from HybridUML specifications into
an executable system, which is defined formally itself. The syntax is therefore
given in a form that is appropriate as input for the transformation.

Further, the separation of the meta-model from its graphical representation
is the usual UML approach. As a consequence, the transformation semantics of
HybridUML models is independent from the graphical representation.

The correlation between the Mathematical Meta-Model and the graphical
notation of section ?? is straightforward, therefore it is not given explicitly in
this thesis.

The initial HybridUML presentation [BBHP03] applies the standard
UML 2.0 procedure to define a specialization of UML – the profile mechanism.
HybridUML is defined as a profile, i.e. the UML meta-model is modified by the
application of stereotypes. The profile definition itself is given by means of the
Meta Object Facility (MOF) [OMG06], which is the meta-model language of
UML.1

The profile consists of a mixture of graphical notations, OCL expressions,
and natural language. This is the recommended approach to adapt UML, but
the resulting profile is not mathematically formal. An additional drawback is
that the resulting meta-model is at least as large as the original UML meta-
model, since all modifications are realized by the addition of stereotypes (which
include constraints, textual descriptions, etc.).

Therefore, we define the Mathematical Meta-Model, i.e. the HybridUML
meta-model explicitly, using mathematical definitions. The Mathematical Meta-
Model is intended to be equivalent to the profile definition to a large extent.
However, in addition to small technical differences, the concept of event-based
communication is integrated.

1The MOF features used for the UML meta-model constitute roughly a subset of UML
itself.

59
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In order to make it more comprehensible, the Mathematical Meta-Model is
augmented by descriptions of the intended purpose of the respective entities,
i.e. intuitive semantics are given.
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Figure 4.1: HL3 Part of the Mathematical Meta-Model that provides the be-
havioral specification, illustrated as UML class diagram.

HybridUML Specifications. A HybridUML specification is a tu-
ple

spec = (A,AI , aitl ,V , σV ,S ,PV ,PIV ,CV ,PS ,PIS ,

CS ,DT ,M ,MI ,CP ,CPI ,T ,Exp)

with a set of agents A, a set of agent instances AI , a dedicated top-level agent
instance aitl ∈ AI , a set of properties V , a set of property values σV , a set of
signals S , a set of variable ports PV , a set of variable port instances PIV , a set
of variable connectors CV , a set of signal ports PS , a set of signal port instances
PIS , a set of signal connectors CS , a set of datatypes DT , a set of modes M ,
a set of mode instances MI , a set of control points CP , a set of control point
instances CPI , a set of transitions T , and a set of expressions Exp.

4.1 Structural Specification

In this section, the part of HybridUML specifications that defines the structure
of the system is given. This contains everything that is represented in class
diagrams and composite structure diagrams, as it was illustrated in section ??.

Agent. Agents are the main structural building block of a HybridUML spec-
ification. An Agent is a class in the usual sense – it represents a set of similar
objects, which contain data as well as (optional) behavior. These objects make
up an object tree, in that each object either (1) forms a part of the structural
hierarchy of the system, or (2) provides the context for a state machine which
defines sequential behavior. The latter are the leafs of the object tree. Tech-
nically, an agent is either a basic agent or a composite agent. A basic agent
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has exactly one state machine called mode that defines its behavior, but has no
parts (i.e. contained agent instances). A composite agent contains parts, but
has no own behavior:

behaviorA : A → P(MI )
partA : A → P(AI )
∀ a ∈ A•

partA(a) = �⇔ |behaviorA(a)| = 1
∧partA(a) 6= �⇔ behaviorA(a) = �

Agents contain variables, parameters, and signals:

varA : A → P(V )
paramA : A → P(V )
sigA : A → P(S )

Variables are the objects’ variables in the usual sense.2

Parameters are special private and read-only variables with a multiplicity of
one. They are distinct from other variables in that they are available during the
construction of the system’s static structure, rather than afterwards.

∀ a ∈ A • paramA(a) ⊆ varA(a)
∀ a ∈ A, v ∈ V • v ∈ paramA(a) ⇒ visV (v) = priv
∀ a ∈ A, v ∈ V • v ∈ paramA(a) ⇒ accV (v) = ro
∀ a ∈ A, v ∈ V • v ∈ paramA(a) ⇒ multV (v) = 1

There is a special “ID” parameter for each agent:

∀ a ∈ A • vid,a ∈ paramA(a)

Signals are incidents without time duration.3 Basic agents can synchronize by
sending or receiving signals, respectively. The sending (or raising) of a signal
is non-blocking: Raised signals are multicasted immediately to all agents that
potentially receive the signal. The current internal state of each basic agent
determines, whether the signal is actually received or silently lost.

Each variable, parameter, and signal is exclusively contained by an agent,
i.e.:

∀ v ∈ V , a1, a2 ∈ A•
(v ∈ varA(a1) ∧ v ∈ varA(a2) ⇒ a1 = a2)

∀ p ∈ V , a1, a2 ∈ A•
(p ∈ paramA(a1) ∧ p ∈ paramA(a2) ⇒ a1 = a2)

∀ s ∈ S , a1, a2 ∈ A•
(s ∈ sigA(a1) ∧ s ∈ sigA(a2) ⇒ a1 = a2)

2There are different terms which are commonly used for variables within classes, at least
attribute, property, or member. We will use them synonymously in this thesis.

3A more common term is event, but for UML conformity, we prefer signal.
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An agent may have ports for its variables and signals, in order to share them
with its environment as well as with its contained subagent instances:

portA,Var : A → P(PV )
portA,Sig : A → P(PS )

Each port represents a variable or signal of the agent:

∀ p ∈ PV , a ∈ A•
p ∈ portA,Var (a) ⇒ varPV (p) ∈ varA(a)

∀ p ∈ PS , a ∈ A•
p ∈ portA,Sig(a) ⇒ sigPS (p) ∈ sigA(a)

As with variables and signals, the ports are exclusively contained by one agent
each:

∀ p ∈ PV , a1, a2 ∈ A•
(p ∈ portA,Var (a1) ∧ p ∈ portA,Var (a2) ⇒ a1 = a2)

∀ p ∈ PS , a1, a2 ∈ A•
(p ∈ portA,Sig(a1) ∧ p ∈ portA,Sig(a2) ⇒ a1 = a2)

If an agent is composite, it can have variable and signal connectors. Connectors
connect ports and port instances, in order to define shared variables and shared
signals inside the agent.

connA,Var : A → P(CV )
connA,Sig : A → P(CS )
∀ a ∈ A•

partA(a) = �⇒ connA,Var (a) = � ∧ connA,Sig(a) = �

Each agent has a set of initial state constraints. These constraints must hold
for each of the agent’s objects after construction of the static structure of the
system. Otherwise, there is no defined execution of the complete system.

initStateA : A → P(Exp)

AgentInstance. An agent instance represents a subset of the objects of a
dedicated agent. Therefore, agent instances are mapped to the corresponding
agent:

agentAI : AI → A

A multiplicity expression defines the number of objects that are represented:

multAI : AI → Exp

The multiplicity has to be at least one. If the agent instance is defined within
the context of a parent agent (which is almost always the case), then the number
of objects is further multiplied by the number of duplicates of the parent agent.
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For connecting the agent instance’s properties or signals with its environ-
ment, the corresponding variable or signal ports of the corresponding agent are
instantiated for the agent instance:

portInsAI ,Var : AI → P(PIV )
portInsAI ,Sig : AI → P(PIS )

Of course, no other ports can be instantiated, i.e.:

∀ pi ∈ PIV , ai ∈ AI •
pi ∈ portInsAI ,Var ⇒ portPIV (pi) ∈ portA,Var (agentAI (ai))

∀ pi ∈ PIS , ai ∈ AI •
pi ∈ portInsAI ,Sig ⇒ portPIS (pi) ∈ portA,Sig(agentAI (ai))

Each port instance is connected to exactly one agent instance:

∀ pi ∈ PIV , ai1, ai2 ∈ AI •
(pi ∈ portInsAI ,Var (ai1) ∧ pi ∈ portInsAI ,Var (ai2) ⇒ ai1 = ai2)

∀ pi ∈ PIS , ai1, ai2 ∈ AI •
(pi ∈ portInsAI ,Sig(ai1) ∧ pi ∈ portInsAI ,Sig(ai2) ⇒ ai1 = ai2)

Each parameter of the agent gets exactly one value specification for the agent
instance. This is determined and assigned during the creation of the static
structure of the system.

paramValAI : AI → P(σV )
∀ ai ∈ AI • ∀ p ∈ paramA(agentAI (ai))•

|{v ∈ paramValAI (ai) | varσV
(v) = p}| = 1

The initial state space can be constrained on agent instance level in the same
way as on agent level:

initStateAI : AI → P(Exp)

The conjunction of all initial state constraints from the agent instance as well
as from the corresponding agent defines the initial state space for the agent
instance’s objects.

Property. Properties (alias variables2) of agents are typed:

typeV : V → DT

Each variable has a multiplicity, a visibility, and an access policy:

multV : V → Exp
visV : V → {priv , pub}
accV : V → {ro, rw}

Every variable is implicitly an array, such that there are n ≥ 1 copies of it. This
is defined by its multiplicity. The visibility is either public, i.e. the variable can
be connected to variables of other agents, or private to prevent this. The access
policy defines whether the variable is writable or constant.



64 CHAPTER 4. HYBRIDUML MATHEMATICAL META-MODEL

DataType. Different kinds of datatypes are available for HybridUML
– (1) primitive datatypes, (2) structured datatypes and (3) enumeration
types:

kindDT : DT → {prim, struc, enum}
DTprim = {t ∈ DT | kindDT (t) = prim}
DTstruc = {t ∈ DT | kindDT (t) = struc}
DTenum = {t ∈ DT | kindDT (t) = enum}

The primitive types are predefined, these are (1) boolean, representing values b ∈
B, (2) integer, representing values i ∈ Z, and (3) real, which represents values
r ∈ R. Additionally, the type (4) analog real is used to distinguish variables
which can be modified continuously from discrete real-valued variables.

∀ t ∈ DT•
kindDT (t) = prim ⇒ t ∈ {bool , int , real , anaReal}

Enumeration types are defined within the HybridUML model. They have exclu-
sive literals, i.e. each enumeration literal is mapped to exactly one enumeration
type. There are no other data types with enumeration literals.

dtL : L → DT
litDT : DT → P(L)

t 7→ {l ∈ L | dtL(l) = t}
∀ t ∈ DT•

kindDT (t) 6= enum ⇒ litDT (t) = �

Structured data types are also defined within the model. Each structured data
type contains a list of properties:

varseqDT : DT → seqV

The unsorted shorthand notation for structured data types is:

varDT : DT → P(V )
t 7→ {v ∈ V | ∃ i ∈ N • (i , v) ∈ varseqDT (t)}

Only structured data types contain properties:

∀ t ∈ DT•
kindDT (t) 6= struc ⇒ varDT (t) = �

Properties within structured data types are unique:

∀ p ∈ V , t ∈ DT , i1, i2 ∈ N•
((i1, p) ∈ varseqDT (t) ∧ (i2, p) ∈ varseqDT (t) ⇒ i1 = i2)

∀ p ∈ V , t1, t2 ∈ DT•
(p ∈ varDT (t1) ∧ p ∈ varDT (t2) ⇒ t1 = t2)
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Properties are either part of a structured data type, or part of an agent:

∀ p ∈ V , t ∈ DT•
p ∈ varDT (t) ⇒6 ∃ a ∈ A • (p ∈ varA(a) ∨ p ∈ paramA(a))

∀ p ∈ V , a ∈ A•
(p ∈ varA(a) ∨ p ∈ paramA(a)) ⇒6 ∃ t ∈ DT • p ∈ varDT (t)

PropertyValue. Properties within the HybridUML model can have a value
specification. This value specification determines the initial value of the prop-
erty. For constant properties, particularly for parameters, the initial value thus
is the constant value of the property. It is given by an expression:

expσV
: σV → Exp

Each property value specification is mapped to its property:

varσV
: σV → V

There are no values for the special “ID” parameters:

∀ a ∈ A• 6 ∃ val ∈ σV • varσV
(val) = vid,a

VariablePort. A variable port provides a property, such that the property
can be connected with other properties, by means of variable connectors. Each
variable port represents exactly one property:

varPV
: PV → V

The property must be publicly visible:

∀ p ∈ PV • visV (varPV
(p)) = pub

The variable port has a separate access policy that can restrict the access of a
read/write variable to read-only:

accPV
: PV → {ro, rw}

Read/write ports for read-only properties are not allowed:

∀ p ∈ PV • accV (varPV (p)) = ro ⇒ accPV (p) = ro

VariablePortInstance. Variable port instances correspond to variable ports.
Each variable port instance represents a variable port for a particular agent
instance. Thus, variable port instances are mapped to their variable port:

portPIV : PIV → PV

There can be several variable port instances that correspond to a variable port,
particularly a variable port instance may represent only a subset of the indices
which are defined by the property’s multiplicity. An expression defines the set
of indices which are represented by the variable port instance:

indicesPIV : PIV → Exp
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VariableConnector. A variable connector connects an arbitrary number of
variable port instances and up to one variable port:

portInsCV : CV → P(PIV )
portCV : CV → P(PV )
∀ c ∈ CV • |portCV (c)| ≤ 1

The data types of the port instances and of the port must match. This ensures
that the resulting shared variable has a well-defined type.

∀ c ∈ CV • ∀ p1, p2 ∈ portPIV (portInsCV
(c)) ∪ portCV

(c)•
typeV (varPV

(p1)) = typeV (varPV
(p2))

All connected port instances and the port must be local to the agent that owns
the connector. The port instances are from the contained subagent instances
and therefore connect their properties. The (optional) local port is a port of
the agent itself, and thus make the internally connected variables externally
available for connection, through agent instances of this agent.

∀ c ∈ CV , a ∈ A • c ∈ connA,Var (a) ⇒
((∀ p ∈ portCV (c) • p ∈ portA,Var (a))
∧
(∀ pi ∈ portInsCV (c), ai ∈ AI •
pi ∈ portInsAI ,Var (ai) ⇒ ai ∈ partA(a)))

There are different kinds of connectors:

kindCV
: CV → {ptp,mult}

They differ in how indices of variables are mapped. A point-to-point connector
matches each index individually and thus acts as a set of separate connectors.
A multicast connector acts as a single connector that connects every two indices
of every two variables.

Signal. HybridUML signals are themselves not typed, but have a parameter
list that is defined by a list of data types. Signals are always processed at
discrete points in time, therefore the special type anaReal is inappropriate here.

paramTypesS : S → seq(DT \ {anaReal})

Similarly to properties, a signal specification defines an array of n ≥ 1 copies.
Therefore, signals also have a multiplicity:

multS : S → Exp

SignalPort. A signal port provides a signal for connection with other signals,
in the same way as variable ports provide properties. Each signal port acts for
one signal:

sigPS
: PS → S
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The signal port has an access policy that defines whether the signal can be sent
or received through it:

accPS : PS → {recv , send}

In contrast to variable ports, signal ports control the access to signals exclusively,
since signals do not have access policies themselves. However, there must be no
signal that is received and sent, therefore all ports of a signal have the same
access policy:

∀ p1, p2 ∈ PS • sigPS (p1) = sigPS (p2) ⇒ accPS (p1) = accPS (p2)

SignalPortInstance. Signal port instances correspond to signal ports, in the
same way that variable port instances correspond to variable ports:

portPIS : PIS → PS

According to variable port instances, an expression defines the set of the port
indices which are represented by this port instance:

indicesPIS : PIS → Exp

SignalConnector. A signal connector connects an arbitrary number of signal
port instances and up to one signal port:

portInsCS : CS → P(PIS )
portCS : CS → P(PS )
∀ c ∈ CS • |portCS (c)| ≤ 1

The parameter lists of the signals which are represented by the port instances
and of the port must match, such that a signal and particularly its actual
parameters can be successfully transmitted over the connector:

∀ c ∈ CS • ∀ p1, p2 ∈ portPIS (portInsCS
(c)) ∪ portCS

(c)•
paramTypesS (sigPS

(p1)) = paramTypesS (sigPS
(p2))

As with variable connectors, all connected port instances and the port must be
local to the agent that owns the connector, in order to connect port instances
from the contained subagent instances internally, and to optionally provide them
for external connection:

∀ c ∈ CS , a ∈ A • c ∈ connA,Sig(a) ⇒
((∀ p ∈ portCS

(c) • p ∈ portA,Sig(a))
∧
(∀ pi ∈ portInsCS

(c), ai ∈ AI •
pi ∈ portInsAI ,Sig(ai) ⇒ ai ∈ partA(a)))

The kinds of connectors coincide with variable connector kinds, such that point-
to-point and multicast connections are distinguished for signal connectors, too:

kindCS : CS → {ptp,mult}
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4.2 Behavioral Specification

This section provides the part of the HybridUML specification syntax that de-
fines the system’s behavior. Graphically, the behavior was specified by statechart
diagrams in section ??.

Mode. A mode acts as a definition of behavior. Modes are hierarchical state
machines, in that they can contain submodes. In contrast to plain UML, each
submode is always a state machine itself, therefore we do not distinguish between
state machine and state. Further, we prefer the term mode, since for hybrid
systems, a state usually describes the combination of control state and data
state, the latter including the current point in time. Therefore, residing in a
specific control state for a positive time duration involves a set of states, which
are subsumed to a so-called mode.4 In order to create the behavioral hierarchy,
a mode may contain submode instances:

submodeM : M → P(MI )

Every submode instance is at most part of one mode:

∀mi ∈ MI ,m1,m2 ∈ M •
(mi ∈ submodeM (m1) ∧mi ∈ submodeM (m2) ⇒ m1 = m2)

Discrete behavior is modeled by transitions, which conceptually transfer control
from a currently active mode to a new mode. Technically, modes are equipped
with control points which act as exit or entry for transitions:

cpM : M → P(CP)

Each control point is exclusively contained by one mode:

∀ c ∈ CP ,m1,m2 ∈ M •
(c ∈ cpM (m1) ∧ c ∈ cpM (m2) ⇒ m1 = m2)

There are two special control points for each mode – default entry and default
exit :

Default Exit Transitions starting from the default exit point can fire indepen-
dently of the mode’s internal state, and thus are so-called group transi-
tions.5 In contrast, transitions starting from other exit points can only be
taken, if control is explicitly transferred to that exit point before.

Default Entry Transitions entering the default entry point resume the history
of that mode, i.e. the submodes which were active before a preceding inter-
rupt are reactivated. If no history is available, an initialization transition
activates an initial mode. However, mode entry via normal entry points
always requires explicit control transfer to a submode.

4These terms particularly comply to [AGLS01]. In [Hen96], instead of mode the term
control mode is used.

5Group transitions are called interrupt transitions, alternatively.
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deM : M → CP
∀m ∈ M • (deM (m) ∈ cpM ∧ kindCP (deM (m)) = entry)
dxM : M → CP
∀m ∈ M • (dxM (m) ∈ cpM ∧ kindCP (dxM (m)) = exit)

A mode then can contain transitions that connect its own control points and
control points of submodes. Transitions between submodes switch control within
the mode, whereas transitions to or from the mode itself prepare the loss of
control or handle the gain of control of the mode, respectively.

transM : M → P(T )

No transition is contained by more than one mode:

∀ t ∈ T ,m1,m2 ∈ M •
(t ∈ transM (m1) ∧ t ∈ transM (m2) ⇒ m1 = m2)

Continuous behavior is given by algebraic and flow constraints that define con-
tinuous evolutions of variables when the mode is active. Both are given by
expressions, see chapter 5 for details on them, including the distinction between
them.

flowM : M → P(Exp)
algeM : M → P(Exp)

Invariant constraints define, whether the mode may be currently active or not.
This can particularly disable the continuous behavior and thus enforce discrete
behavior. Technically, invariants are given by boolean expressions, which are
discribed in chapter 5.

invM : M → P(Exp)

ModeInstance. A mode instance is a concrete occurrence of a mode. The
discrimination of modes and mode instances is provided solely for re-use of
mode specifications. In the graphical examples of section ??, modes are mostly
defined implicitly along with a single mode instance specification. An example
of seperate mode and mode instance definition is given in Fig. ?? and Fig. ??.

modeMI : MI → M

Accordingly, the mode’s control points are also instantiated. For each control
point of the mode, exactly one control point instance exists for the mode in-
stance:

cpiMI : MI → P(CPI )
∀mi ∈ MI • ∀ c ∈ cpM (modeMI (mi))•

∃ ci ∈ cpiMI (mi) • cpCPI (ci) = c
∀mi ∈ MI • ∀ ci1, ci2 ∈ cpiMI (mi)•

(cpCPI (ci1) = cpCPI (ci2) ⇒ ci1 = ci2)
∀mi ∈ MI , ci ∈ CPI •

ci ∈ cpiMI (mi) ⇒ cpCPI (ci) ∈ cpM (modeMI (mi))
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A control point instance is at most part of one mode instance:

∀ ci ∈ CPI ,mi1,mi2 ∈ MI •
(ci ∈ cpiMI (mi1) ∧ ci ∈ cpiMI (mi2) ⇒ mi1 = mi2)

ControlPoint. Control points define the entries to modes and exits from
modes. Exit points act as sources of transitions, whereas entry points act as
as transition targets.

kindCP : CP → {entry , exit}

ControlPointInstance. A control point instance is a concrete occurrence of
a control point and is part of a mode instance:

cpCPI : CPI → CP

Transition. A transition represents a discrete behavioral step. It implicitly
connects mode instances or a mode and a submode instance, by connecting their
control point instances or a control point with a control point instance. Three
combinations are allowed:

(1) Connecting an entry point e of mode m with an entry point instance esub
of a submode instance msub : When control is transferred to m via e, then
msub gains control through esub .

(2) Connecting an exit point instance x1 of a submode m1 with an entry
point instance e2 of a submode m2: When the transition fires, control is
transferred from m1 to m2.

(3) Connecting an exit point instance xsub of a submode instance msub with a
non-default exit point x of the parent mode m: When the transition fires,
control is transferred to x , such that outgoing transitions from x can fire
and m loses control.

Note that transitions thus are not only used to switch control between modes,
but also determine how control is assigned within modes.

srcT : T → {CP ∪ CPI }
tarT : T → {CP ∪ CPI }
∀ t ∈ T•

srcT (t) ∈ CP ∧ kindCP (srcT (t)) = entry
∧tarT (t) ∈ CPI ∧ kindCP (cpCPI (tarT (t))) = entry

∨
srcT (t) ∈ CPI ∧ kindCP (cpCPI (srcT (t))) = exit
∧tarT (t) ∈ CPI ∧ kindCP (cpCPI (tarT (t))) = entry

∨
srcT (t) ∈ CPI ∧ kindCP (cpCPI (srcT (t))) = exit
∧tarT (t) ∈ CP ∧ kindCP (tarT (t)) = exit

If either source or target is a control point, then the control point must be
contained by the same mode as the transition itself:

∀ t ∈ T ,m ∈ M •
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srcT (t) ∈ CP ∧ t ∈ transM (m) ⇒ srcT (t) ∈ cpM (m)
∀ t ∈ T ,m ∈ M •

tarT (t) ∈ CP ∧ t ∈ transM (m) ⇒ tarT (t) ∈ cpM (m)

If either source or target is a control point instance, then the control point
instance must be contained by a submode instance of the mode that contains
the transition:

∀ t ∈ T ,m ∈ M ,mi ∈ MI •
t ∈ transM (m) ∧ srcT (t) ∈ cpiMI (mi) ⇒ mi ∈ submodeM (m)

∀ t ∈ T ,m ∈ M ,mi ∈ MI •
t ∈ transM (m) ∧ tarT (t) ∈ cpiMI (mi) ⇒ mi ∈ submodeM (m)

The target of a transition must not be a default exit point:

∀ t ∈ T ,m ∈ M •
tarT (t) ∈ CP ∧ t ∈ transM (m) ⇒ tarT (t) 6= dxM (m)

A transition can be equipped with a trigger, which is the specification of a
signal to be received. If the signal is currently active (and the guard expression
is satisfied, and the source control point has control), then the transition (or a
concurrently enabled one) must be taken.

sigT : T → P(Exp)
∀ t ∈ T•

|sigT (t)| ≤ 1

A transition can have a guard, which is the specification of a boolean expression.
If the guard is satisfied (and the source control point has control), and either
(1) there is no trigger specification or (2) the trigger’s signal is active, then
the transition is enabled. In absence of a trigger, the transition can be taken.
Particularly, as long as the invariant constraints of the source mode instance
are fulfilled, the system may reside in that mode instance and may continue
continuous behavior.

grdT : T → P(Exp)
∀ t ∈ T•

|grdT (t)| ≤ 1

Each transition has a list of actions to be taken when the transition fires. Ac-
tions, as well as triggers and guards, are given by expressions and are discussed
in chapter 5.

actT : T → seqExp
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Chapter 5

HybridUML Expression
Language

The HybridUML Expression Language (HybEL) defines the syntax of expres-
sions exp ∈ ExpHybEL that can be used within HybridUML specifications. The
diagrammatic part of the specification embeds textual parts which define con-
straints and assignments for the behavior as well as for the structure of the
system.

HybridUML is not restricted to be used with the HybridUML Expression
Language; the application of different expression languages is possible. Syntac-
tically, the set Exp of expressions contained in a given HybridUML specification
can be any set of expressions according to an arbitrary expression language.
Semantically, however, the choice of expression language has a heavy impact
on the transformation Φ defined in this thesis. For any HybridUML specifi-
cation with arbitrary expressions (of the chosen language), the transformation
explicitly defines its semantics. This directly depends on the chosen expression
language.

Therefore, HybEL is customized as a small expression language that fits
HybridUML, such that

• it is expressive enough for the design of embedded applications,

• it supports HybridUML’s main concepts, particularly the calculation of
time-continuous values,

• and that it is concise in order to facilitate a comprehensible semantics by
transformation.

The most obvious alternative is the Object Constraint Language
(OCL) [OMG], which is UML’s standard expression language. In many re-
spects, OCL is more expressive than HybridUML Expression Language, e.g. it
contains powerful collection operations providing set comprehension, as well as
universal and existential quantifiers on sets of arbitrary objects. We evaluated
the combination of HybridUML and OCL by means of the BART case study,
with focus on validation and verification [BZL04]. The applied OCL-based val-
idation and verification concept is described in [Ric02].

73
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However, many features of OCL are useless for HybridUML specifications,
such as navigation along associations, since HybridUML excludes a considerable
amount of UML features, e.g. associations. In contrast, OCL does not fulfill
every demand on an expression language for HybridUML. For example, OCL
is explicitly designed to be effect-free and thus does not provide assignment
expressions. As a consequence, in order to use OCL with the transformation
concept of this thesis, extensive customizations would be required, consisting of
restrictions of as well as extensions to the OCL standard. To our opinion, this
would reduce the main benefit of using OCL significantly. Therefore, we prefer
the custom-made expression language HybEL, and assume Exp ⊆ ExpHybEL for
this thesis.

The rest of this chapter provides the following: (1) The relation of HybEL
expressions to a given HybridUML specification is described in section 5.1 –
roles of expressions are identified, leading to the definition of the context of
expressions. This implies a conceptual separation of full HybEL expressions
and embedded identifier expressions. Further it is motivated that HybEL ex-
pressions do not have a complete semantics on their own, but only within the
complete transformation Φ of HybridUML specifications. (2) Section 5.2 pro-
vides the syntax and the intermediate semantics of identifier expressions, which
is a data structure that acts as input for the transformation Φ. (3) The syntax
and intermediate semantics of full HybEL expressions is given in section 5.3.
(4) Finally, section 5.4 defines an incomplete semantics which is used for the
syntax of HybEL expressions in section 5.3.1.

For a less detailed overview of the syntax of the HybridUML Expression
Language, appendix ?? contains an EBNF grammar, which omits some of the
details given in this chapter.

5.1 Context of Expressions

This section defines the context of expressions. As a prerequisite, roles of expres-
sions within a given HybridUML specification are identified. Implicitly, these
were already given in chapter 4, but are repeated here explicitly in order to point
out the application of expressions within the specification. From this, a list of
required language features is determined. The dependencies of expressions on
the given HybridUML specification are identified.

Roles of Expressions. For use with the structural specification part, expres-
sions are attached to properties (including parameters), signals, variable ports,
signal ports, agents, and agent instances:

Initial Property Values The expression exp = expσV
(val) of a property value

val ∈ σV is an expression that determines an initial value for the asso-
ciated property v = varσV

(val). The value is calculated from literals,
variables, and operations, such that the resulting type is t = typeV (v).
For properties v of agents (i.e. ∃ a ∈ A • v ∈ varA(a)), the expres-
sion may refer to variables vp of parent agents, i.e. for which holds:
∃ a, ap ∈ A, ai ∈ AI • (vp ∈ varA(ap) ∧ ai ∈ partA(ap) ∧ agentAI (ai) =
a ∧ v ∈ varA(a)). In contrast, for properties v of structured data types
(i.e. ∃ t ∈ DTstruc • v ∈ varDT (t)), no variables are available.
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Init State Constraints Constraints on the initial state of the system can be spec-
ified by boolean expressions exp ∈ initStateAI (ai) per agent instance ai or
by boolean expressions exp ∈ initStateA(a) per agent a, in order to model
a set of admissible start states, rather than a single one.1 The boolean
result is determined from literals, variables, and operations on them. Vari-
ables va from the attached agent are accessible, that are va ∈ varA(a) or
va ∈ varA(agentAI (ai)), respectively.

Property Multiplicities For each property v a multiplicity expression exp =
multV (v) is given. It defines the number n of copies for this property,
such that an array of n different values v [0]..v [n−1] results. Each expres-
sion exp must be of type int and must evaluate to a natural number. It is
calculated from numerical literals, operations, and variables, which are –
for properties of agents, i.e. ∃ a ∈ A•v ∈ varA(a)) – the variables va of the
agent containing v itself, i.e. for which hold: ∃ a ∈ A • {v , va} ⊆ varA(a).
No variables are accessible for the calculation of variables of structured
data types, i.e. if ∃ t ∈ DTstruc • v ∈ varDT (t).

Signal Multiplicities For each signal s a multiplicity expression exp = multS (s)
is given, similarly to property multiplicities.

Agent Instance Multiplicities An agent instance ai is equipped with an integer-
typed multiplicity expression exp = multAI (ai) that defines the number n
of copies that it represents, in the same way that properties and signals are.
For the calculation of the integer value, variables vp from the parent agent
are available – for which hold: ∃ ap ∈ A•(vp ∈ varA(ap)∧ai ∈ partA(ap)).

Property Index Specifications Since variable port instances pi may represent a
subset instead of all copies of the associated property v , an expression
exp = indicesPIV (pi) is given that defines a set indices of integer-typed
values. With a property multiplicity n, the resulting set of represented
property copies is {v [i ] | i ∈ {0 ..n − 1} ∩ indices}. For the calcula-
tion, literals, operations, and variables from the parent agent can be used.
Thus, the variables vp with ∃ a, ap ∈ A, ai ∈ AI • (vp ∈ varA(ap) ∧ ai ∈
partA(ap) ∧ agentAI (ai) = a ∧ v ∈ varA(a)) can be referred to.

Signal Index Specifications Signal index specifications exp = indicesPIS (pi) are
similar to variable index specifications.

Within the behavioral specification part, expressions are attached to either
modes or transitions. The modes’ expressions are:

Flow Constraints A flow constraint f ∈ flowM (m) for some mode m is an ex-
pression that is suitable to define a continuous evolution of a variable.
Therefore it is an expression that calculates a numeric value and assigns it
to a variable v of type typeV (v) = anaReal . This can be a conventional as-
signment, i.e. the variable is directly assigned, and the value is determined
from numeric literals, variables, and operations. Alternatively, derivatives
of variables can be used either for the calculation or for the assignment,
i.e. either for the calculation, a derivative is read, or the value of a variable
is assigned indirectly by assigning its derivative.

1The distinction between “Initial Property Values” and “Init State Constraints” is moti-
vated in chapter 6.
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Algebraic Constraints An algebraic constraint a ∈ algeM (m) for some mode m
is, like a flow constraint, an expression that calculates a numeric value
and assigns it to a variable v of type typeV (v) = anaReal . The difference
is that no derivatives can be used with algebraic constraints.

Invariant Constraints An invariant constraint i ∈ invM (m) for some mode m
is an expression that defines iff the mode may be active. It provides
a boolean value, which is determined from variables and literals of any
type, potentially by the application of suitable operations.

The expressions attached to transitions are:

Trigger The trigger sigT (t) of a transition t is an expression that defines exactly
one signal s to be received, in order to enable t . If the signal carries
parameter values, a list of writable variables has to be defined which store
these values on signal reception. The variable types must correspond to
the signal’s parameter definition paramTypesS (s).

Guard The guard grdT (t) of a transition t is a boolean expression that enables
or disables t . Similarly to invariant constraints, variables, literals, and
operations on them calculate the boolean result. If guard and trigger are
both present, their conjunction enables t .

Action The actions actT (t) of a transition define a sequence of assignments and
signal raise statements that are to be executed when the transition fires.
An assignment calculates a new value for some variable v of any type.
The value is given by an expression of appropriate type, which consists
of literals, variables, and operations on them. A signal raise statement
defines a signal to be sent. A list of expressions must be provided if the
signal is supposed to carry parameter values. The expression types must
correspond to the signal’s parameter definition paramTypesS (s), such that
the signal’s parameters are determined.

Because behavioral specifications, i.e. top-level mode instances mi and all
their (recursively) included submode instances and transitions do not have
own variables or signals, but are associated with agent instances, they re-
fer to the variables v and signals s provided by the corresponding agent
instance ai , i.e. behaviorA(agentAI (ai)) = mi ∧ v ∈ varA(agentAI (ai)) or
behaviorA(agentAI (ai)) = mi ∧ s ∈ sigA(agentAI (ai)), respectively.

Required HybEL Features. From the possible roles of expressions within
the HybridUML specification, a list of elements results that the expression lan-
guage must provide. From this feature list, the language is developed. The
required features are:

1. Literals of all types t ∈ DT .

2. Access to variables v of all types typeV (v) ∈ DT . Read and write access
are distinguished.

3. Access to derivatives of variables v of type t = anaReal . Read and write
access are distinguished.
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4. Common numeric and boolean operations, like basic arithmetics and com-
parison of values. Operations depend on the number and type of their
arguments.

5. Special operations that define finite sets of integers iset ∈ P(int).

6. Assignments to writable variables of all types t ∈ DT .

7. Assignments to derivatives of writable variables of type t = anaReal .

8. Access to signals s. Receive and send access are distinguished.

9. Reception of signals, incl. parameter specifications.

10. Sending of signals, incl. parameter specifications.

11. Index expressions for the determination of variable or signal indices.

Dependency to the HybridUML Specification. The available variables
and signals within a particular expression depend on the expression’s role, and
are given by a dedicated agent, which is an associated agent, a parent agent, or
an embedding agent. Further, the absence of a corresponding agent leads to an
empty set of available variables and signals.

In contrast, the availability of literals, operations, assignments, as well as
signal receive and send statements is independent of the embedding specifica-
tion. Thus, it is exactly the variables and signals that constitute the expression’s
dependency to the HybridUML specification.

Context of Expressions. The context of expressions is the set of available
variables and signals. Since the access policy of variables and signals is relevant
within expressions, but signals themselves have none, it is added explicitly:

CTX = P(V ∪Vlocal)× P(S × {recv , send})

The contained variables and signals can be accessed by

varCTX : CTX → P(V ∪Vlocal)
(var , sig) 7→ var

sigCTX : CTX → P(S × {recv , send})
(var , sig) 7→ sig

The definition of syntactically correct expressions (given in the following sec-
tions) is relative to the given context, thus the context encapsulates the expres-
sions’ dependencies to the HybridUML specification.

For one technical reason, the context is not defined by the agent which
provides the variables and signals: There are (sub-)expressions that are defined
within a different context than that of an agent – bound variables vlocal ∈
Vlocal introduced by quantified expressions extend the context for contained
expressions, and identifiers embedded into structured data types are defined in
the context of the data type.
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Two-Level Syntax. As a consequence from the dependency of expressions
on variables and signals, the HybEL syntax is partitioned into identifier expres-
sions and full hybel expressions. Identifier expressions define valid identifiers
which represent variables or signals from the given context. This includes sub-
identifiers idsdt .idsub of structured data types, as well as indexed identifiers
id [〈expidx 〉]. Full hybel expressions define complete expressions that (can) con-
tain identifier expressions. Note that this is not a two-level definition in the
strict sense, but a mutually recursive definition: The index expressions expidx

within the identifier expressions are full hybel expressions themselves.2

The syntax of identifier expressions is given in section 5.2.1, the full hybel
identifier syntax is defined in section 5.3.1.

Semantics. There are two different ways in which HybEL expressions are
interpreted:

Evaluation Semantics The expressions from the structural specification part
are evaluated during the transformation Φ from HybridUML specifica-
tions into the executable system, when the static structure of the system
is created. Effectively, only a subset of the available HybEL expressions is
available for the structural specification, because only expressions of type
t ∈ {int ,P(int)} are applied there.
The mapping eval provides the associated values. As described in chap-
ter 6, agent instances and therefore also the attached variables are du-
plicated, and may have different values assigned. This implies that the
evaluation of expressions which refer to variables depends on the partic-
ular duplicate; thus eval in only defined within the transformation Φ,
rather than independently. A stand-alone, but less powerful variant eval�
which omits variables is given in section 5.4. It is sufficient for the syntax
definition of hybel expressions in section 5.3.1.

Transformation Semantics Expressions from the behavioral specification part
as well as property and signal multiplicities from the structural specifica-
tion part are transformed by Φ into (parts of) the executable system and
evaluated at run-time. For this, the full extent of HybEL is exploited.
Obviously, this also depends on the transformation Φ, and is discussed in
section 6.5 of chapter 6.

In this chapter, intermediate semantics are defined for identifier expressions
(section 5.2.2) and for full hybel expressions (section 5.3.2). From this, the
evaluation semantics as well as the transformation semantics are defined.

5.2 Identifier Expressions

Identifier expressions are subexpressions of HybEL expressions that identify
either a variable or a signal within a given context.

For the given HybridUML specification, there is a set Id of available identi-
fiers. These are associated with the variables and signals from the specification.
In addition to the variables v ∈ V and signals s ∈ S , there are local variables

2Technically, this is handled by separate parser runs which omit index expressions at first.
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vlocal ∈ Vlocal with V ∩Vlocal = � which act as bound variables within expres-
sions. Local variables are always of type int . Each variable v ∈ V ∪ Vlocal or
signal s ∈ S of the specification has an identifier id ∈ Id :

idV : V → Id
idVlocal

: Vlocal → Id
idV ,Vlocal

= idV ∪ idVlocal

idS : S → Id

The sets of identifiers for variables and signals are disjoint:

ran idV ∩ ran idVlocal
∩ ran idS = �

Each identifier of a variable v ∈ V and each identifier of a signal s ∈ S is unique
within the embedding agent or data type, respectively:

∀ a ∈ A • ∀ v1, v2 ∈ varA(a) • idV (v1) = idV (v2) ⇒ v1 = v2

∀ t ∈ DT • ∀ v1, v2 ∈ varDT (a) • idV (v1) = idV (v2) ⇒ v1 = v2

∀ a ∈ A • ∀ s1, s2 ∈ sigA(a) • idS (s1) = idS (s2) ⇒ s1 = s2

Each local variable has a unique identifier within Id , i.e. the mapping idVlocal
is

injective.
Available identifiers within a certain context are provided by respective map-

pings:

idCTX ,var : CTX → P(Id)
c 7→ {id ∈ Id | ∃ v ∈ varCTX (c) • idV ,Vlocal

(v) = id}
idCTX ,sig : CTX → P(Id)

c 7→ {id ∈ Id | ∃(s, acc) ∈ sigCTX (c) • idV (s) = id}
idCTX ,sig,recv : CTX → P(Id)

c 7→ {id ∈ Id | ∃(s, recv) ∈ sigCTX (c) • idV (s) = id}
idCTX : CTX → P(Id)

c 7→ idCTX ,var (c) ∪ idCTX ,sig(c)

5.2.1 Syntax of Identifier Expressions

The syntax of identifier expressions is given by the mapping

synid : CTX × CTX → P(seqΣExp)

whereas the alphabet ΣExp contains all variable and signal identifiers of the
HybridUML specification. Additionally, terminal symbols for the separation of
structured data type’s identifiers, as well as terminal symbols for index expres-
sions of indexed variables or signals are provided:

ran idV ∪ ran idVlocal
∪ ran idS ∪ {., [, ]} ⊂ ΣExp

The full definition will be given in section 5.3.1.
The syntax of identifier expressions is affected by two contexts: (1) The

local context provides the set of variables and signals for which the current
identifier must match. (2) A top-level context is needed for embedded index
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expressions: within structured data types, embedded identifiers can be equipped
with index expressions – these have to be evaluated within the context of the
outer structured data type identifier, rather than in the local context. Valid
identifier expressions are:

(1) Simple identifiers, identifying a variable or signal: id
(2) Indexed identifiers, identifying a variable or signal with a given index:

id [17]
(3) Signal identifier with written index. This identifies a signal to be received

with any index wrt. its multiplicity. When the signal is received at index i ,
then i is stored in the variable that is determined by the index expression.
For example: idsig [:= idint,rw ]

(4) Sub-identifier from a simple variable of structured data type, e.g.:
idsdt .idsub

(5) Sub-identifier from an indexed variable of structured data type, e.g.:
idsdt [17].idsub

synid(c, ctl) =
{〈id〉 | id ∈ idCTX (c)}

∪ {〈id , [〉 � expidx � 〈]〉 | id ∈ idCTX (c) ∧ expidx ∈ synint(ctl)}
∪ {〈id , [〉 � expidx � 〈]〉 | id ∈ idCTX ,sig,recv (c) ∧ expidx ∈ synidxass(ctl)}
∪ {〈id , .〉 � expsub | id ∈ idCTX ,var (c) ∧ ∃ v ∈ varCTX (c) •

(idV ,Vlocal
(v) = id ∧ expsub ∈ synid((varDT (typeV (v)),�), ctl)}

∪ {〈id , [〉 � expidx � 〈], .〉 � expsub |
id ∈ idCTX ,var (c) ∧ expidx ∈ synint(ctl) ∧ ∃ v ∈ varCTX (c) •
(idV ,Vlocal

(v) = id ∧ expsub ∈ synid((varDT (typeV (v)),�), ctl)}

The syntax of index expressions is defined in section 5.3.1, given by synint and
synidxass , respectively. It is defined as a subset of complete HybEL expressions.

As a shorthand, for equal local context and top-level context, we use

synid : CTX → P(seqΣExp)
c 7→ synid(c, c)

5.2.2 Intermediate Semantics of Identifier Expressions

Expressions exp ∈ seqΣExp which represent variables or signals are mapped
to trees of identifier items. Such a tree is the intermediate semantics of an
identifier expression. In contrast, the final semantics is given in chapter 6, in
the context of integrated transformation Φ of HybridUML specifications and
contained HybEL expressions.

Identifier items consist of a type and a value:

IdItem = IdItemType × IdItemVal

The item type is either the type of the variable or signal, or a special type
that identifies a contained index expression. Signal types distinguish signals to
be sent and signals to be received.

IdItemType = DT ∪ {recvSig , sendSig , indexExp}
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The possible item values for items that represent an identifier are either
variables v ∈ V ∪ Vlocal or signals s ∈ S , with an attached access policy. In
contrast, an item of role indexExp represents a full-blown HybEL expression
that defines an index wrt. the variable’s or signal’s multiplicity. Consequently,
this expression’s value is a complete hybel item tree.3

IdItemVal = (V × {ro, rw}) ∪ (S × {recv , send}) ∪ treeo HybelItem

For convenience, mappings to type and access policy are given:

typeIdItem : IdItem → IdItemType
(t , v) 7→ t

accIdItem : IdItem → {ro, rw , recv , send , λ}
(t , (v , acc)) 7→ acc; (v , acc) ∈ V × {ro, rw}
(t , (s, acc)) 7→ acc; (s, acc) ∈ S × {recv , send}
item 7→ λ ; else

For a tree of identifier items, the type is determined from the contained
items, which is the innermost for structured data types t ∈ DTstruc , otherwise
the outermost.

typeIdTree : treeo IdItem → IdItemType
(itm, 〈(itm1, sub1), . . . , (itmn , subn)〉) 7→ typeIdItem(itmn)
; n ≥ 1 ∧ typeIdItem(itm) ∈ DTstruc ∧ typeIdItem(itmn) ∈ DT

(itm, sub) 7→ typeIdItem(itm); else

The access policy for a tree of identifier items is recursively composed of the
contained items for structured data types t ∈ DTstruc , otherwise the outermost
policy is used.

accIdTree : treeo IdItem → {ro, rw , recv , send , λ}
(itm, 〈t1, . . . , tn〉) 7→ rw
; n ≥ 1 ∧ typeIdItem(itm) ∈ DTstruc

∧accIdItem(itm) = rw ∧ accIdTree(tn) = rw
(itm, 〈t1, . . . , tn〉) 7→ ro
; n ≥ 1 ∧ typeIdItem(itm) ∈ DTstruc

∧(accIdItem(itm) = ro ∨ accIdTree(tn) = ro)
(itm, sub) 7→ accIdItem(itm); else

The mapping to identifier item trees depends on the given context, as the
syntax definition does. Two different contexts are provided here, again as a
prerequisite for full identifier expressions: contained index expressions will be
mapped corresponding to their embedding identifier expression’s top-level con-
text, whereas sub-identifiers are related to the context provided by the contain-
ing data type. For each pair of contexts, there is a mapping from expressions

3Ordered trees are recursively defined as pairs of one node and one sequence of subtrees:
treeo X = X × seq(treeo X )
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to corresponding identifier item trees:

IT =
⋃

(c1,c2)∈CTX×CTX

(synid(c1, c2) → treeo IdItem)

it : CTX × CTX → IT

Simple variables v ∈ V are represented by a single identifier item that corre-
sponds to the respective type each:

it(c, ctl)(〈id〉) = ((typeV (v), (v , accV (v))), 〈〉)
; v ∈ varCTX (c) ∩V ∧ idV (v) = id

Simple signals s ∈ S are also represented by single identifiers; the access policy
is distinguished here, because signals to be received and signals to be sent are
fundamentally different:

it(c, ctl)(〈id〉) = ((recvSig , (s, recv)), 〈〉)
; (s, recv) ∈ sigCTX (c) ∧ idS (s) = id

it(c, ctl)(〈id〉) = ((sendSig , (s, send)), 〈〉)
; (s, send) ∈ sigCTX (c) ∧ idS (s) = id

Bound identifiers are implicitly of type int , and they are always read-only:

it(c, ctl)(〈id〉) = ((int , (v , ro)), 〈〉)
; v ∈ varCTX (c) ∩Vlocal ∧ idVlocal

(v) = id

Simple identifiers with an attached index expression are mapped similarly to
simple identifiers without index expression, but from the index expression, a
subtree is created:

it(c, ctl)(〈id , [〉 � expidx � 〈]〉) =
((typeV (v), (v , accV (v))), 〈it(c, ctl)(〈[〉 � expidx � 〈]〉)〉)
; v ∈ varCTX (c) ∩V ∧ idV (v) = id

it(c, ctl)(〈id , [〉 � expidx � 〈]〉) =
((recvSig , (s, recv)), 〈it(c, ctl)(〈[〉 � expidx � 〈]〉)〉)
; (s, recv) ∈ sigCTX (c) ∧ idS (s) = id

it(c, ctl)(〈id , [〉 � expidx � 〈]〉) =
((sendSig , (s, send)), 〈it(c, ctl)(〈[〉 � expidx � 〈]〉)〉)
; (s, send) ∈ sigCTX (c) ∧ idS (s) = id

An identifier expression containing a period defines a sub-identifier that repre-
sents a variable from a structured data type. This can be accompanied by an
index expression. From the sub-identifier, a subtree is created:

it(c, ctl)(〈id , [〉 � expidx � 〈], .〉 � expsuf ) =
((typeV (v), (v , accV (v))),
〈it(c, ctl)(〈[〉 � expidx � 〈]〉), it((varDT (typeV (v)), 〈〉), ctl)(expsuf )〉)

; v ∈ varCTX (c) ∩V ∧ idV (v) = id
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it(c, ctl)(〈id , .〉 � expsuf ) =
((typeV (v), (v , accV (v))),
〈it((varDT (typeV (v)), 〈〉), ctl)(expsuf )〉)

; v ∈ varCTX (c) ∩V ∧ idV (v) = id

An index expression defines a contained hybel item tree, which is interpreted in
the attached top-level context:

it(c, ctl)(〈[〉 � expidx � 〈]〉) = ((indexExp, ht(ctl)(expidx )), 〈〉)

The mapping ht is given in section 5.3.2; it is referenced here because ht and it
are defined mutually recursively.

As a shorthand, for equal local context and top-level context, we use

it : CTX → IT
c 7→ it(c, c)

5.3 HybEL Expressions

Alphabet. The alphabet of ExpHybEL consists of terminal symbols that de-
note variable and signal identifiers (as discussed in section 5.2), as well as oper-
ations, assignments, and literals. Its full definition is:

ΣExp = {true, false,∀,∈, {, }, •, (, ),∃,¬,+,−, ·, /, ˆ,∧,∨,==, 6=
<,≤, >,≥, .., ., ,, :=, :∈, |,′ , [, ], 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
∪L ∪ ran idV ∪ ran idVlocal

∪ ran idS

5.3.1 Syntax of HybEL Expressions

The syntax of HybEL expressions is given by a mapping

syn : CTX → P(seqΣExp)

which is partitioned into several sub-mappings. These represent different kinds
of expressions, reflecting the applications of expressions within a HybridUML
specification as discussed at the beginning of this chapter: (1) Constant expres-
sions, providing values of types t ∈ DT . (2) Differential expressions evaluating
derivatives of variables of type anaReal . (3) Assignment expressions that modify
the valuation of a variable. (4) Integer set expressions that calculate finite sets
of integers. (5) Special index expressions that assign an index value. (6) Signal
raise statements that send signals. (7) Trigger expressions that receive signals
and potentially assign variables from the signal’s parameters.

syn(c) = synconst(c) ∪ syndiff (c) ∪ synass(c) ∪ syniset(c) ∪ synidxass(c)
∪synsigraise(c) ∪ syntrigger (c)

The set of all HybEL expressions which can occur within a given HybridUML
specification is then ExpHybEL = ran syn.
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Constant Expressions. Constant expressions calculate a value of dedicated
type, without modifying variables. They are distinguished by the resulting
type:

synconst : CTX → P(seqΣExp)
c 7→ synbool(c) ∪ synint(c) ∪ synreal(c) ∪⋃

t∈DTenum

synenum(c, t) ∪
⋃

t∈DTstruc

synstruc(c, t)

Boolean expressions are constant expressions which calculate boolean results.
They can be defined by:

(1) Boolean literals.
(2) Identifiers of boolean variables.
(3) Unary operation: negation.
(4) Binary operations on boolean operands.
(5) Binary operations on numeric operands.
(6) Binary operations on enumeration-typed operands.
(7) Quantified boolean expression: A bound expression is evaluated for a finite

set of integer values. The conjunction (∀) or disjunction (∃) determines the
result. A bound variable is used for access to the integer values. Example:
∀ i ∈ {1..9} • (x [i ] ≤ 5)

synbool : CTX → P(seqΣExp)
c 7→ {true, false}

∪ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = bool}
∪ {〈¬〉 � exp | exp ∈ synbool(c)}
∪ {expl � 〈♦〉 � expr | expl , expr ∈ synbool(c) ∧ ♦ ∈ {∧,∨,==, 6=}}
∪ {expl � 〈♦〉 � expr |

expl , expr ∈ synint(c) ∪ synreal ∧ ♦ ∈ {<,≤, >,≥,==, 6=}}
∪ {expl � 〈♦〉 � expr | ∃ t ∈ DTenum •

(expl , expr ∈ synenum(c, t)) ∧ ♦ ∈ {==, 6=}}
∪ {〈q , id ,∈, {〉 � expiset � 〈}, •, (〉 � expbound � 〈)〉 |

q ∈ {∀,∃} ∧ id ∈ ran idVlocal
∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)

∧∃ v ∈ Vlocal • (expbound ∈ synbool(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}

Integer expressions are constant expressions of integer type:
(1) Integer literals.
(2) Identifiers of integer variables.
(3) Binary operations on numeric operands.

synint : CTX → P(seqΣExp)
c 7→ {s � 〈d1, . . . , dn〉 | s ∈ {〈〉, 〈−〉} ∧ ∀ i ∈ {1..n} •

di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
∪ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = int}
∪ {expl � 〈♦〉 � expr | expl , expr ∈ synint(c) ∧ ♦ ∈ {+,−, ·, /, ˆ}}

Real expressions are constant expressions that provide real-valued results:
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(1) Real-valued literals.
(2) Identifiers of real or analog real variables.
(3) Binary operations on numeric operands.

synreal : CTX → P(seqΣExp)
c 7→ {s � 〈d1, . . . , dk , ., dk+1, dn〉 | s ∈ {〈〉, 〈−〉} ∧ ∀ i ∈ {1..n} •

di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
∪ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) ∈ {real , anaReal}}
∪ {expl � 〈♦〉 � expr | (expl , expr ) ∈ (synint(c)× synreal(c)) ∪

(synreal(c)× synint(c)) ∪ (synreal(c)× synreal(c))
∧♦ ∈ {+,−, ·, /, ˆ}}

Enumeration type expressions are either literals or identifiers of enumeration
type. They are distinguished by their concrete data types:

synenum : CTX ×DTenum → P(seqΣExp)
(c, t) 7→ L

∪ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = t}

Structured data type expressions are either structured literals or identifiers of
structured data type. For type compatibility of literals, helper mappings are
defined. The mapping typeseqDT maps structured data types to their respective
list of contained types, which are derived from their properties – each property is
first expanded to n copies according to its multiplicity, then all property copies
are concatenated:

typeseqDT : CTX ×DT → seqDT
(c, t) 7→ s1 � . . . � s|varseqDT (t)|

; kindDT (t) = struc ∧ ∀ i ∈ {1 ..|varseqDT (t)|} •
(eval�(c)(multV (varseqDT (t)(i))) ∈ N ∧ si =
unrollDT×N((typeV (varseqDT (t)(i)),
eval�(c)(multV (varseqDT (t)(i)))))

(c, t) 7→ 〈〉; else

The expansion of properties according to their multiplicities is defined by the
mapping

unrollDT×N : DT × N → seqDT
(t ,n) 7→ s1 � . . . � sn ; ∀ i ∈ {1..n} • si = 〈t〉

The syntax of structured data type expressions then is defined as the union
of all literals and identifiers of variables which are compatible to a given type
t .4 Note that structured literals can contain arbitrary constant expressions (of
appropriate type), not only literals themselves.

(1) An empty literal fits to structured data types t which have no properties.

4Note that the semantics eval� (from section 5.4) is used in this definition. The parsing
algorithm therefore ensures syntactical correctness of structured data type literals using a
separate parser invocation.
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(2) Literals with exactly one property fit to type t , iff t contains exactly one
property of the same type. Examples are: {17}, {idsdt .p1}, {{3.7, x}}

(3) Literals with several properties fit to type t , iff t has the same number and
types of properties. Examples are: {3.7, x}, {{x , idsdt .p2}, 99, idsdt .p2}

(4) Identifiers of type t fit to type t .

synstruc : CTX ×DTstruc → P(seqΣExp)
(c, t) 7→ {〈{, }〉 | |typeseqDT (c, t)| = 0}

∪ {〈{〉 � exp � 〈}〉 | |typeseqDT (c, t)| = 1 ∧
((typeseqDT (c, t)(1) = bool ⇒ exp ∈ synbool(c))
∧(typeseqDT (c, t)(1) = int ⇒ exp ∈ synint(c))
∧(typeseqDT (c, t)(1) ∈ {real , anaReal} ⇒ exp ∈ synreal(c))
∧(typeseqDT (c, t)(1) ∈ DTenum

⇒ exp ∈ synenum(c, typeseqDT (c, t)(1)))
∧(typeseqDT (c, t)(1) ∈ DTstruc

⇒ exp ∈ synstruc(c, typeseqDT (c, t)(1))))}
∪ {〈{〉 � exp1 � 〈,〉 � . . . � 〈,〉 � expn � 〈}〉 | n = |typeseqDT (c, t)|

∧ ∀ i ∈ {1..n} •
((typeseqDT (c, t)(i) = bool ⇒ expi ∈ synbool(c))
∧(typeseqDT (c, t)(i) = int ⇒ expi ∈ synint(c))
∧(typeseqDT (c, t)(i) ∈ {real , anaReal} ⇒ expi ∈ synreal(c))
∧(typeseqDT (c, t)(i) ∈ DTenum

⇒ expi ∈ synenum(c, typeseqDT (c, t)(i)))
∧(typeseqDT (c, t)(i) ∈ DTstruc

⇒ expi ∈ synstruc(c, typeseqDT (c, t)(i))))}
∪ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = t}

Differential Expressions. Differential expressions are special constant ex-
pressions that refer to derivatives of variables:

(1) Derivative specification for an identifier of an analog real variable v . This
shall provide the current slope of v wrt. time, i.e. v is interpreted as a
function v : time → anaReal , such that the expression v ′ denotes v̇(t).

(2) Operations which themselves contain differential expressions. This allows
to combine derivative access and usual variable access.

syndiff : CTX → P(seqΣExp)
c 7→ {exp � 〈′〉 | exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = anaReal}

∪ {expl � 〈♦〉 � expr | (expl , expr ) ∈ (syndiff (c)× syndiff (c)) ∪
(syndiff (c)× synreal(c)) ∪ (synreal(c)× syndiff (c)) ∪
(syndiff (c)× synint(c)) ∪ (synint(c)× syndiff (c))
∧♦ ∈ {+,−, ·, /, ˆ}}

Assignment Expressions. Assignments modify the valuation of variables.
They consist of an identifier of a writable variable of type t and an expression
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that calculates a compatible value. Assignments are distinguished by the type
of variables that are assigned. Additionally, assignments to and from derivatives
of variables are treated separately:

synass : CTX → P(seqΣExp)
c 7→ synass,bool(c) ∪ synass,int(c) ∪ synass,real(c) ∪ synass,anaReal(c) ∪⋃

t∈DTenum

synass,enum(c, t) ∪
⋃

t∈DTstruc

synass,struc(c, t)

∪synass,diff (c)

Boolean assignments assign a writable boolean variable from a boolean expres-
sion. This may be quantified by an assignment group, which provides a finite set
of integers for which the assignment is done. For example, ∀ i ∈ {0..1, 5..6} :=
(idbool [i ] := x [i ] ≥ 37) is a shortcut for the assignments idbool [0] := x [0] ≥ 37,
idbool [1] := x [1] ≥ 37, idbool [5] := x [5] ≥ 37, and idbool [6] := x [6] ≥ 37.

synass,bool : CTX → P(seqΣExp)
c 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c)

∧typeIdTree(it(c)(expl)) = bool ∧ accIdTree(it(c)(expl)) = rw
∧expr ∈ synbool(c)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈ synass,bool(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}

Integer assignments assign a writable integer variable from an integer expression,
similarly to boolean assignments. Additionally, a non-deterministic assignment
from a finite set of integers can be given, that is constrained by a boolean
expression. As an example, idint :∈ {i ∈ {3..8} | idbool [i ] ∨ idbool [i + 1]} first
determines the subset s ⊆ {3, 4, 5, 6, 7, 8} for which the given boolean expression
holds, and then chooses one of the elements for assignment to idint .

synass,int : CTX → P(seqΣExp)
c 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c)

∧typeIdTree(it(c)(expl)) = int ∧ accIdTree(it(c)(expl)) = rw
∧expr ∈ synint(c)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈ synass,int(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}
∪ {expvar � 〈:∈, {, id ,∈, {〉 � expiset � 〈}, |〉 � expbound � 〈}〉 |

expvar ∈ synid(c) ∧ typeIdTree(it(c)(expvar )) = int
∧accIdTree(it(c)(expvar )) = rw ∧ id ∈ ran idVlocal

∧〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈ synbool(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}
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Real assignments assign a writable real variable from a real-valued or integer
expression. Similarly to boolean assignments, a quantified assignment group
can be specified:

synass,real : CTX → P(seqΣExp)
c 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c) ∧

typeIdTree(it(c)(expl)) = real
∧accIdTree(it(c)(expl)) = rw ∧ expr ∈ synint(c) ∪ synreal(c)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈ synass,real(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}

Analog real assignments assign a writable analog real variable from a real-valued
or integer expression. They are defined in the same way as boolean and real
assignments are.

synass,anaReal : CTX → P(seqΣExp)
c 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c) ∧

typeIdTree(it(c)(expl)) = anaReal
∧accIdTree(it(c)(expl)) = rw ∧ expr ∈ synint(c) ∪ synreal(c)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈

synass,anaReal(varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}

Enumeration-typed assignments assign a writable variable of enumeration type
from an expression of the same type. Again, assignment groups are possible.

synass,enum : CTX ×DTenum → P(seqΣExp)
(c, t) 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c) ∧

typeIdTree(it(c)(expl)) = t ∧ accIdTree(it(c)(expl)) = rw
∧expr ∈ synenum(c, t)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈

synass,enum((varCTX (c) ∪ {v}, sigCTX (c)), t)
∧id = idVlocal

(v))}

Structured data type assignments assign a writable variable of structured type
from an expression of the same type. Assignment groups are available, too.

synass,struc : CTX ×DTstruc → P(seqΣExp)
(c, t) 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c) ∧

typeIdTree(it(c)(expl)) = t ∧ accIdTree(it(c)(expl)) = rw



5.3. HYBEL EXPRESSIONS 89

∧expr ∈ synstruc(c, t)}
∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |

id ∈ ran idVlocal
∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)

∧∃ v ∈ Vlocal • (expbound ∈
synass,struc((varCTX (c) ∪ {v}, sigCTX (c)), t)

∧id = idVlocal
(v))}

Differential Assignments. Differential assignments assign a writable analog
real variable. In contrast to analog real assignments, there must be at least one
subexpression which contains derivatives of analog real variables: (1) The right-
hand side can contain derivatives of analog real variables v1, . . . , vn , therefore
the calculated value is calculated from their evolutions, e.g. v := v ′1 + v ′2 + v3.
(2) The left-hand side can be the derivative of a writable analog real variable
v , therefore the right-hand side determines the relative change of v . Examples:
v ′ := 2 · v1, v ′ := 2 · v ′1 As with all other assignments, quantification by
assignment groups is possible.

synass,diff : CTX → P(seqΣExp)
c 7→ {expl � 〈:=〉 � expr | expl ∈ synid(c)

∧typeIdTree(it(c)(expl)) = anaReal
∧accIdTree(it(c)(expl)) = rw ∧ expr ∈ syndiff (c)}

∪ {expl � 〈′, :=〉 � expr | expl ∈ synid(c) ∧
typeIdTree(it(c)(expl)) = anaReal ∧ accIdTree(it(c)(expl)) = rw
∧expr ∈ syndiff (c) ∪ synreal(c) ∪ synint(c)}

∪ {〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉 |
id ∈ ran idVlocal

∧ 〈id〉 6∈ synid(c) ∧ expiset ∈ syniset(c)
∧∃ v ∈ Vlocal • (expbound ∈ synass,diff (varCTX (c) ∪ {v}, sigCTX (c))
∧id = idVlocal

(v))}

Integer Sets. An integer set expression determines a finite set of integers.
It consists of a set of integer ranges, e.g. 1..7, 27..39 identifies the set sZ =
{1..7} ∪ {27..39}.

syniset : CTX → P(seqΣExp)
c 7→ {expl � 〈..〉 � expr | expl , expr ∈ synint(c)}

∪ {expl � 〈..〉 � expr � 〈,〉 � expiset |
expl , expr ∈ synint(c) ∧ expiset ∈ syniset(c)}

Index Assignments. An index assignment expression identifies a writable
variable of type int that is supposed to be assigned with an index value (that is
always of integer type). It is only applicable as index specification for received
signals, see section 5.2.1. Example: := idint,rw

synidxass : CTX → P(seqΣExp)
c 7→ {〈:=〉 � exp | exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = int

∧accIdTree(it(c)(exp)) = rw}
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Signal Raise Statements. Signal raise statements denote a signal to be
raised, optionally equipped with a parameter list, defined by constant expres-
sions.

(1) A signal without parameters is raised by use of a simple identifier that
corresponds to a sendable signal, e.g.: idsig,send

(2) Alternatively, the empty parameter list can be explicitly given: idsig,send()
(3) Arbitrary constant expressions can be used for the actual signal parameter.

Examples are: idsig,send(17), idsig,send(v1 − v2).
(4) Several parameters are given in the usual way: idsig,send(p1, p2, p3)

synsigraise : CTX → P(seqΣExp)
c 7→ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = sendSig}

∪ {exp � 〈(, )〉 | exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = sendSig}
∪ {exp � 〈(〉 � pexp � 〈)〉 | exp ∈ synid(c)

∧typeIdTree(it(c)(exp)) = sendSig ∧ pexp ∈ synconst(c)}
∪ {exp � 〈(〉 � pexp1 � 〈,〉 � . . . � 〈,〉 � pexpn � 〈)〉 |

exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = sendSig
∧∀ i ∈ {1..n} • pexpi ∈ synconst(c)}

Trigger Expressions. Trigger statements define a signal to be received, op-
tionally equipped with a parameter list, which consists of writable variables for
parameter reception.

(1) A trigger without parameters is specified by use of a simple identifier which
denotes a receivable signal, e.g.: idsig,recv

(2) Alternatively, the empty parameter list can be explicitly given: idsig,recv ()
(3) The formal signal parameter is given by an identifier of a writable variable,

e.g.: idsig,recv (vrw ).
(4) Several parameters are given in the usual way: idsig,recv (v1,rw , v2,rw , v3,rw )

syntrigger : CTX → P(seqΣExp)
c 7→ {exp ∈ synid(c) | typeIdTree(it(c)(exp)) = recvSig}

∪ {exp � 〈(, )〉 | exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = recvSig}
∪ {exp � 〈(〉 � pexp � 〈)〉 | exp ∈ synid(c)

∧typeIdTree(it(c)(exp)) = recvSig ∧ pexp ∈ synid(c)
∧typeIdTree(it(c)(pexp)) ∈ DT ∧ accIdTree(it(c)(pexp)) = rw}

∪ {exp � 〈(〉 � pexp1 � 〈,〉 � . . . � 〈,〉 � pexpn � 〈)〉 |
exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = recvSig
∧∀ i ∈ {1..n} • (pexpi ∈ synid(c) ∧ typeIdTree(it(c)(pexpi)) ∈ DT
∧accIdTree(it(c)(pexpi)) = rw)}

5.3.2 Intermediate Semantics of HybEL Expressions

Expressions exp ∈ ExpHybEL are mapped to trees of hybel items, which are
composed of a role and a value:

HybelItem = HybelItemRole ×HybelItemVal
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The role of the hybel item is roughly one of operation, assignment, literal,
enumeration data type, variable, signal raise statement, trigger, read-only pa-
rameter expression, or write-only parameter expression. It also defines the type
of the item.

HybelItemOpRole = {(t , op) | t ∈ {bool , int , real}} ∪ {(anaReal , diffOp)}
∪{(bool , q) | q ∈ {∀,∃}} ∪ {(intSet , s) | s ∈ {intSpecs, intRange}}

HybelItemVarRole = {(t , var) | t ∈ DT} ∪ {(anaReal , derivVar)}
HybelItemLitRole = {(t , lit) | t ∈ DTenum ∪ {bool , int , real} ∪ {sdtanon}}
HybelItemAssRole = {(t , ass) | t ∈ DT} ∪ {(t , assGroup) | t ∈ DT}∪

{(anaReal , diffAss), (int , intNondetAss), (anaReal , diffAssGroup),
(int , indexAss)}

HybelItemSigRole = {(sigtype, d) | d ∈ {sendSig , recvSig}}
HybelItemRole = HybelItemOpRole ∪HybelItemVarRole

∪HybelItemLitRole ∪HybelItemAssRole ∪HybelItemSigRole

Depending on the role of the hybel item, an item value can be attached. The
possible values are operation identifiers, boolean values, integer and real num-
bers, enumeration literals, as well as trees of identifier items. Identifier items
represent variables or signals, respectively, which are given by the identifiers
from the expression, as discussed in section 5.2.2.

The special value λ denotes the absence of an item value.

HybelItemVal = {·, /, +,−,¬,∧,∨,==, 6=,≤, <,≥, >, ˆ}
∪B ∪ Z ∪ R ∪ L
∪treeo IdItem
∪{λ}

The mapping from expressions to hybel item trees depends on the provided
context, similarly to identifier item trees (see section 5.2.2). For each possible
context, a mapping from expressions to hybel item trees exists:

HT =
⋃

c∈CTX

(syn(c) → treeo HybelItem)

ht : CTX → HT

Literals of primitive data types are mapped to the respective value:

ht(c)(〈litbool〉) = (((bool , lit), litbool), 〈〉)
; litbool ∈ {true, false}

ht(c)(〈d1, . . . , dn〉) = (((int , lit), d1 . . . dn), 〈〉)
; ∀ i ∈ {1..n} • di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

ht(c)(〈−, d1, . . . , dn〉) = (((int , lit),−d1 . . . dn), 〈〉)
; ∀ i ∈ {1..n} • di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

ht(c)(〈d1, . . . , dk−1, ., dk , . . . , dn〉) = (((real , lit), d1 . . . dk−1.dk . . . dn), 〈〉)
; ∀ i ∈ {1..n} • di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

ht(c)(〈−, d1, . . . , dk−1, ., dk , . . . , dn〉) = (((real , lit),−d1 . . . dk−1.dk . . . dn), 〈〉)
; ∀ i ∈ {1..n} • di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Literals of enumeration data types are contained themselves in the hybel item:

ht(c)(〈litenum〉) = (((dtL(litenum), lit), litenum), 〈〉)
; litenum ∈ L

Structured data type literals are recursively mapped to a tree representing the
contained expressions:

ht(c)(〈{, }〉) = (((sdtanon , lit), λ), 〈〉)
ht(c)(〈{〉 � exp � 〈}〉) = (((sdtanon , lit), λ), 〈ht(c)(exp)〉)

; exp ∈ synconst(c)
ht(c)(〈{〉 � exp1 � 〈,〉 � . . . � 〈,〉 � expn � 〈}〉) =

(((sdtanon , lit), λ), 〈ht(c)(exp1), . . . , ht(c)(expn)〉)
; ∀ i ∈ {1..n} • expi ∈ synconst(c)

Variable identifiers are mapped to the identifier item tree that represents the
respective variable:

ht(c)(exp) = (((typeIdTree(it(c)(exp)), var), it(c)(exp)), 〈〉)
; exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) ∈ DT

Signal identifiers are mapped to the identifier item tree that represents the
respective signal, potentially including parameters:

ht(c)(exp) = (((sigtype, typeIdTree(it(c)(exp))), it(c)(exp)), 〈〉)
; exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) ∈ {recvSig , sendSig}

ht(c)(exp � 〈(〉 � pexp � 〈)〉)
= (((sigtype, typeIdTree(it(c)(exp))), it(c)(exp)), 〈ht(c)(pexp)〉)
; exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) ∈ {recvSig , sendSig}
∧ pexp ∈ synconst(c) ∪ synid(c)

ht(c)(exp � 〈(〉 � pexp1 � 〈,〉 � . . . � 〈,〉 � pexpn � 〈)〉) =
(((sigtype, typeIdTree(it(c)(exp))), it(c)(exp)),
〈ht(c)(pexp1), . . . , ht(c)(pexpn)〉)

; exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) ∈ {recvSig , sendSig}
∧ ∀ i ∈ {1..n} • pexpi ∈ synconst(c) ∪ synid(c)

Derivatives are mapped to the identifier item tree that represents the derived
variable, which is always of type anaReal .

ht(c)(exp � 〈′〉) = (((anaReal , derivVar), it(c)(exp)), 〈〉)
; exp ∈ synid(c) ∧ typeIdTree(it(c)(exp)) = anaReal

Simple operations with boolean result are recursively mapped to a tree that
represents the operation, containing a subtree for each operand.5

ht(c)(〈¬〉 � exp) = (((bool , op),¬), 〈ht(c)(exp)〉)
ht(c)(exp1 � 〈♦〉 � exp2) = (((bool , op),♦), 〈ht(c)(exp1), ht(c)(exp2)〉)

; ♦ ∈ {==,∧,∨, 6=, <,≤, >,≥}
5The usual operator precedence is guaranteed by the parsing algorithm. It is omitted in

this presentation.
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Simple operations with numeric result are recursively mapped to a tree that
represents the operation, containing a subtree for each operand. The role is
determined by the roles of the subtrees.5

ht(c)(expl � 〈♦〉 � expr ) =
(((int , op),♦), 〈ht(c)(expl), ht(c)(expr )〉)

; expl � 〈♦〉 � expr ∈ synint(c)
∧♦ ∈ {+,−, ·, /, ˆ}

ht(c)(expl � 〈♦〉 � expr ) =
(((real , op),♦), 〈ht(c)(expl), ht(c)(expr )〉)

; expl � 〈♦〉 � expr ∈ synreal(c)
∧♦ ∈ {+,−, ·, /, ˆ}

ht(c)(expl � 〈♦〉 � expr ) =
(((anaReal , diffOp),♦), 〈ht(c)(expl), ht(c)(expr )〉)

; expl � 〈♦〉 � expr ∈ syndiff (c)
∧♦ ∈ {+,−, ·, /, ˆ}

Quantified expressions are mapped to an item that holds an identifier tree which
represents the bound variable that is introduced by the quantification. There
are two children: (1) An expression defining a finite set of integers – these are
the values that the bound variable adopts. (2) An expression that shall be
evaluated for each value of the bound variable.

ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, •, (〉 � expbound � 〈)〉) =
(((bool ,∀), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

ht(c)(〈∃, id ,∈, {〉 � expiset � 〈}, •, (〉 � expbound � 〈)〉) =
(((bool ,∃), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

An integer set specification is represented by an item that contains a list of
integer range expressions:

ht(c)(exp) = (((intSet , intSpecs), λ), 〈sexp〉)
; ∃ expl , expr ∈ synint(c) •

(exp = expl � 〈..〉 � expr

∧sexp = (((intSet , intRange), λ), 〈ht(c)(expl), ht(c)(expr )〉))
ht(c)(exp1 � 〈,〉 � . . . � 〈,〉 � expn) =

(((intSet , intSpecs), λ), 〈sexp1, . . . , sexpn〉)
; ∀ i ∈ {1..n} • ∃ expl , expr ∈ synint(c) •

(expi = expl � 〈..〉 � expr

∧sexpi = (((intSet , intRange), λ), 〈ht(c)(expl), ht(c)(expr )〉))
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Simple assignments contain two subexpressions: (1) the left-hand side, con-
sisting of a variable identifier, and (2) the right-hand side, representing a con-
stant expression of appropriate type.

ht(c)(expl � 〈:=〉 � expr ) = (((bool , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,bool(c)

ht(c)(expl � 〈:=〉 � expr ) = (((int , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,int(c)

ht(c)(expl � 〈:=〉 � expr ) = (((real , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,real(c)

ht(c)(expl � 〈:=〉 � expr ) = (((anaReal , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,anaReal(c)

ht(c)(expl � 〈:=〉 � expr ) = (((t , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,enum(c, t)

ht(c)(expl � 〈:=〉 � expr ) = (((t , ass), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,struc(c, t)

Differential assignments are either assignments to the derivative of a variable,
or assignments which are calculated from derivatives of variables:

ht(c)(expl � 〈:=〉 � expr ) =
(((anaReal , diffAss), λ), 〈ht(c)(expl), ht(c)(expr )〉)
; expl � 〈:=〉 � expr ∈ synass,diff (c)

A non-deterministic integer assignment is composed of four parts: (1) the vari-
able that is assigned, (2) a bound variable, (3) an integer set specification, and
(4) a bound expression:

ht(c)(expvar � 〈:∈, {, id ,∈, {〉 � expiset � 〈}, |〉 � expbound � 〈}〉) =
(((int , intNondetAss), it(c)(〈id〉)),
〈ht(c)(expvar ), ht(c)(expiset),
ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

A group of assignments consists of a quantified assignment with corresponding
type:

ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =
(((bool , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

∧expbound ∈ synass,bool((varCTX (c) ∪ {v}, sigCTX (c)))
ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =

(((int , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id
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∧expbound ∈ synass,int((varCTX (c) ∪ {v}, sigCTX (c)))
ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =

(((real , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

∧expbound ∈ synass,real((varCTX (c) ∪ {v}, sigCTX (c)))
ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =

(((anaReal , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id

∧expbound ∈ synass,anaReal((varCTX (c) ∪ {v}, sigCTX (c)))
ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =

(((t , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id ∧ t ∈ DTenum

∧expbound ∈ synass,enum((varCTX (c) ∪ {v}, sigCTX (c)), t)
ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =

(((t , assGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id ∧ t ∈ DTstruc

∧expbound ∈ synass,struc((varCTX (c) ∪ {v}, sigCTX (c)), t)

A group of differential assignments consists of a quantified differential assign-
ment:

ht(c)(〈∀, id ,∈, {〉 � expiset � 〈}, :=, (〉 � expbound � 〈)〉) =
(((anaReal , diffAssGroup), it(c)(〈id〉)),
〈ht(c)(expiset), ht((varCTX (c) ∪ {v}, sigCTX (c)))(expbound)〉)

; v ∈ Vlocal ∧ idVlocal
(v) = id ∧

∧expbound ∈ synass,diff ((varCTX (c) ∪ {v}, sigCTX (c)))

An index assignment contains a variable of integer type, such that an index
value can be assigned to it:

ht(c)(〈:=〉 � expintvar ) = (((int , indexAss), λ), 〈ht(c)(expintvar )〉)

5.4 Skeleton Evaluation Semantics of HybEL
Expressions

In this section, a skeleton semantics for the evaluation of HybEL expressions is
given. Its main purpose for this chapter is to define the value for multiplicity ex-
pressions of sub-properties of structured data types, as it is used in section 5.3.1.
The definition of the full evaluation semantics is provided in section 6.2.
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The skeleton evaluation semantics of hybel expressions is given by

VALeval = B ∪ Z ∪ R ∪ L ∪ seqVALeval ∪ P(Z)

MAPVALeval
=

⋃
c∈CTX

(syn(c) → VALeval ∪ {λ})

eval� : CTX → MAPVALeval

eval�(c)(exp) = evalht,�(ht(c)(exp))

Each hybel item tree is mapped to either a value, or to the special value λ that
denotes the absence of a value:6

evalht,� : treeo HybelItem → VALeval ∪ {λ}

Literal values are the values:

(((t , lit), l), sub) 7→ l ; t ∈ DT
(((sdtanon , lit), v), 〈t1, . . . , tn〉) 7→ 〈evalht,�(t1), . . . , evalht,�(tn)〉

Operations are evaluated:

(((t , op),♦), 〈t1, t2〉) 7→ evalht,�(t1)♦evalht,�(t2)
; t1, t2 ∈ {int , real , anaReal} ∧ ♦ ∈ {+,−, ·, /, ˆ, <,≤,≥, >}
∨t1 = t2 ∧ ♦ ∈ {==, 6=}
∨t1, t2 ∈ {bool} ∧ ♦ ∈ {∧,∨}

(((t , op),¬), 〈t1〉) 7→ ¬evalht,�(t1)

No other expressions are successfully evaluated:

t 7→ λ ; else

6Note that values v ∈ P(Z) do not occur for evalht,�, but will for the full evaluation
semantics in section 6.2.



Chapter 6

Executable HybridUML
Semantics: Transformation
Definition

This chapter defines the transformation ΦHUML of HybridUML specifications
into HL3 models. Since HL3 models have a formal operational semantics (de-
fined in chapter 3), particular HybridUML specifications spec obtain their se-
mantics directly by ΦHUML.

The result of ΦHUML consists of two parts: (1) From the HybridUML spec-
ification spec, the constant part cspec ∈ CONST of the state space S of the
HL3 model is defined. This includes the definition of abstract machines, tran-
sitions, and flows from the HybridUML agents and modes with their contained
expressions and (HybridUML) transitions. (2) Independently from the particu-
lar specification spec, HybridUML-specific definitions for operations of abstract
subjects (and their internal state) are given, i.e. the operations that define the
behavior of Abstract Machines and the Selector.

By the transformation ΦHUML, a simulation of the complete HybridUML
specification is defined. We do not consider any architectural specification (see
section ??). Therefore, (1) all HybridUML agents from the specification are
mapped to abstract machines. There are no interface modules, because the
simulation does not interact with an external environment. An architectural
specification would be used to define parts of the specification that are defined
externally, such that the respective agent instances would be transformed into
interface modules, rather than into abstract machines.

Further, (2) the selector defined in this chapter is the HybridUML Simulation
Selector. If in contrast, specific executions of the HybridUML specification had
to be chosen, for example for a test setting (with external components) that
utilizes elaborate test data generation algorithms, a different selector would be
defined.

This chapter is structured as follows: Sections 6.1, 6.2, and 6.3 define some
prerequisites for the definitions of the HL3 model, as well as for the abstract
subject’s operations. These are (1) the notion of an intermediate representation
of HybridUML specifications, (2) the definition of the evaluation semantics of
HybEL expressions in the context of the intermediate HybridUML representa-

97
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tion, (3) and the definition of several mappings on expressions and expression
nodes for code generation.

In section 6.4, the constant state space cspec of the HL3 model is defined
according to HybridUML specifications spec, which are given syntactically as
discussed in chapter 4. The creation of programs p ∈ Program, which define
a significant part of the HL3 model’s behavior, is presented separately in sec-
tion 6.5. Examples of the resulting HL3 model are given by means of references
to appendix ??, which contains the C++ variant of the HL3 program of the
Radio-Based Train Control case study, as it is generated by the implementation
of the transformation ΦHUML.

Finally, the HybridUML-specific definition of the operations and the internal
state of abstract subjects is discussed in section 6.6.

6.1 Intermediate Specification Representation

In this section, the HybridUML specification is transformed into an intermediate
representation that consists of:

Tree of Agent Instance Nodes From the agent and agent instance specifications,
a tree of agent instance nodes is created. Agent instance nodes are the
resulting objects that are derived from recursive application of agent and
agent instance specifications.

Set of Basic Agent Instance Nodes The leafs of the tree of agent instance nodes
are the active objects that encapsulate the sequential behavioral compo-
nents of the system.

Sets of Property and Signal Nodes For each agent instance node, a set of prop-
erty nodes and a set of signal nodes is derived from its agent’s properties.
These represent instances of properties and signals wrt. the agent instance
node.

Sets of Connected Property Nodes and Connected Signal Nodes The maximal
sets of connected property nodes and connected signal nodes, as defined
by connectors between properties and signals from the HybridUML spec-
ification, represent the shared variables of the system.

Tree of Mode Instance Nodes Each basic agent instance node has an attached
behavioral specification which is defined by a tree of mode instance nodes.
From the top-level mode instance of the associated agent, this tree is
derived.

Sets of Control Point Instance Nodes and Sets of Transition Nodes The mode
instance nodes are connected by transition nodes via control point in-
stance nodes. The control point instance nodes are instantiated from con-
trol point instances and control points of the respective mode instances
and modes, the transition nodes represent the transitions from the Hy-
bridUML specification which connect them.

Sets of Expression Nodes Attached to mode instance nodes and transition
nodes, there are expression nodes that represent the expressions of the
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original specification: triggers, guards, and actions for transitions, and
flow constraints as well as invariant constraints for modes.

Channels

Mode Instance Node
Tree

Property/Signal
Nodes

Agent Instance Node
Tree

Basic
Agent Instance Nodes

Abstract Machines

Ports

HL3

HybridUML (+ HybEL)
Model

HybridUML Mathematical Meta-Model

Sets of connected
Property/Signal Nodes

Control Point Instance
Nodes

Transition Nodes

Expression Nodes

1
3

4

5 6

7

2

Flows Transitions

Figure 6.1: Simplified transformation illustration. From the HybridUML spec-
ification, a HL3 model is created, via the Intermediate Representation.

The remainder of this section is divided into structural aspects (tree of agent
instance nodes, property and signal nodes, and the connected sets thereof) and
behavioral aspects (tree of mode instance nodes with control point instance
nodes, transition nodes, and expression nodes).

6.1.1 Structure

Agent Instance Nodes. In contrast to agent instances ai ∈ AI which define
sets of instances per containing agent, an agent instance node represents exactly
one single instance of an agent within the system. The possible agent instance
nodes are defined as:

AIN = seqAIN ×AI × N0

Each of these represents an agent instance, given by its second component

aiAIN = π2 AIN
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In order to identify the agent instance node ain uniquely, the context of the
represented agent instance is contained as a path 〈a1, . . . , an〉 ∈ seqAIN of agent
instance nodes leading from its direct ancestor a1 to a top-level agent instance
node an . The top-level node itself contains the empty context 〈〉 ∈ seqAIN .
The context is given as the first component

pathAIN = π1 AIN

Within the context of its parent agent, the represented agent instance has a
multiplicity m. This shall define the number of agent instance nodes that rep-
resent the agent instance. Each of these agent instance nodes is supposed to
represent one index of [0,m − 1]:

indexAIN = π3 AIN

For a particular HybridUML specification, there is a subset AINspec ⊆ AIN of
agent instance nodes that correspond to the specification. These agent instance
nodes contain property nodes that shall represent a single index of a property of
the corresponding agent, that means, properties of the agent with multiplicity
m shall be represented by m independent property nodes:

vnAINspec
: AINspec → P(VNspec)

The same holds for signal nodes:

snAINspec
: AINspec → P(SNspec)

The definitions are given below, with the definitions of property and signal
nodes.

Tree of Agent Instance Nodes. The mapping treeAIN defines how an
agent instance node is (recursively) mapped to a tree1 of agent instances nodes
TreeAIN , such that the resulting tree represents the complete structural specifi-
cation that is contained in the corresponding agent instance:

TreeAIN = treeAIN
treeAIN : AIN → TreeAIN

(p, ai ,n) 7→
((p, ai ,n), {treeAIN ((ps , ais ,ns)) | ais ∈ partA(agentAI (ai))
∧0 ≤ ns < eval(multAI (ai), head(p)) ∧ ps = 〈(p, ai ,n)〉 _ p})
; p 6= 〈〉

(〈〉, ai ,n) 7→
((p, ai ,n), {treeAIN ((ps , ais ,ns)) | ais ∈ partA(agentAI (ai))
∧0 ≤ ns < eval�(multAI (ai)) ∧ ps = 〈(p, ai ,n)〉 _ p})

The definition of the evaluation function eval of HybEL expressions in the con-
text of agent instance nodes is postponed to section 6.2.

1See chapter ?? for the definition of trees.
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In order to obtain the tree of agent instance nodes for the complete spec-
ification, the mapping treeAIN is used with the single top-level agent instance
that represents the system:

treeAI : AI → TreeAIN

ai 7→ treeAIN ((〈〉, ai , 0))

Thus, treeAI (aitl) is the complete agent instance node tree for the specification.
The set of all contained trees is:

TreeAINspec
= {subtreesAIN(treeAI (aitl))}

The set of agent instance nodes that are constructed for the specification then
is:

AINspec = {ain ∈ AIN | ∃(ain1, {t0, . . . , tk}) ∈ TreeAINspec • ain1 = ain}

The leafs of the tree of agent instance nodes are the basic agent instance
nodes, they define the sequential behavioral components of the resulting system:

AINbasic = {ain ∈ AINspec | treeAIN (ain) = (ain,�)}

Property Nodes. A property node represents an index of a property within
the context of an agent instance node. The set of all possible property nodes is

VN = AIN ×V × (PV ∪ {λ})× (PIV ∪ {λ})× N0

The first component is embedding agent instance node:

ainVN = π1 VN

The represented variable is contained, too:

varVN = π2 VN

If a corresponding variable port instance exists, it shall be associated with the
node, otherwise the special value λ denotes the absence of a port instance:

portInsVN = π4 VN

If a corresponding variable port exists, it shall be associated with the node,
similarly to port instances:

portVN = π3 VN

Finally, the node’s index wrt. the property’s multiplicity is contained:

indexVN = π5 VN

The subset VNspec ⊆ VN defines the property nodes which are part of the
representation of a concrete specification.
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Consecutive Index of Property Nodes. In order to realize point-to-point
connections between port instances of multiplicity mp , contained by agent in-
stances with multiplicity ma , every property node is supposed to have a con-
secutive index within the context of the corresponding agent.

For the calculation of the consecutive index, a mapping is provided that
gives all property nodes for a single one, such that all property nodes coincide
for the port instance they represent:

vnVN ,PIV : VN → P(VN )
(ain, v , p, pi ,n) 7→ {(ain, v , p, pi ,m) ∈ VN } ; pi 6= λ

(ain, v , p, λ,n) 7→ �

Further, a sequence of property nodes, ordered by the properties’ indices they
represent, is defined:

vnseq : P(VN ) → seqVN
such that

∀ vn ∈ P(VN ) • |vnseq(vn)| = |vn| ∧ ran vnseq(vn) = vn
and

∀ i1 7→ vn1, i2 7→ vn2 ∈ vnseq(vn) • i1 ≤ i2 ⇒ indexVN (vn1) ≤ indexVN (vn2)

The local consecutive index of a property node is then the (unique) position of
the property node within the sequence of property nodes that represent its port
index:

cindexVN ,loc : VN → N0

vn 7→ i ; i 7→ vn ∈ vnseq(vnVN ,PIV (vn))

Finally, the consecutive index then is calculated from the agent instance’s index
and the property node’s local consecutive index:

cindexVN : VN → N0

vn 7→ indexAIN (ainVN (vn)) · |vnVN ,PIV (vn)|+ cindexVN ,loc(vn)

Signal Nodes. A signal node represents an index of a signal within the con-
text of an agent instance node, exactly in the same fashion as variable nodes do
for properties. Therefore, the set of all possible signal nodes is

SN = AIN × S × (PS ∪ {λ})× (PIS ∪ {λ})× N0

The components agent instance node, signal, variable port instance, variable
port, and index are accessible by the following projections:

ainSN = π1 SN
sigSN = π2 SN
portInsSN = π4 SN
portSN = π3 SN
indexSN = π5 SN

The subset SNspec ⊆ SN then defines the signal nodes that are part of the
representation of a concrete specification.
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Consecutive Index of Signal Nodes. Point-to-point connections are sup-
ported, too, by the definition of the consecutive index for signal nodes. This is
done in the same fashion as for property nodes.

A mapping is provided that gives all signal nodes that coincide wrt. the port
instance with a given one:

snSN ,PIS : SN → P(SN )
(ain, s, p, pi ,n) 7→ {(ain, s, p, pi ,m) ∈ SN } ; pi 6= λ

(ain, s, p, λ,n) 7→ �
A sequence of signal nodes is defined:

snseq : P(SN ) → seqSN
such that

∀ sn ∈ P(SN ) • |snseq(sn)| = |sn| ∧ ran snseq(sn) = sn
and

∀ i1 7→ sn1, i2 7→ sn2 ∈ snseq(sn) • i1 ≤ i2 ⇒ indexSN (sn1) ≤ indexSN (sn2)

The local consecutive index of a signal node is:

cindexSN ,loc : SN → N0

sn 7→ i ; i 7→ sn ∈ snseq(snSN ,PIS (sn))

The consecutive index then is calculated from the agent instance’s index and
the signal node’s local consecutive index:

cindexSN : SN → N0

sn 7→ indexAIN (ainSN (sn)) · |snSN ,PIS (sn)|+ cindexSN ,loc(sn)

Mapping to Property Nodes. Based on the tree of agent instance nodes,
the mapping vnAIN collects the property nodes that represent the properties of
the agents within each context of their agent instance nodes:

vnAIN : TreeAIN → P(VN )
((p, ai ,n), {t0, . . . , tk}) 7→

{((p, ai ,n), v , pt , pti ,m) | pti ∈ portInsAI ,Var (ai)
∧m ∈ eval(indicesPIV (pti), (p, ai ,n))
∧pt = portPIV (pti)
∧v = varPV (pt) ∧ 0 ≤ m < eval(multV (v), (p, ai ,n))}

∪ {((p, ai ,n), v , pt , λ,m) |6 ∃ pti ∈ portInsAI ,Var (ai) •
(m ∈ eval(indicesPIV (pti), (p, ai ,n))
∧pt = portPIV (pti))
∧pt ∈ portA,Var (agentAI (ai))
∧v = varPV

(pt) ∧ 0 ≤ m < eval(multV (v), (p, ai ,n))}
∪ {((p, ai ,n), v , λ, λ,m) |6 ∃ pt ∈ portA,Var (agentAI (ai)) • v = varPV

(pt)
∧v ∈ varA(agentAI (ai))
∧0 ≤ m < eval(multV (v), (p, ai ,n))}

∪
k⋃

i=0

vnAIN (ti)
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The property nodes which are part of the representation of the specification are
the ones provided by vnAIN , restricted to the agent instance nodes from the
specification:

VNspec = {vn ∈ VN | ∃ t ∈ TreeAINspec • vn ∈ vnAIN (t)}

The mapping vnAINspec
from agent instance nodes to sets of property nodes is

directly given by vnAIN as well:

vnAINspec : AINspec → P(VNspec)
ain 7→ vnAIN (treeAIN (ain))

For property nodes that represent parameters, the dedicated value defined by
σV is evaluated, such that the value can be used while constructing the agent
instance node tree. The special “ID” parameters are set to the agent instance
node’s index:

σVNspec : VNspec → VALeval ∪ {λ}
(ain, v , pt , pti ,m) 7→ eval(expσV (val), ain)

; val ∈ σV ∧ varσV (val) = v
∧∃ a ∈ A • v ∈ paramA(a) ∧ v 6= vid,agentAI (ai)

((p, ai ,n), v , pt , pti ,m) 7→ n; v = vid,agentAI (ai)

(ain, v , pt , pti ,m) 7→ λ ; else

Mapping to Signal Nodes. Based on the tree of agent instance nodes, the
mapping snAIN collects the signal nodes that represent the properties of the
agents within each context of their agent instance nodes:

snAIN : TreeAIN → P(SN )
((p, ai ,n), {t0, . . . , tk}) 7→

{((p, ai ,n), s, pt , pti ,m) | pti ∈ portInsAI ,Sig(ai)
∧m ∈ eval(indicesPIS (pti), (p, ai ,n))
∧pt = portPIS (pti)
∧s = sigPS

(pt) ∧ 0 ≤ m < eval(multS (s), (p, ai ,n))}
∪ {((p, ai ,n), s, pt , λ,m) |6 ∃ pti ∈ portInsAI ,Sig(ai) •

(m ∈ eval(indicesPIS (pti), (p, ai ,n))
∧pt = portPIS (pti))
∧pt ∈ portA,Sig(agentAI (ai))
∧s = sigPS

(pt) ∧ 0 ≤ m < eval(multS (s), (p, ai ,n))}
∪ {((p, ai ,n), s, λ, λ,m) |6 ∃ pt ∈ portA,Sig(agentAI (ai)) • s = sigPS

(pt)
∧s ∈ sigA(agentAI (ai))
∧0 ≤ m < eval(multS (s), (p, ai ,n))}

∪
k⋃

i=0

snAIN (ti)

The signal nodes which are part of the representation of the specification are
the ones provided by snAIN , restricted to the agent instance nodes from the
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specification:

SNspec = {sn ∈ SN | ∃ t ∈ TreeAINspec • sn ∈ snAIN (t)}

The mapping snAINspec from agent instance nodes to sets of signal nodes is
directly given by snAIN as well:

snAINspec
: AINspec → P(SNspec)

ain 7→ snAIN (treeAIN (ain))

Connected Property Nodes. Sets of connected property nodes define
shared variables of the system. In the first step, directly connected property
nodes are calculated – each set of nodes is connected by a single connector:

VNconn,local =
{VNsub ∈ P(VNspec) | ∃ c ∈ CV •
∀(ain1, v1, p1, pi1,n1), (ain2, v2, p2, pi2,n2) ∈ VNsub •
(pi1 ∈ portInsCV (c) ∧ pi2 ∈ portInsCV (c)
∧(kindCV (c) = ptp ⇒
cindexVN ((ain1, v1, p1, pi1,n1)) =
cindexVN ((ain2, v2, p2, pi2,n2))))}

∪ {{vn} | vn ∈ VNspec}

VNconn,local contains sets of property nodes from the specification that are con-
nected locally, i.e. they represent properties of agent instances which are con-
nected through port instances within a common parent agent. Note that this
is guaranteed because connectors are restricted to connect port instances only
locally.

The sets of property nodes are not maximal, particularly there is a singleton
set for each property node from the specification. The different connector kinds
are respected, in that only nodes with coinciding consecutive index are connected
for point-to-point connectors, in contrast to multicast connectors.

VNconn,cont =
{VNsub ∈ P(VNspec) | ∃ c ∈ CV •
∀(ain1, v1, p1, pi1,n1), (ain2, v2, p2, pi2,n2) ∈ VNsub •
(p1 ∈ portCV

(c) ∧ pi2 ∈ portInsCV
(c)

∧(kindCV
(c) = ptp ⇒

cindexVN ((ain1, v1, p1, pi1,n1)) =
cindexVN ((ain2, v2, p2, pi2,n2))))}

VNconn,cont contains sets of property nodes that are connected across hierarchy
levels. A connector can be attached to a port of its containing agent and thus
connect the corresponding property node with property nodes of contained agent
instances. Each set contains exactly two property nodes, one per hierarchy level.

The second step consists of joining the sets of property nodes such that every
set of such sets is united which share a common property node. This constitutes
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transitive connections via several connectors.

VNconn =
{VNsub ∈ P(VNspec) | ∃n ∈ N0 •

(VNsub =
n⋃

i=0

VNi

∧ ∀ i ∈ {0..n} •VNi ∈ (VNconn,local ∪VNconn,cont)

∧
n⋂

i=0

VNi 6= �)}

Finally, from the sets of connected property nodes, all maximal sets are
taken:

VNconn,max = {VNsub ∈ VNconn |6 ∃VN2 ∈ VNconn •VNsub ⊂ VN2}

Connected Signal Nodes. Sets of connected signal nodes define shared vari-
ables of the system, in the same way that connected property nodes do. First,
directly connected signal nodes are calculated:

SNconn,local =
{SNsub ∈ P(SNspec) | ∃ c ∈ CS •
∀(ain1, s1, p1, pi1,n1), (ain2, s2, p2, pi2,n2) ∈ SNsub •
(pi1 ∈ portInsCS

(c) ∧ pi2 ∈ portInsCS
(c)

∧(kindCS
(c) = ptp ⇒

cindexSN ((ain1, s1, p1, pi1,n1)) =
cindexSN ((ain2, s2, p2, pi2,n2))))}

∪ {{sn} | sn ∈ SNspec}

SNconn,local contains sets of signal nodes from the specification that are con-
nected locally.

SNconn,cont =
{SNsub ∈ P(SNspec) | ∃ c ∈ CS •
∀(ain1, s1, p1, pi1,n1), (ain2, s2, p2, pi2,n2) ∈ SNsub •
(p1 ∈ portCS (c) ∧ pi2 ∈ portInsCS (c)
∧(kindCS (c) = ptp ⇒
cindexSN ((ain1, s1, p1, pi1,n1)) =
cindexSN ((ain2, s2, p2, pi2,n2))))}

VNconn,cont contains sets of signal nodes that are connected across hierarchy
levels; each set contains exactly two signal nodes, one per hierarchy level.

The second step consists of joining the sets of signal nodes such that every
set of such sets is united which share a common signal node.

SNconn =
{SNsub ∈ P(SNspec) | ∃n ∈ N0 •



6.1. INTERMEDIATE SPECIFICATION REPRESENTATION 107

(SNsub =
n⋃

i=0

SNi

∧ ∀ i ∈ {0..n} • SNi ∈ (SNconn,local ∪ SNconn,cont)

∧
n⋂

i=0

SNi 6= �)}

Finally, from the sets of connected signal nodes, all maximal sets are taken:

SNconn,max = {SNsub ∈ SNconn |6 ∃SN2 ∈ SNconn • SNsub ⊂ SN2}

6.1.2 Behavior

Mode Instance Nodes. Each mode instance from the specification is repre-
sented by a mode instance node within a basic agent instance node. In order to
identify the node, the path of ancestor mode instance nodes is contained:

MIN = seqMIN ×MI ×AINbasic

The components are provided by the projections

miMIN = π2 MIN
pathMIN = π1 MIN
ainMIN = π3 MIN

Similar to agent instance nodes, the hierarchy of mode instance nodes is repre-
sented by a tree structure:

TreeMIN = treeMIN
treeMIN : MIN → TreeMIN

(p,mi , ain) 7→
((p,mi , ain), {treeMIN ((ps ,mis , ain)) | mis ∈ submodeM (modeMI (mi))
∧ps = 〈(p,mi , ain)〉 _ p})

The behavior of a basic agent instance node is defined by a dedicated mode
instance node that represents the mode instance of the corresponding agent:

mtreeAIN : AINbasic → TreeMIN

ain 7→ treeMIN ((〈〉,mi , ain))
; mi ∈ behaviorA(agentAI (aiAIN (ain)))

This mapping is well-defined, since (1) mode instance mi always exists and (2)
there is at most one. The corresponding agent for basic agent instance node ain
has no contained agent instances, therefore (1) holds and there can be at most
one mode instance for any agent, thus (2) follows.

The set of mode instance nodes that represent mode instances for the Hy-
bridUML specification and the corresponding trees are those that are attached
to the basic agent instance nodes:

TreeMIN ,spec =
{t ∈ TreeMIN | ∃ ain ∈ AINbasic • t ∈ subtreesMIN(mtreeAIN (ain))}

MINspec =
{min ∈ MIN | ∃(min1, {t0, . . . , tk}) ∈ TreeMIN ,spec •min1 = min}
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Control Point Instance Nodes. There are control point instance nodes that
represent the control point instances of the mode instances:

CPIN = MIN × CPI

with projections

minCPIN = π1 CPIN
cpiCPIN = π2 CPIN

The control point instance nodes are attached to the mode instance nodes:

cpinMIN : TreeMIN → P(CPIN )
((p,mi , am), {t0, . . . , tk}) 7→

{((p,mi , am), cpi) | cpi ∈ cpiMI (mi)} ∪
k⋃

i=0

cpinMIN (ti)

The control point instance nodes from the specification are those that are at-
tached to mode instance nodes from the specification:

CPINspec = {cpin ∈ CPIN | ∃ t ∈ TreeMIN ,spec • cpin ∈ cpinMIN (t)}

Transition Nodes. Transition nodes are the representations of transitions in
the context of mode instance nodes:

TN = MIN × T

The components are given by

minTN = π1 TN
transTN = π2 TN

The transition nodes are attached to the mode instance nodes:

tnMIN : TreeMIN → P(TN )
((p,mi , am), {t0, . . . , tk}) 7→
{((pi ,mi , am), trans) | trans ∈ transM (modeMI (mi))}

∪
k⋃

i=0

tnMIN (ti)

The transition nodes from the specification are those that are contained in the
mode instance nodes from the specification:

TNspec = {tn ∈ TN | ∃ t ∈ TreeMIN ,spec • tn ∈ tnMIN (t)}

Each transition node is connected with the control point instance node that
represents its source:

srcTNspec : TNspec → CPINspec

(min, trans) 7→ (min, cpi); srcT (trans) = cpCPI (cpi)
(min, trans) 7→ (mins , cpi)

; srcT (trans) = cpi ∧
∃ t , t0, . . . , tk ∈ TreeMIN ,spec , st ∈ P(TreeMIN ,spec), i ∈ 0..k •
t = (min, {t0, . . . , tk}) ∧ ti = (mins , st)
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As in the definition of transitions themselves, it is distinguished between tran-
sitions that originate from a control point or from a control point instance. In
the first case, the control point belongs to the transition’s parent mode itself
(represented by min), whereas in the latter case the control point instance is
attached to one of the submodes (represented by mins).

The transition nodes are connected with the control point instance nodes
that represent their target:

tarTNspec
: TNspec → CPINspec

(min, trans) 7→ (min, cpi); tarT (trans) = cpCPI (cpi)
(min, trans) 7→ (mins , cpi)

; tarT (trans) = cpi ∧
∃ t , t0, . . . , tk ∈ TreeMIN ,spec , st ∈ P(TreeMIN ,spec), i ∈ 0..k •
t = (min, {t0, . . . , tk}) ∧ ti = (mins , st)

Expression Nodes. Expressions are attached to transitions, to modes, or
to agents. They represent one of (1) trigger, (2) guard, (3) action, (4) flow,
(5) invariant constraint, and (6) init state constraint:

ExpN = TrgExpN ∪GrdExpN ∪ActExpN ∪ FlowExpN ∪ InvExpN
∪ IscExpN

TrgExpN = TN × Exp × {trg}
GrdExpN = TN × Exp × {grd}
ActExpN = TN × Exp × {act}
FlowExpN = MIN × Exp × {flow}
InvExpN = MIN × Exp × {inv}
IscExpN = AIN × Exp × {isc}

They are partitioned into transition expression nodes, mode expression nodes,
and agent expression nodes:

TExpN = TrgExpN ∪GrdExpN ×ActExpN
MExpN = FlowExpN ∪ InvExpN
AExpN = IscExpN

Transition expression nodes consist of a transition node, an expression, and an
expression kind (or role):

tnTExpN = π1 TExpN
expTExpN = π2 TExpN
kindTExpN = π3 TExpN

Mode expression nodes consist of a mode instance node, an expression, and an
expression kind (or role):

minMExpN = π1 MExpN
expMExpN = π2 MExpN
kindMExpN = π3 MExpN
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Agent expression nodes consist of an agent instance node, an expression, and
an expression kind (or role):

ainAExpN = π1 AExpN
expAExpN = π2 AExpN
kindAExpN = π3 AExpN

Every expression node is – directly or indirectly – contained in an agent instance
node. For convenience, a respective mapping is defined:

ainExpN : ExpN → AIN

expn 7→

 ainMIN (minMExpN (expn)); expn ∈ MExpN
ainMIN (minTN (tnTExpN (expn))); expn ∈ TExpN
ainAExpN (expn); expn ∈ AExpN

Further, the expression that is represented by an arbitrary expression node is
given by

expExpN : ExpN 7→ Exp

expn 7→

 expMExpN (expn); expn ∈ MExpN
expTExpN (expn); expn ∈ TExpN
expAExpN (expn); expn ∈ AExpN

There are three kinds of expressions which are attached to transitions: trigger
expressions, guard expressions, and action expressions. There is up to one
trigger expression per transition, which is represented by an expression node
and attached to the corresponding transition node:

trgTNspec
: TNspec → P(TrgExpN )

(min, trans) 7→ {((min, trans), exp, trg) | exp ∈ sigT (trans)}

For each transition, up to one boolean guard expression exists. If there is none,
this is interpreted as the expression exptrue that always evaluates to true. A
corresponding expression node is created:

grdTNspec : TNspec → P(GrdExpN )
(min, trans) 7→ {((min, trans), exp, grd) | exp ∈ grdT (trans)}
; grdT (trans) 6= �

(min, trans) 7→ {((min, trans), exptrue , grd)}
; grdT (trans) = �

The sequence of actions of a transition defines a sequence of action nodes within
the context of the transition node:

actTNspec : TNspec → seqActExpN
(min, trans) 7→ san
; san = 〈an1, . . . , ank 〉 ∧ k = |actT (trans)| ∧
∀ i ∈ {1..k} • ani = ((min, trans), actT (trans)(i), act)

Expressions which are attached to modes are distinguished as flow expressions
and invariant expressions. Note that there is no technical difference between
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the specification’s flow and algebraic constraints; they are subsumed as flow
expressions here:

flowMINspec
: MINspec → P(FlowExpN )

(sm,mi , am) 7→ {((sm,mi , am), exp,flow) |
exp ∈ flowM (modeMI (mi)) ∨ exp ∈ algeM (modeMI (mi))}

Invariant expressions are represented by corresponding nodes:

invMINspec : MINspec → P(InvExpN )
(sm,mi , am) 7→ {((sm,mi , am), exp, inv) | exp ∈ invM (modeMI (mi))}

Init state constraint expression nodes are constructed from the available agent
instance nodes and the init state constraint expressions of the corresponding
agent instances and agents:

iscAINspec
: AINspec → P(IscExpN )

(sa, ai ,n) 7→ {((sa, ai ,n), exp, isc) |
exp ∈ initStateAI (ai) ∪ initStateA(agentAI (ai))}

All init state constraint expression nodes are collected recursively for agent
instance nodes, such that each agent instance node is mapped to its own init
states and the init states of its ancestor nodes:

alliscAINspec
: AINspec → P(IscExpN )

(〈p〉 � sq , ai ,n) 7→ iscAINspec
(〈p〉 � sq , ai ,n) ∪ alliscAINspec

(p)
(〈〉, ai ,n) 7→ iscAINspec

(〈〉, ai ,n)

The sets of available expression nodes for a given HybridUML specification are:

ExpNspec = TrgExpNspec ∪GrdExpNspec ∪ActExpNspec ∪ FlowExpNspec

∪InvExpNspec

TrgExpNspec = {txn ∈ TrgExpN | ∃ tn ∈ TNspec • txn ∈ trgTNspec
(tn)}

GrdExpNspec = {gxn ∈ GrdExpN | ∃ tn ∈ TNspec • gxn ∈ grdTNspec
(tn)}

ActExpNspec = {axn ∈ ActExpN | ∃ tn ∈ TNspec • axn ∈ ran(actTNspec
(tn))}

FlowExpNspec =
{fxn ∈ FlowExpN | ∃min ∈ MINspec • fxn ∈ flowMINspec

(min)}
InvExpNspec = {ixn ∈ InvExpN | ∃min ∈ MINspec • ixn ∈ invMINspec

(min)}
IscExpNspec = {ixn ∈ IscExpN | ∃ ain ∈ AINspec • ixn ∈ iscAINspec

(ain)}
TExpNspec = TrgExpNspec ∪GrdExpNspec ∪ActExpNspec

MExpNspec = FlowExpNspec ∪ InvExpNspec

AExpNspec = IscExpNspec

6.2 Evaluation Semantics of HybEL Expressions

In this section, the semantics for the evaluation of HybEL expressions is ap-
pended. For its definition, the notion of agent instance nodes (from section 6.1)
is needed. It is needed to define values for (1) multiplicity expressions of agent
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instances, properties, and signals, as well as for (2) index specifications of prop-
erties and signals.

The semantics given here extends the skeleton semantics of section 5.4, in
that it defines values for properties that are equipped with a value specification.
Further, the evaluation of sets of integers is added, as it is needed for the index
specifications of properties and signals.

Expression Context of Agents. For the evaluation of expressions, the vari-
able and signal context is required. This is defined by the agent which contains
the expression, such that exactly the agent’s variables and signals are available:

ctxA : A → CTX
a 7→ (varA(a), {(s, ac) | s ∈ sigA(a) ∧ ∃ p ∈ portA,Sig(a) • accPS

(p) = ac})

Expression Context of Agent Instance Nodes. For convenience, the con-
text given by agent instance nodes is defined in a straight-forward way, such that
it is given by the agent instance node’s agent:

ctxAIN : AIN → CTX
ain 7→ ctxA(agentAI (aiAIN (ain)))

Semantics of Expressions. The evaluation semantics of hybel expressions
is then given by

eval : Exp ×AIN → VALeval ∪ {λ}
eval(exp, ain) = evalht(ht(ctxAIN (ain))(exp), ain)

Each hybel item tree along with an agent instance node is mapped to either a
value, or to the special value λ that denotes the absence of a value:

evalht : treeo HybelItem ×AIN → VALeval ∪ {λ}
Literal values are the values (as for evalht,�):

((((t , lit), l), sub), ain) 7→ l ; t ∈ DT
((((sdtanon , lit), v), 〈t1, . . . , tn〉), ain)

7→ 〈evalht(t1, ain), . . . , evalht(tn , ain)〉
Operations are evaluated (as for evalht,�):

((((t , op),♦), 〈t1, t2〉), ain) 7→ evalht(t1, ain)♦evalht(t2, ain)
; t1, t2 ∈ {int , real , anaReal} ∧ ♦ ∈ {+,−, ·, /, ˆ, <,≤,≥, >}
∨t1 = t2 ∧ ♦ ∈ {==, 6=}
∨t1, t2 ∈ {bool} ∧ ♦ ∈ {∧,∨}

((((t , op),¬), 〈t1〉), ain) 7→ ¬evalht(t1, ain)

Integer set specifications define sets of integers:

((((intSet , intSpecs), val), 〈
(((intSet , intRange), val1), 〈slow ,1, sup,1〉), . . . ,
(((intSet , intRange), valn), 〈slow ,n , sup,n〉)〉), ain)

7→ {evalht(slow ,1, ain), . . . , evalht(sup,1, ain)} ∪ . . . ∪
{evalht(slow ,n , ain), . . . , evalht(sup,n , ain)}
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Variables are mapped to assigned values, if the agent instance node has a cor-
responding value specification. If an index sub-expression is available, it is
evaluated itself, otherwise index 0 is applied:

((((t , var), ((t , (v , acc)), 〈((indexExp, htree), subid)〉)), sub), ain)
7→ σVNspec (ain, v , p, pi , evalht(htree, ain))
with unique (ain, v , p, pi , evalht(htree, ain)) ∈ vnAIN (treeAIN (ain))

((((t , var), ((t , (v , acc)), 〈〉)), sub), ain) 7→ σVNspec (ain, v , p, pi , 0)
with unique (ain, v , p, pi , 0) ∈ vnAIN (treeAIN (ain))

The remaining expressions have no evaluation result:

(t , ain) 7→ λ ; else

6.3 Prerequisites for Code Creation

This section provides some prerequisites that are used for code creation (dis-
cussed in section 6.5), for the definition of local HL3 variables, which is done
in section 6.4, as well as for the HybridUML-specific definition of operations of
abstract subjects in section 6.6.

First, the determination of different sets of variables and signals from ex-
pressions is defined, followed by the determination of variable and signal nodes
from expression nodes. Finally, the hybel item tree representation of expressions
from expression nodes is given.

6.3.1 Variables and Signals of Expressions

As a prerequisite for the mapping of expression nodes to programs, the sets of
HybridUML variables and signals, which are accessed by particular expressions,
are determined.

Read Variables of Hybel Trees. The variables which are read by an ex-
pression are given by a mapping of hybel item trees to sets of HybridUML
variables:

varht,read : treeo HybelItem → P(V )

For a hybel item tree that represents a variable, the variable itself is contained.
Additionally, variables of subexpressions (for structured data types) as well as
variables contained in the identifier item tree (as part of the index expression)
are collected. The corresponding definition of varit,read is given below.

(((t , r), ((tid , (v , acc)), subid)), 〈s1, . . . sn〉) 7→

{v} ∪
n⋃

i=1

varht,read(si) ∪ varit,read(((tid , (v , acc)), subid))

with r ∈ {var , derivVar}

Expressions that send signals may contain read variables in subexpressions,
from which values of signal parameters are created. Further, a signal’s index
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expression can contain read variables, too:

(((sigtype, sendSig), idtree), 〈s1, . . . sn〉) 7→
n⋃

i=1

varht,read(si) ∪ varit,read(idtree)

For trigger expressions, i.e. expressions that read signals, only variables of the
index expression are collected (via the identifier item tree). Variables of subex-
pressions are written and thus left out.

(((sigtype, recvSig), idtreee), sub) 7→ varit,read(idtree)

Most assignment expressions contain a left-hand side that consists of a variable
that is written only, and a right-hand side that is read only. Therefore, read
variables are collected from the hybel item tree’s subexpressions, excluding the
first one (which represents the left-hand side). Additionally, the identifier item
tree of the first subexpression is searched for contained index expressions, which
again may contain read variables:

(((t , r), val), 〈(((t1, var), idtree1), sub1), s2, . . . , sn〉) 7→
n⋃

i=2

varht,read(si) ∪ varit,read(idtree1)

with r ∈ {ass, intNondetAss, diffAss}

Note that assignments to derivatives are excluded above, since the derivative’s
variable is not only written, but also read. Therefore, for those assignments,
the first subexpression is included in the generic rule given below.

Index assignment expressions are treated separately, too, because they ex-
plicitly do not contain any read variables:

(((int , indexAss), val), sub) 7→ �

All remaining hybel item trees are mapped according to the following generic
rule, that does not collect variables from the expression itself, but from all
contained subexpressions:

(hi , 〈s1, . . . , sn〉) 7→
n⋃

i=1

varht,read(si) ; else

Read Variables of Identifier Trees. The variables which are read by an
identifier expression are given by the mapping of identifier item trees to sets of
HybridUML variables:

varit,read : treeo IdItem → P(V )

Since the identifier itself is handled by the mapping varht,read , this mapping
only collects contained variables of index expressions:

((indexExp, htree), sub) 7→ varht,read(htree)

For subexpressions, representing sub-variables of a structured data type, also
only index expressions are searched; therefore the sub-variables themselves are
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omitted. This is desired, because variables of structured data type will always
be read or written entirely within the generated code.

((t , val), 〈s1, . . . , sn〉) 7→
n⋃

i=1

varit,read(si) ; else

Derivative Read Access of Hybel Trees. The variables for which the
derivative value is read are collected for each hybel item tree, by the function

varht,readDeriv : treeo HybelItem → P(V )

Trees that represent derivatives map to their variables:

(((anaReal , derivVar), ((anaReal , (v , acc)), subid)), 〈s1, . . . sn〉) 7→ {v}
From the above variables, the ones that are only written shall be excluded;
therefore from assignment expressions, the left-hand side is omitted:

(((anaReal , diffAss), val), 〈s1, . . . , sn〉) 7→
n⋃

i=2

varht,readDeriv (si)

All remaining trees are only descended, such that their sub-expressions are
searched for respective variables:

(item, 〈s1, . . . , sn〉) 7→
n⋃

i=1

varht,readDeriv (si) ; else

Previous Value Access of Hybel Trees. In contrast to “conventional” read
access to variables, some expressions require the read access to the previous value
of a variable. Those variables are given by the mapping

varht,readPrev : treeo HybelItem → P(V )

Variables for which the derivative value is read within the expression are in-
cluded, in the same manner as for varht,readDeriv :

(((anaReal , derivVar), ((anaReal , (v , acc)), subid)), 〈s1, . . . sn〉) 7→ {v}
The ones that are only written shall be excluded, too:

(((anaReal , diffAss), val), 〈s1, . . . , sn〉) 7→
n⋃

i=2

varht,readPrev (si)

Additionally, real-valued variables which take part in an equality comparison are
included. This is necessary, because of the discretization of continuous steps, an
approximation has to be done for those comparisons. See section 6.5 for details.

(((bool , op), val), 〈((role1, val1), sub1), ((role2, val2), sub2)〉) 7→
varht,read(((role1, val1), sub1)) ∪ varht,read(((role2, val2), sub2))

with {role1, role2} ∩ {(real , op), (anaReal , diffOp), (real , lit),
(real , var), (anaReal , var), (anaReal , derivVar)}
6= �

All remaining trees are only descended, such that their sub-expressions are
searched for respective variables:

(item, 〈s1, . . . , sn〉) 7→
n⋃

i=1

varht,readPrev (si) ; else
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Read Signals of Hybel Trees. Read signals, i.e. triggers are only given
directly by a trigger expression. Since there are no nested triggers, the complete
mapping is

sight,read : treeo HybelItem → P(S )
(((sigtype, recvSig), ((tid , (s, acc)), subid)), sub) 7→ {s}
hi 7→ � ; else

Written Variables of Hybel Trees. The variables which are written by an
expression are given by a corresponding mapping of hybel item trees to sets of
HybridUML variables:

varht,write : treeo HybelItem → P(V )

For any kind of assignment statement, the first subexpression represents a vari-
able that is written:

(((t , r), val), 〈(((t1, r1), ((t1,id , (v , acc)), sub1,id)), sub1), s2, . . . , sn〉) 7→

{v} ∪
n⋃

i=2

varht,write(si)

with r ∈ {ass, diffAss, intNondetAss, indexAss}
∧ r1 ∈ {var , derivVar}

Trigger expressions can contain parameter subexpressions, that consist of vari-
ables that are assigned with the actual parameter values. Additionally, the
signal may have an attached index assignment expression, included in the iden-
tifier item tree:

(((sigtype, recvSig), idtree), 〈
(((t1, r1), ((t1,id , (v1, acc)), sub1,id)), sub1), . . . ,
(((tn , rn), ((tn,id , (vn , acc)), subn,id)), subn)〉)

7→ varit,write(idtree) ∪ {v1, . . . , vn}

For all other trees, the variables of their sub-expressions are collected:

(item, 〈s1, . . . , sn〉) 7→
n⋃

i=1

varht,write(si) ; else

Written Variables of Identifier Trees. The variables which are written by
an identifier expression are given by

varit,write : treeo IdItem → P(V )

Since the identifier itself is handled by the mapping varht,write , this mapping
only collects contained variables of index expressions:

((indexExp, htree), sub) 7→ varht,write(htree)

Like for varit,read , sub-variables of a structured data type are omitted. Therefore
the recursive descending into the identifier tree only affects index expressions:

((t , val), 〈s1, . . . , sn〉) 7→
n⋃

i=1

varit,write(si) ; else
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Derivative Write Access of Hybel Trees. The variables for which the
derivative value is written are collected for each hybel item tree:

varht,writeDeriv : treeo HybelItem → P(V )

The variable of the left-hand side of an assignment expression is contained, if it
is a derivative:

(((anaReal , diffAss), val),
〈(((anaReal , derivVar), ((anaReal , (v , acc)), subid)), sub), s2, . . . , sn〉)

7→ {v}

For other trees, the sub-expressions are searched for respective variables:

(item, 〈s1, . . . , sn〉) 7→
n⋃

i=1

varht,writeDeriv (si) ; else

Written Signals of Hybel Trees. Written signals are given by the mapping

sight,write : treeo HybelItem → P(S )

A signal raise statement contains a written signal:

(((sigtype, sendSig), ((tid , (s, acc)), subid)), sub) 7→ {s}

Some other kinds of expressions may host a signal raise statement, therefore all
remaining expressions are descended:

(item, 〈s1, . . . , sn〉) 7→
n⋃

i=1

sight,write(si) ; else

6.3.2 Variable and Signal Nodes of Expression Nodes

For HybridUML variables and signals, there are mappings that provide the
variable or signal nodes which represent the given variable or signal within
the context of an expression node. Each variable or signal node represents a
dedicated index of the respective variable or signal, therefore the number of
nodes and the multiplicity of the variable or signal are equal.

vnexpn : V × ExpN → P(VN )
(v , expn) 7→ {vn ∈ vnAIN (treeAIN (ainExpN (expn))) | varVN (vn) = v}

snexpn : S × ExpN → P(SN )
(s, expn) 7→ {sn ∈ snAIN (treeAIN (ainExpN (expn))) | sigSN (sn) = s}

6.3.3 Hybel Item Trees of Expression Nodes

For convenience, a mapping from expression nodes to the hybel item tree that
represents the expression of the node is defined. For this, the mapping from
agent instance nodes to expression contexts of section 6.2 is used:

htexpn : ExpNspec → treeo HybelItem
expn 7→ ht(ctxAIN (ainExpN (expn)))(expExpN (expn))
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6.4 HL3 Model Definition

Based on the intermediate representation of HybridUML specifications given
in section 6.1, we instantiate the HL3 model that represents a particular Hy-
bridUML specification in this section. Therefore, we define the corresponding
constant part cspec ∈ CONST of the state space of the operational HL3 seman-
tics, as it is predetermined and discussed in section 3.2.

Below, we follow the structure of section 3.2, such that all components of
CONST are defined here in the same order as they appear in section 3.2. As an
example for the resulting HL3 model, a C++ variant of ctc ∈ CONST of the
case study “Radio-Based Train Control” is presented in appendix ??, created
by the implementation of transformation ΦHUML.

The definition of code creation from HybEL expressions, which is particularly
needed for the definition of programs for program subjects, will be given in
section 6.5.

Finally, the definition of HybridUML-specific behavior for abstract subjects
follows in section 6.6.

6.4.1 Entities

scheduler. This is the pre-defined HL3 scheduler, as for every HL3 model:

sched(cspec) = scheduler

SELECTOR. The applied selector is the pre-defined HybridUML selector:

sel(cspec) = selectorHUML

AM. The abstract machines of the system represent the sequential behavioral
components, which in turn are defined by basic agent instance nodes ain ∈
AINbasic . Therefore, for each ain, an abstract machine is created, i.e. there is a
bijection

amHL3,AINbasic
: AINbasic�Am

that defines the abstract machines of the HL3 model:

am(cspec) = Am

The inverse function that maps abstract machines back to agent instance nodes
is given as ainAm = am−1

HL3,AINbasic
.

IFM. For a HybridUML simulation, there are no interface modules:

ifm(cspec) = �

FLOW. The flows of the HL3 model are given by the flow expression nodes.
Each fxn ∈ FlowExpNspec defines a HL3 flow, i.e. there is a bijection (and the
corresponding inverse)

flowHL3,FlowExpNspec
: FlowExpNspec� Flow

fxnFlow = flow−1
HL3,FlowExpNspec

This defines the flows of the HL3 model:

flow(cspec) = Flow
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TRANS. The transitions of the HL3 model are defined by the transition
nodes, in that for each transition node a unique transition is generated:

transHL3,TNspec
: TNspec� Trans

tntrans = trans−1
HL3,TNspec

Those are the transitions of the model:

trans(cspec) = Trans

VAR. The local variables var(cspec) are defined for the expression nodes
ExpNspec , such that they can be used by their generated programs. There
are two kinds of variables – (1) simple variables and (2) array variables. All
variables that represent HybridUML variables or signals are array variables,
such that according to the multiplicity defined by the HybridUML variable or
signal, the local HL3 variable contains a corresponding number of subscripted
variables. In contrast, most of the additionally introduced HL3 variables are
simple variables.

In the following, several mappings are given that define the available local
HL3 variables. For every variable, its type is defined, too. The union of all
types Val contains all HybridUML-specific data values:

VALeval ⊆ Val

HybridUML Properties. Every HybridUML property v ∈ V ∪Vlocal (including
bound variables of quantified expressions) that is read or written by the expres-
sion of an expression node is represented by a local variable. For the calculation
of flow integration steps, a previous value may be needed:

lvarV ,Vlocal
: ExpN × (V ∪Vlocal)× {read ,write} × {cur , prev}�Var

Since lvarV ,Vlocal
is a partial function, local variables are not generated for every

tuple of the domain; precisely, local variables are created for each variable of
expression nodes from the given HybridUML specification, (1) for which the
current value is read, (2) for which the previous value is read, or (3) for which
a (current) value is written:

dom lvarV ,Vlocal
=

{(expn, v , read , cur) | expn ∈ ExpNspec ∧ v ∈ varht,read(htexpn(expn))}
∪ {(expn, v , read , prev)

| expn ∈ ExpNspec ∧ v ∈ varht,readPrev (htexpn(expn))}
∪ {(expn, v ,write, cur) | expn ∈ ExpNspec ∧ v ∈ varht,write(htexpn(expn))}

The mapping lvarV ,Vlocal
is not injective, because for some expression nodes,

the local variables that represent the same HybridUML variable coincide: As
defined later, the sequence of actions of a transition node, along with its trigger,
define a single shared program. Within, any sequence of read and write accesses
to the same HybridUML variable vhuml may occur via local variables v1, . . . , vn
for expression nodes expn1, . . . , expnn . In order to ensure that every write access
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is effective for subsequent read accesses, exactly those variables are identical:

∀(expn1, v1, acc1, tm1), (expn2, v2, acc2, tm2) ∈ dom lvarV ,Vlocal
•

{expn1, expn2} ⊆ TExpN ∧ tnTExpN (expn1) = tnTExpN (expn2)
∧v1 = v2 ∧ tm1 = tm2 = cur
⇔
lvarV ,Vlocal

(expn1, v1, acc1, tm1) = lvarV ,Vlocal
(expn2, v2, acc2, tm2)

Note that also for a single expression node, this means that read and write
access are realized with the same local variable.

The types of the created variables are defined by the types of the corre-
sponding HybridUML variable:

∀(expn, v , acc, tm) ∈ dom lvarV ,Vlocal
•

typeVar (lvarV ,Vlocal
(expn, v , acc, tm)) =

{
typeHL3,V (v) ; v ∈ V
N0 → Z ; v ∈ Vlocal

The types are defined for HybridUML variables and HybridUML data types.
Since HybridUML variables have multiplicities, the valuation of a corresponding
HL3 variable is given as a function of natural numbers to the type of the sub-
scripted variables. The array variable’s type is then the set of these functions.
Formally, there is no upper bound for array indices of this array representation,
but for an implementation, an upper bound defined by the multiplicity would
be used explicitly.

typeHL3,V : V → P(Val)
v 7→ (N0 → typeHL3,DT (typeV (v)))

typeHL3,DT : DT → P(Val)
bool 7→ B
int 7→ Z
real 7→ R
anaReal 7→ R
et 7→ litDT (et) ; et ∈ DTenum

sdt 7→ {〈typeHL3,DT (varseqDT (sdt)(1)), . . . ,
typeHL3,DT (varseqDT (sdt)(n))〉 | |varseqDT (sdt)| = n}

; sdt ∈ DTstruc

Note that bound variables from HybEL expressions are also of array type, such
that the handling of them and HybridUML variables is the same. However, these
are effectively simple variables, because there is only one subscripted variable
inside.

HybridUML Signals. Every HybridUML signal s ∈ S that is received or sent
by the expression of a node is represented by a variable:

lvarS : ExpN × S × {read ,write}�Var

The variables are of boolean type, such that the value true denotes that the sig-
nal is currently active, within the scope of the corresponding program. Programs
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can either read this value, such that for trigger expressions, the enabledness of
the corresponding transition is affected, or write this value. This will be done
for signal raise statements, in order to activate a signal for the complete system,
or for trigger statements, in order to consume the signal locally.

∀(expn, s, acc) ∈ dom lvarS • typeVar (lvarS (expn, s, acc)) = B

Local variables are created for the combinations of signals and expression nodes
that actually use them:

dom lvarS =
{(expn, s, read) | expn ∈ ExpNspec ∧ s ∈ sight,read(htexpn(expn))}
∪ {(expn, s,write) | expn ∈ ExpNspec ∧ v ∈ sight,write(htexpn(expn))}

Parameters of HybridUML Signals. For every HybridUML signal, there are up
to two local variables for each parameter of the signal within the corresponding
expression nodes, one variable for the reception and one for the sending of the
parameter:

lvarSigParam : ExpN × S × {read ,write} × N0�Var

For the combinations of signals and their parameter indices and expression nodes
that actually use the signals, local variables are created:

dom lvarSigParam =
{(expn, s, read ,n) | expn ∈ ExpNspec ∧ s ∈ sight,read(htexpn(expn))

∧ 0 ≤ n < |snexpn(s, expn)|}
∪ {(expn, s,write) | expn ∈ ExpNspec ∧ v ∈ sight,write(htexpn(expn))

∧ 0 ≤ n < |snexpn(s, expn)|}

The parameter’s type is defined by its the HybridUML data type, as defined
for HybridUML variables above:

∀(expn, s, acc,n) ∈ dom lvarSigParam • typeVar (lvarSigParam(expn, s, acc,n))
= typeHL3,DT (paramTypesS (s)(n + 1))

Index Counters. For the reception of signals, a local trigger index variable is
created that stores the signal index wrt. its multiplicity for which the signal’s
occurrence is received:

lvartrgIdx : ExpN × S�Var

This is done for each trigger within a corresponding expression node:

dom lvartrgIdx =
{(expn, s) | expn ∈ ExpNspec ∧ s ∈ sight,read(htexpn(expn))}

A local signal index exists for the sending of signals:

lvarsigIdx : ExpN × S�Var
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A corresponding variable is generated for sent signals within a corresponding
expression node:

dom lvarsigIdx =
{(expn, s) | expn ∈ ExpNspec ∧ s ∈ sight,write(htexpn(expn))}

Index variables are of natural number type:

∀(expn, s) ∈ dom lvartrgIdx • typeVar (lvartrgIdx (expn, s)) = N0

∀(expn, s) ∈ dom lvarsigIdx • typeVar (lvarsigIdx (expn, s)) = N0

Derivative Helper Variables. From HybridUML variables that are used to ac-
cess derivative values, local variables to store the publication time ticks of the
current value and of the previous value are generated, as well as local variables
to store the time difference.

lvarV ,∆t : ExpN ×V �Var
lvarV ,curTck : ExpN ×V �Var
lvarV ,prevTck : ExpN ×V �Var

For combinations of read derivatives within expression nodes, variables for the
previous time stamp and the difference exist:

dom lvarV ,prevTck = dom lvarV ,∆t =
{(expn, v) | expn ∈ ExpNspec ∧ v ∈ varht,readDeriv (htexpn(expn))}

The current time tick is also used for written derivatives:

dom lvarV ,curTck =
{(expn, v) | expn ∈ ExpNspec ∧ v ∈ varht,readDeriv (htexpn(expn))

∪varht,writeDeriv (htexpn(expn))}

The time tick variables hold ModelTime values, the time difference is a natural
number:

∀(expn, v) ∈ dom lvarV ,curTck•
typeVar (lvarV ,curTck (expn, v)) = ModelTime

∀(expn, v) ∈ dom lvarV ,prevTck•
typeVar (lvarV ,prevTck (expn, v)) = ModelTime

∀(expn, v) ∈ dom lvarV ,∆t•
typeVar (lvarV ,∆t(expn, v)) = N0

Quantified Expression Results. The result of quantified boolean expressions is
stored in an exclusive local variable:

lvarquantRes : ExpN × treeo HybelItem�Var

Therefore, a variable exists for each occurrence of a quantified expression in an
expression node:

dom lvarquantRes =
{(expn, (((bool , q), val), sub)) | expn ∈ ExpNspec ∧

(((bool , q), val), sub) ∈ subtreeso,HybelItem(htexpn(expn)) ∧ q ∈ {∀,∃}}
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The result variable is of boolean type:

∀(expn, htree) ∈ dom lvarquantRes • typeVar (lvarquantRes(expn, htree)) = B

Visibility Set Helper Variables. A visibility set v ∈ VisibilitySet is provided for
the publication of written values. It gets the respective visibility set parameter
for HL3 flows and HL3 transitions by default, but can be re-calculated for
specific purposes:

lvarvisSet : ExpN �Var

A corresponding variable exists for flow expression nodes and for action and
trigger expression nodes. The variables for actions and triggers coincide for
common transitions:

dom lvarvisSet = TrgExpNspec ∪ActExpNspec ∪ FlowExpNspec

∀ expn1, expn2 ∈ dom lvarvisSet•
lvarvisSet(expn1) = lvarvisSet(expn2) ⇔
{expn1, expn2} ⊆ TrgExpNspec ∪ActExpNspec

∧tnTExpN (expn1) = tnTExpN (expn2)
∨ expn1 = expn2

For the calculation of visibility sets, several local helper variables are needed.
They are used in the context of the assignment of a derivative variable, and for
resetting a received signal on its consumption. (1) A visibility variable stores a
single visibility vis ∈ Visibility . It is only used for expression nodes that either
assign a derivative or reset a signal:

lvarvis : ExpN �Var
dom lvarvis = dom lvarvisSet ∩ (TrgExpNspec ∪

{expn ∈ ExpNspec | ∃ v ∈ V • v ∈ varht,writeDeriv (htexpn(expn))})

(2) The publication time tick of the visibility is stored in a local variable:

lvarnewTck : ExpN �Var
dom lvarnewTck = dom lvarvis

(3) For flow integration operations, the entries of the pre-defined visibility set
are iterated, by means of a visibility index:

lvarvisIdx : ExpN �Var
dom lvarvisIdx = dom lvarvisSet ∩

{expn ∈ ExpNspec | ∃ v ∈ V • v ∈ varht,writeDeriv (htexpn(expn))}

(4) In order to read the pre-defined visibility set for iteration, a local visibility
set variable is provided:

lvarvisOrig : ExpN �Var
dom lvarvisOrig = dom lvarvisIdx
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The types of variables are obvious:

∀ expn ∈ dom lvarvisSet • typeVar (lvarvisSet(expn)) = VisibilitySet
∀ expn ∈ dom lvarvis • typeVar (lvarvis(expn)) = Visibility
∀ expn ∈ dom lvarvisIdx • typeVar (lvarvisIdx (expn)) = N0

∀ expn ∈ dom lvarnewTck • typeVar (lvarnewTck (expn)) = ModelTime
∀ expn ∈ dom lvarvisOrig • typeVar (lvarvisOrig(expn)) = VisibilitySet

Non-Deterministic Assignment Helper Variables. For each non-deterministic
assignment of integers, there is a local variable that counts the number of pos-
sible values during evaluation, before one is chosen:

lvarhitCount : ExpN × treeo HybelItem�Var

Each possible value is stored itself in a corresponding array variable:

lvarhits : ExpN × treeo HybelItem�Var

Similarly to quantified expressions, a variable exists for each occurrence of a
non-deterministic assignment in an expression node:

dom lvarhitCount = dom lvarhits =
{(expn, (((int , intNondetAss), val), sub)) | expn ∈ ExpNspec ∧

(((int , intNondetAss), val), sub) ∈ subtreeso,HybelItem(htexpn(expn))}

The hit counter holds a natural number, the hit array stores natural-numbered
indices:

∀(expn, htree) ∈ dom lvarhitCount • typeVar (lvarhitCount(expn, htree) = N0

∀(expn, htree) ∈ dom lvarhits • typeVar (lvarhits(expn, htree) = (N0 → N0)

Boolean Result of Programs. Programs that represent the calculation of
boolean expressions of the HybridUML model have a dedicated return vari-
able. The boolean expressions from the model are trigger expressions, guard
expressions, and invariant constraints:

BExpNspec = TrgExpNspec ∪GrdExpNspec ∪ InvExpNspec ∪ IscExpNspec

⊆ TExpN ∪MExpN ∪AExpN

The return variables are identified by the injection

retvarBExpN : BExpNspec�Var

They are of boolean type:

∀ expn ∈ dom retvarBExpN • typeVar (retvarBExpN (expn)) = B
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Local Variables of the HL3 Model. The ranges of all the above mappings are
disjoint, such that there are unique variables for all described purposes. Then,
their union define the set of local variables:

var(cspec) =
ran lvarV ,Vlocal

∪ ran lvarS ∪ ran lvarSigParam

∪ ran lvartrgIdx ∪ ran lvarsigIdx ∪ ran lvarV ,∆t

∪ ran lvarV ,curTck ∪ ran lvarV ,prevTck

∪ ran lvarquantRes ∪ ran lvarvis ∪ ran lvarvisSet

∪ ran lvarvisIdx ∪ ran lvarnewTck ∪ ran lvarvisOrig

∪ ran lvarhitCount ∪ ran lvarhits
∪ ran retvarBExpN

CHAN. The channels of the HL3 model are defined by the set of connected
property nodes or signal nodes, respectively. Each of such a set identifies a
unique variable or signal channel. Additionally, for the parameters of signals
there are separate channels that carry the parameter values, such that three
disjoint sets of channels CHNVar , CHNSig , and CHNSigParam with CHNVar ∩
CHNSig ∩ CHNSigParam = � result:

chanVNconn,max
: VNconn,max� CHNVar

chanSNconn,max
: SNconn,max� CHNSig

vnconn,max ,CHNVar = chan−1
VNconn,max

snconn,max ,CHNSig
= chan−1

SNconn,max

The sets of parameter channels are defined by the sets of connected signal nodes.
The number of parameter channels is determined by the number of parameters
of the respective signal.

chanSNconn,max ,param : SNconn,max × N0� CHNSigParam

dom chanSNconn,max ,param = {(snset ,n) | ∃ sn ∈ snset•
0 ≤ |paramTypesS (sigSN (sn))|}

The parameter channels, like variable and signal channels, are unique, i.e.
chanSNconn,max ,param is also injective.

Then, the set of channels is the union of variable and signal channels and
the signal parameter channels:

chan(cspec) = CHNVar ∪ CHNSig ∪ CHNSigParam

PORT. The model’s variable ports PORTVar and signal ports PORTSig are
created such that there is one port for each property node or signal node that
is attached to a basic agent instance node:

VNbasic = {vn ∈ VNspec | ∃ ain ∈ AINbasic • vn ∈ vnAIN (treeAIN (ain))
SNbasic = {sn ∈ SNspec | ∃ ain ∈ AINbasic • sn ∈ snAIN (treeAIN (ain))
portVNbasic

: VNbasic� PORTVar

portSNbasic
: SNbasic� PORTSig
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vnPORTVar
= port−1

VNbasic

snPORTSig = port−1
SNbasic

The ports representing signal parameters PORTSigParam are defined by the cor-
responding signal node, along with the parameter’s index in the signal’s param-
eter list:

portSNbasic ,param : SNbasic × N0� PORTSigParam

dom portSNbasic ,param = {(sn,n) | 0 ≤ |paramTypesS (sigSN (sn))|}

The parameter port mapping portSNbasic ,param is injective, like the ones for vari-
able and signal ports.

The set of all ports is defined as the union of the disjoint sets of variable
ports, signal ports, and signal parameter ports, i.e.

port(cspec) = Port = PORTVar ∪ PORTSig ∪ PORTSigParam

with PORTVar ∩ PORTSig ∩ PORTSigParam = �.

LWP. The set of light weight processes depends on the number of available
processors within the hardware system. It cannot be defined by the transfor-
mation Φ automatically, but has to be configured manually, such that

|lwp(cspec)| = n

for n available processors.

6.4.2 Dependencies

AmTrans. The mapping from transitions to abstract machines is defined by
the assignment of transition nodes to agent instance nodes:

amhuml,trans : Trans → Am
t 7→ amHL3,AINbasic

(ainMIN (minTN (tntrans(t))))

Therefore, amtrans(cspec) = amhuml,trans holds.

AmFlow. The assignment of flows to abstract machines for the HL3 model is
given by the flow expression nodes that define the flows:

amhuml,flow : Flow → Am
f 7→ amHL3,AINbasic

(ainMIN (minMExpN (fxnFlow (f ))))

Hence, amflow (cspec) = amhuml,flow holds.

SubjectVar. The mapping of variables the their responsible subject is essen-
tially given by the involved expression node:

subjectExpNspec : ExpNspec → Flow ∪ Trans ∪Am

expn 7→

 flowHL3,FlowExpNspec (expn) ; expn ∈ FlowExpNspec

transHL3,TNspec (tnTExpN (expn)) ; expn ∈ ActExpNspec

amHL3,AINbasic
(ainExpN (expn)) ; else
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Then, the local variables are mapped to subjects, corresponding to the expres-
sion nodes that are mapped the local variables themselves:

subjectlvar : Var → Flow ∪ Trans ∪ Ifm ∪Am
lv 7→ subjectExpNspec

(expn)
with

∃(v , acc, tm) ∈ V × {read ,write} × {cur , prev} •
(expn, v , acc, tm) 7→ lv ∈ lvarV ,Vlocal

∨ ∃(s, acc) ∈ S × {read ,write} • (expn, s, acc) 7→ lv ∈ lvarS
∨ ∃(s, acc,n) ∈ S × {read ,write} × N0 •

(expn, s, acc,n) 7→ lv ∈ lvarSigParam

∨ ∃ s ∈ S • (expn, s) 7→ lv ∈ lvartrgIdx
∨ ∃ s ∈ S • (expn, s) 7→ lv ∈ lvarsigIdx
∨ ∃ v ∈ V • (expn, v) 7→ lv ∈ lvarV ,∆t

∨ ∃ v ∈ V • (expn, v) 7→ lv ∈ lvarV ,curTck

∨ ∃ v ∈ V • (expn, v) 7→ lv ∈ lvarV ,prevTck

∨ ∃ t ∈ treeo HybelItem • (expn, t) 7→ lv ∈ lvarquantRes

∨ expn 7→ lv ∈ lvarvis
∨ expn 7→ lv ∈ lvarvisSet

∨ expn 7→ lv ∈ lvarvisIdx
∨ expn 7→ lv ∈ lvarnewTck

∨ expn 7→ lv ∈ lvarvisOrig

∨ ∃ t ∈ treeo HybelItem • (expn, t) 7→ lv ∈ lvarhitCount

∨ ∃ t ∈ treeo HybelItem • (expn, t) 7→ lv ∈ lvarhits
∨ expn 7→ lv ∈ retvarBExpN

The above mapping defines the subject dependency for local variables for the
particular HybridUML specification:

subjectvar (cspec) = subjectlvar

ChanPort. Each port is mapped to the channel for which it provides access.
This is defined by the sets of connected property or signal nodes: (1) Each
node is contained in at most one maximal set of nodes, since every two sets
of property nodes are united for a common property node within VNconn , and
(2) each node is contained at least in one such set, because every port is collected
within VNconn,local .

chanhuml,port : Port → Chan
p 7→ c

; p ∈ PORTVar ∧ c ∈ CHNVar ∧ vnPORTVar
(p) ∈ vnconn,max ,CHNVar

(c)
p 7→ c

; p ∈ PORTSig ∧ c ∈ CHNSig ∧ snPORTSig
(p) ∈ snconn,max ,CHNSig

(c)

Then, this is the mapping from ports to channels:

chanport(cspec) = chanhuml,port
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InitValPort. For the definition of initial port values, HybridUML provides
two complementary concepts, that were introduced in section 5.1 – (1) “Initial
Property Values” and (2) “Init State Constraints”:

Init State Constraints. An init state constraint is a boolean expression that
defines a constraint on an agent instance node that must be satisfied in the HL3
model’s initial state. All properties of the agent are available for the expres-
sion, therefore arbitrary relations on them can be postulated. This provides a
powerful means to define a set of valid initial HL3 channel states.

In general, such a set of constraints cannot always be solved easily, and the
definition of a constraint solver (for an adequate subset of init state constraints)
is out of scope of this thesis. However, we provide a mechanism to guarantee
that HL3 models are only executed, when the initial channel state satisfies the
init state constraints. This is done by the HybridUML selector, which is defined
in section 6.6.2.

Initial Property Values. Initial property value specifications are provided as a
less powerful, but straight-forward mechanism to define the initial state of HL3
channels. For each HybridUML property (of agents), an independent value
specification can be given, such that mainly, a single initial channel state can
be defined explicitly.

Since initial values are attached to properties, there can be more than one
initial value:

σCHNVar ,initChoice : CHNVar → P(VALeval)
c 7→ {v ∈ VALeval | ∃ vn ∈ c • v = σVNspec

(vn)}

One of the provided initial values is chosen non-deterministically, if there is
any:

σCHNVar ,init : CHNVar → VALeval ∪ {λ}
c 7→ v ; v ∈ σCHNVar ,initChoice(c)
c 7→ λ ; σCHNVar ,initChoice(c) = �

For HybridUML, every variable port of a channel initially has access to the same
value – the channel’s initial value. If the channel does not provide an initial
value, then a default value, corresponding to the port’s type, is used. Note
that this overrides the (possible) use of init state constraints discussed above.
An appropriate constraint solver would be integrated here, such that channels
without initial value would get their default values then from the solver.

σPORTVar ,init : PORTVar → VALeval

p 7→ σCHNVar ,init(chanhuml,port(p))
; σCHNVar ,init(chanhuml,port(p)) 6= λ

p 7→ defvalDT (typeV (varVN (vnPORTVar (p))))
; σCHNVar ,init(chanhuml,port(p)) = λ
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The default value is deterministically defined for primitive and structured data
types, and non-deterministically chosen for enumeration types:

defvalDT : DT → VALeval

bool 7→ false
pt 7→ 0; pt ∈ {int , real , anaReal}
sdt 7→ 〈defvalDT (varseqDT (sdt)(1)), . . . ,
defvalDT (varseqDT (sdt)(|varseqDT (sdt)|))〉
; kindDT (sdt) = struc

et 7→ l ; kindDT (et) = DTenum ∧ dtL(l) = et

Signal ports initially get the value false, i.e. initially there is no occurrence of
any signal.

σPORTSig ,init : PORTSig → VALeval

p 7→ false

The initial port data of the HL3 model is then defined by the initial values
above:

dataPORTVar ,init : PORTVar → Data
p 7→ dataVal(σPORTVar ,init(p))

dataPORTSig ,init : PORTSig → Data
p 7→ dataVal(σPORTSig ,init(p))

The union of initial data for variable ports and signal ports gives the complete
port initialization function:

initvalport(cspec) = dataPORTVar ,init ∪ dataPORTSig ,init

SubjectPort. Every port of the model is accessible for the abstract machine
am from which it originates, i.e. that is created from the basic agent instance
node that hosts the property node or signal node, from which the port is gener-
ated. Further, all flows and transitions that are associated with am have access,
too:

subjecthuml,port : Port → P(Subject)
p 7→ {am} ∪ {t ∈ Trans | amhuml,trans(t) = am}

∪{f ∈ Flow | amhuml,flow (f ) = am}
; p ∈ PORTVar ∧ am = amHL3,AINbasic

(ainVN (vnPORTVar (p)))
∨p ∈ PORTSig ∧ am = amHL3,AINbasic

(ainSN (snPORTSig (p)))

The mapping from ports to subjects is then defined as

subjectport(cspec) = subjecthuml,port

SelPort. The HybridUML selector only accesses channels (via ports) in order
to deactivate signals. Therefore, it has access to the signal ports:

selport(cspec) = PORTSig
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VisibilitySetFlow. The publication visibility for HybridUML flows is neither
restricted nor delayed. That is, for every flow, all ports are contained here such
that it may publish its results to whatever recipient it may address. Further,
the delay time stamp is set to zero for all entries:

vishuml,flow : Flow → VisibilitySet
f 7→ {0.0} × Port

Hence, visflow (cspec) = vishuml,flow holds.

VisibilitySetIfm. The mapping of interface modules to visibility sets is empty,
since there are no interface modules:

visifm(cspec) = �

VisibilitySetTrans. The publication visibility for HybridUML flows is neither
restricted nor delayed, similarly to flows:

vishuml,trans : Trans → VisibilitySet
t 7→ {0.0} × Port

Thus, vistrans(cspec) = vishuml,trans holds.

LwpSubjabs
. Since the set of light weight processes is configured manually, the

assignment of abstract subjects to light weight processes lwpsubj (cspec) has to
be done manually, too.

ProgramSubjprog . The programs that define the behavior of the program sub-
jects of the HL3 model are created from the associated expressions. The program
subjects are the flows f ∈ Flow and the transitions t ∈ Trans. There are no
interface modules. The definitions for program creation from expression nodes
are given in section 6.5. Here, the assignment from subjects and their respec-
tive operations to the resulting programs is defined: (1) The flows’ programs are
created from the expressions of the corresponding flow expression nodes, (2) the
transitions’ programs are based on the action expressions of the corresponding
transition nodes, and of the transition expression.

prghuml,subj : (Flow ×OpFlow ) ∪ (Trans ×OpTrans) ∪ (Ifm ×OpIfm)
→ Program

(f , integrate) 7→ prgExpN ,ass(〈fxnFlow (f )〉)
(t , action) 7→

prgExpN ,ass(anyseqExpN(trgTNspec
(tntrans(t))) � actTNspec

(tntrans(t)))

As a result, prgsubj (cspec) = prghuml,subj holds.

6.4.3 Physical Constraints

As stated in section ??, HybridUML has no specification facility for the defini-
tion of physical constraints. Therefore, the system period has to be configured
manually, and the period factors for flows are set to a fixed default value.
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SysPeriod. The internal scheduling period δperiod(cspec) has to be configured
manually, and is constrained by two factors:

1. The performance of the available hardware must be sufficient, i.e. fast
enough for the chosen period.

2. The chosen period must be appropriate for the simulation’s requirements.
Mostly, this means that it must be small enough.

Note that these constraints are conflicting in general. Therefore, it is not ensured
that a valid period δperiod(cspec) can be found.

PeriodFlow. By default, every flow is scheduled with the system period
δperiod(cspec), i.e. the factor is set to 1 for all flows:

periodhuml,flow : Flow → N
f 7→ 1

This mapping can be adjusted manually. Anyway, periodflow (cspec) =
periodhuml,flow holds.

PeriodIfm,poll. Since there are no interface modules, the mapping from inter-
face modules to period factors for the operation poll is empty:

periodifm,poll(cspec) = �

PeriodIfm,tmit. Similarly, the mapping from interface modules to period fac-
tors for the operation transmit is empty:

periodifm,tmit(cspec) = �

6.5 Code Creation for Expression Nodes

This section defines the creation of program code for sequences of expression
nodes. The resulting code defines the execution semantics of a sequence of
expressions, within their expression node context. In particular, the semantics
of single expression nodes are therefore given.

Exemplarily, for selected generation rules, corresponding program code is
pointed out in appendix ??. There, from the implementation of the transforma-
tion ΦHUML, C++ operations are given, which correspond to programs of the
HL3 model of the case study “Radio-Based Train Control”.

Note that the C++ code differs from the formally defined programs p ∈
Program in details. For example, declaration of local variables is done within
the code, not separately, and initialization is merged with declaration. Further,
some expressions and statements are represented more conveniently, like for-
statements, instead of while.
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Program Strings. The transformation rules given in this section define code
by giving program strings, that are sequences s ∈ String of characters. For
convenience, we use the conventional string notation ”abc” from programming
languages as a shorthand notation for the sequence 〈a, b, c〉.

For the representation of literals, local variables, and ports we assume an
injective mapping

string : VALeval ∪Var ∪ Port� String

that defines a unique string representation for each literal, variable, and port.
In terms of the HL3 operational semantics, programs are represented as

sequences p ∈ Program of program statements. The mapping

prgString : String → Program

from program strings to sequences of statements is straight-forward, using the
character ”; ” as statement delimiter, as well as the standard block notation for
conditional and loop statements, ending with a closing brace ”}”. We omit the
formal definition here.

Evaluation and Assignment Interpretation of Expressions. There are
two different interpretations of expressions in the context of HybridUML spec-
ifications:

Evaluation Interpretation Some expressions have an evaluation interpretation,
such that the corresponding program calculates a result value when it is
executed. The result value of complete expressions that are contained
in expression nodes is always of boolean type, whereas contained sub-
expressions of course can have other types, as defined in chapter 5.
(1) Trigger expressions, (2) guard expressions, and (3) invariant constraint
expressions have evaluation interpretations that determine whether a trig-
ger is active, or a guard or an invariant constraint is satisfied, respectively.

Assignment Interpretation The assignment interpretation of expressions defines
programs that are executed like procedure calls and do not return a result
value. Those programs will typically calculate new values for HybridUML
variables or set/unset HybridUML signals and publish the new values on
the respective channels.
The affected kinds of expressions are (1) action expressions, (2) flow (and
algebraic) constraint expressions, and (3) trigger expressions. The effect of
the assignment interpretation of triggers is that the corresponding signal
is unset after it has been consumed.

The definition of the resulting programs given below is structured accordingly:
On the basis of the hybel item trees and identifier item trees which represent
(sub-)expressions, the mappings below are defined mutually recursively, such
that particularly assignment code can contain evaluation code for the calculation
of new values.

Evaluation Code of Expression Nodes. For a sequence of expression
nodes, the code that implements the evaluation interpretation is given by the
function

prgExpN ,eval : seqExpNspec → Program
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For expression nodes with contained expression of boolean type, i.e. for

∀ expn ∈ {expn1, . . . , expnn} • ∃(((t , r), val), sub) ∈ treeo HybelItem •
htexpn(expn) = (((t , r), val), sub) ∧ t = bool ∧ r ∈ {op,∀,∃, var , lit}

the function prgExpN ,eval is defined as

〈expn1, . . . , expnn〉 7→ prgString(
initcodeV ,cur ({expn1, . . . , expnn}) �
initcodeV ,prev ({expn1, . . . , expnn}) � initcodeS ({expn1, . . . , expnn}) �
pre(htexpn(expn1), cur , expn1) � . . . � pre(htexpn(expnn), cur , expnn)
� string(retvarBExpN (expn1)) � ”:=” �
main(htexpn(expn1), cur , expn1)
� ”∧” � . . . � ”∧” �
main(htexpn(expnn), cur , expnn)
� ”; ” �
post(htexpn(expn1), cur , expn1) � . . . � post(htexpn(expnn), cur , expnn))

At the beginning, local variables are initialized which are accessed by the ex-
pressions of the expression nodes. For the evaluation code, (1) current values of
HybridUML variables, (2) previous values of HybridUML variables, and (3) sig-
nal states, i.e. enabledness of signals are read from the respective channels and
stored locally in dedicated HL3 variables. The actual evaluation of an expression
consists of up to three parts:

Main Code The main evaluation code is an expression in terms of while-
programs. Simple HybEL expressions are represented directly by such
an expression; for example, the boolean literal true is represented as the
program expression ”true”.
In contrast, more complex HybEL expressions are implemented by a se-
quential sub-program and cannot be given by a simple program expression.
Examples are the quantifiers ∀, ∃ – they are mapped to while-loops which
store the result in a local variable result . Here, ”result” constitutes the
main code of the quantified HybEL expression, whereas the sub-program
that is run before is the pre-code.

Pre-Code The evaluation pre-code subsumes all sub-programs (concatenated
sequentially) that are needed in order to prepare the expression of the
main code.

Post-Code For expressions that require some functionality to be effective after
the evaluation is done, the post-code can be created and filled with the
respective program string. This will be used for the assignment interpre-
tation of expressions, and exists here for the evaluation interpretation only
for consistency.

Therefore, succeeding the initialization code, the rest of the program consists of
the three code parts described above. First, pre-code is inserted per expression
node. Then, the main code is inserted for all expression nodes, combined by
logical conjunction; and the resulting value is assigned to the dedicated return
variable of the first expression node. Finally, the post-code is appended for all
expression nodes.
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For expression nodes that contain an expression which is not of boolean type,
the function prgExpN ,eval provides the empty program:

〈expn1, . . . , expnn〉 7→ 〈〉

Assignment Code of Expression Nodes. The assignment code that is
created for a sequence of expression nodes is defined as function

prgExpN ,ass : seqExpNspec → Program

Expressions to be interpreted for assignment must be HybEL assignment ex-
pressions, therefore

∀ expn ∈ {expn1, . . . , expnn} • ∃(((t , r), val), sub) ∈ treeo HybelItem•
htexpn(expn) = (((t , r), val), sub) ∧ r ∈ {ass, diffAss, intNondetAss,

assGroup, diffAssGroup, sendSig}

is required. Then, the function prgExpN ,ass is defined as

〈expn1, . . . , expnn〉 7→ prgString(
initcodevisparam({expn1, . . . , expnn}) �
initcodeV ,cur ({expn1, . . . , expnn}) �
initcodeV ,prev ({expn1, . . . , expnn}) �
initcodeV ,curTck ({expn1, . . . , expnn}) �
initcodeV ,prevTck ({expn1, . . . , expnn}) �
initcodeS ({expn1, . . . , expnn}) � initcodeSigParam({expn1, . . . , expnn}) �
asspre(htexpn(expn1), expn1) � . . . � asspre(htexpn(expnn), expnn) �
assmain(htexpn(expn1), expn1) � . . . � assmain(htexpn(expnn), expnn) �
pubcodeV ({expn1, . . . , expnn}) �
pubcodeS ,send({expn1, . . . , expnn}) �
pubcodeSigParam({expn1, . . . , expnn}) �
pubcodeS ,recv ({expn1, . . . , expnn}) �
asspost(htexpn(expn1), expn1) � . . . � asspost(htexpn(expnn), expnn))

The creation of assignment code is somewhat similar to the creation of evalua-
tion code. The generated code starts with the initialization of the visibility set
variable from the visibility set parameter, followed by the initialization of local
variables from the respective channels. In addition to the current and previous
values of HybridUML variables and HybridUML signal states, the time stamps
of the current and previous values of HybridUML variables, and the parameter
values of HybridUML signals are read and stored locally.

It is followed by the pre-code, which is appended by the main code. The
main assignment code of an expression node is a program statement, rather
than a program expression; therefore, there is no conjunction and assignment,
but just a sequence of statements.

Before the post-code is appended, the publication code is added: Since the
aim of assignment code is to calculate and publish new values for channels,
this code publishes the calculated values from local variables to the respective
channels. Note that the post-code therefore is effective after the publication of
results.
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For expression nodes that contain an expression which is not an assignment,
the function prgExpN ,ass provides the empty program:

〈expn1, . . . , expnn〉 7→ 〈〉

6.5.1 Evaluation Interpretation of Hybel Item Trees

In the context of an expression node, a hybel item tree defines program strings
that implement the evaluation of the encoded expression. This is defined by the
mapping

code : treeo HybelItem × {cur , prev} × ExpN → String3

The distinction between cur and prev is made for the contained variables, for
which normally the currently available value is effective for calculations, but in
specific contexts the previous one. The main code, pre-code and post-code parts
are given by the mappings

main : treeo HybelItem × {cur , prev} × ExpN → String
tvn 7→ π1 code(tvn)

pre : treeo HybelItem × {cur , prev} × ExpN → String
tvn 7→ π2 code(tvn)

post : treeo HybelItem × {cur , prev} × ExpN → String
tvn 7→ π3 code(tvn)

The definition of code is then given recursively, by the structure of the hybel
item trees.

Literals. Literals of all types are mapped to their string representations:

((((t , lit), val), sub), tm, expn) 7→ (string(val), ””, ””)
; t ∈ {bool , int , real} ∪DTenum

((((sdtanon , lit), val), 〈s1, . . . , sn〉), tm, expn) 7→
(”{” �main(s1, tm, expn) � ”,” � . . . � ”,” �main(sn , tm, expn) � ”}”,

pre(s1, tm, expn) � . . . � pre(sn , tm, expn),
post(s1, tm, expn) � . . . � post(sn , tm, expn))

Examples: Almost all examples of section ?? contain literals; e.g. ??, ??.

Variables and Signals. The string representation of variables, as well as of
received signals (i.e. triggers) is solely given by the contained identifier item
tree. For sent signals, there is no interpretation within read-only context.

((((t , var), idtree), sub), tm, expn) 7→ codeId(idtree, tm, expn)
; t ∈ DT ∪ {recvSig}

Examples: ??, ??, ??, ??, ??, ??.
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Derivative Values of Variables. Reading of a derivative is implemented by
calculating the last integration step, from the current and previous value and
their time stamps of the corresponding analog real variable.

((((anaReal , derivVar), idtree), sub), tm, expn) 7→

(”((” �mainId(idtree, cur , expn) � ”−” �mainId(idtree, prev , expn)
� ”)/” � string(lvarV ,∆t(expn, v)) � ”[” � idxmain � ”])”,

idxpre �

string(lvarV ,∆t(expn, v)) � ”[0] :=” �
”left(” � string(lvarV ,curTck (expn, v)) � ”[0])” �
”−left(” � string(lvarV ,prevTck (expn, v)) � ”[0]); ”
� . . . � repeat for 1..n

string(lvarV ,∆t(expn, v)) � ”[” � string(n) � ”] :=” �
”left(” � string(lvarV ,curTck (expn, v)) � ”[” � string(n) � ”])” �
”−left(” � string(lvarV ,prevTck (expn, v)) � ”[” � string(n) � ”]); ”
�

”if(” � string(lvarV ,∆t(expn, v)) � ”[0] ≤ 0)” �
”{return; }”
� . . . � repeat for 1..n

”if(” � string(lvarV ,∆t(expn, v)) � ”[” � string(n) � ”] ≤ 0)” �
”{return; }”,

idxpost)

with
idtree = ((tid , (v , acc)), subid) ∧ n = |vnexpn(v , expn)| − 1 ∧
(subid = 〈((indexExp, exptree), 〈〉)〉

⇒ (idxmain , idxpre , idxpost) = code(exptree, tm, expn))
∧ (subid = 〈〉 ⇒ (idxmain , idxpre , idxpost) = (”0”, ””, ””))

The pre-code prepares the time difference for each of the variable’s indices;
this is necessary, because the variable’s index expression dynamically decides
which index is accessed during execution. Further, a check is included to ensure
that the time difference is positive, otherwise the calculation will be skipped.
Therefore, a division by zero is avoided. The main code just calculates the
integration step.

Unary Operations. The code for the negation operation, which is the single
available unary operation, is based on the code for the contained expression.
Additionally, the negation operator is applied:

((((bool , op),¬), 〈s〉), tm, expn) 7→

(”¬” �main(s, tm, expn), pre(s, tm, expn), post(s, tm, expn))
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Examples: ??, ??, ??

Binary Operations. Most binary operations directly rely on the contained
expressions, i.e. the left-hand side and the right-hand side are transformed to
programs separately first, and then combined with the corresponding operator
within the program, in a similar fashion as for unary operations:

((((t , r),♦), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉), tm, expn) 7→

”(” �main((((t1, r1), val1), sub1)) � ”♦” �main((((t2, r2), val2), sub2)) � ”)”,

pre((((t1, r1), val1), sub1)) � pre((((t2, r2), val2), sub2)),
post((((t1, r1), val1), sub1)) � post((((t2, r2), val2), sub2)))

with{t1, t2} ∩ {real , anaReal} = � ∨ ♦ 6∈ {==, 6=}

Examples: ??, ??, ??, ??, ??, ??.

Equality Comparison for Real Values. There are two binary operations
that need special treatment – equality comparison and inequality comparison of
real values is problematic. Since the execution of the HL3 model is discretized,
it is not guaranteed that zero crossings of values x1, x2 are detected, i.e. that
during the discretized run, x1 = x2 is observed, when their continuous evolutions
would cross. Depending on the chosen system period δperiod(cspec) and the
(implemented) precision of the representation of real values, it is rather unlikely
that a naively-implemented (in-)equality comparison would succeed.

Therefore, as an approximation, we compare not only the current values,
but also the previous ones, such that a zero crossing is detected, whenever be-
tween two succeeding discrete evaluation steps, no second zero crossing occurs.
Therefore, we actually check the condition

x1,prev ≤ x2,cur ∧ x1,cur ≥ x2,prev ∨ x1,prev ≥ x2,cur ∧ x1,cur ≤ x2,prev

Thus, hybel item trees representing (in-)equality comparisons are mapped to
programs implementing this check; they are defined by

((((t , r),==), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉), tm, expn) 7→

”((((” �
main((((t1, r1), val1), sub1), prev , expn) � ”≥” �
main((((t2, r2), val2), sub2), cur , expn) � ”) ∧ (”�
main((((t1, r1), val1), sub1), cur , expn) � ”≤” �
main((((t2, r2), val2), sub2), prev , expn) � ”)) ∨ ((” �
main((((t1, r1), val1), sub1), prev , expn) � ”≤” �
main((((t2, r2), val2), sub2), cur , expn) � ”) ∧ (” �
main((((t1, r1), val1), sub1), cur , expn) � ”≥” �
main((((t2, r2), val2), sub2), prev , expn) �
”))))”,

””, ””)
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with {t1, t2} ∩ {real , anaReal} 6= �

Inequality comparison programs are based on equality comparison:

((((t , r), 6=), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉), tm, expn) 7→
(”¬” �main((((t , r),==), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉),
tm, expn),
pre((((t , r),==), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉), tm, expn),
post((((t , r),==), 〈(((t1, r1), val1), sub1), (((t2, r2), val2), sub2)〉), tm, expn))

with {t1, t2} ∩ {real , anaReal} 6= �

Quantified Boolean Expressions. Quantified boolean expressions are im-
plemented by while loops over the specified integer ranges. For each integer
range, a separate loop is created. Within the loop, the bound expression is
evaluated, and the boolean result is adapted and stored in a dedicated variable.
This is encoded in the pre-code part; the main code then only contains the result
variable:

(quantTree, tm, expn) 7→

(string(lvarquantRes(expn, quantTree)),

asspreId(idtreebnd , tm, expn) � pre(slow ,1, tm, expn)
� preId(idtreebnd , tm, expn) � pre(sup,1, tm, expn)
� pre(boundExp, tm, expn) � asspreId(idtreebnd , tm, expn)
� . . . � repeat for 1..n

asspreId(idtreebnd , tm, expn) � pre(slow ,n , tm, expn)
� preId(idtreebnd , tm, expn) � pre(sup,n , tm, expn)
� pre(boundExp, tm, expn) � asspreId(idtreebnd , tm, expn) �

string(lvarquantRes(expn, quantTree)) � ”:=” � initval � ”; ”�

assmainId(idtreebnd , tm, expn) � ”:=” �main(slow ,1, tm, expn) � ”; ” �
”while((” �mainId(idtreebnd , tm, expn) � ”≤” �main(sup,1, tm, expn)
� ”)∧” � sign � string(lvarquantRes(expn, quantTree)) � ”){” �
string(lvarquantRes(expn, quantTree)) � ”:=” �main(boundExp, tm, expn)
� ”; ” � ”++” � assmainId(idtreebnd , tm, expn) � ”; ”
� . . . � repeat for 1..n

assmainId(idtreebnd , tm, expn) � ”:=” �main(slow ,n , tm, expn) � ”; ” �
”while((” �mainId(idtreebnd , tm, expn) � ”≤” �main(sup,n , tm, expn)
� ”)∧” � sign � string(lvarquantRes(expn, quantTree)) � ”){” �
string(lvarquantRes(expn, quantTree)) � ”:=” �main(boundExp, tm, expn)
� ”; ” � ”++” � assmainId(idtreebnd , tm, expn) � ”; ”,

asspostId(idtreebnd , tm, expn) � post(slow ,1, tm, expn)
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� postId(idtreebnd , tm, expn) � post(sup,1, tm, expn)
� post(boundExp, tm, expn) � asspostId(idtreebnd , tm, expn)
� . . . � repeat for 1..n

asspostId(idtreebnd , tm, expn) � post(slow ,n , tm, expn)
� postId(idtreebnd , tm, expn) � post(sup,n , tm, expn)
� post(boundExp, tm, expn) � asspostId(idtreebnd , tm, expn))

with
quantTree = (((bool , q), idtreebnd), 〈(((intSet , intSpecs), val),

〈(((intSet , intRange), val1), 〈slow ,1, sup,1〉), . . . ,
(((intSet , intRange), valn), 〈slow ,n , sup,n〉)〉), boundExp〉)

∧ q ∈ {∀,∃}
∧ q = ∀ ⇒ initval = ”true” ∧ sign = ””
∧ q = ∃ ⇒ initval = ”false” ∧ sign = ”¬”

Examples: ??, ??, ??, ??, ??, ??.

Assignment Expressions. Assignment expressions that assign values to
variables apply the assignment interpretation for the left-hand side, which rep-
resents the variable to be assigned. The right-hand side is an expression that is
interpreted as a “conventional” expression, i.e. the read interpretation is used,
recursively. This rule excludes differential assignments that assign a derivative:

((((t , r), val), 〈s1, . . . , sn〉), tm, expn) 7→

(assmain(s1, expn) � ”:=” �main(s2, tm, expn),
asspre(s1, expn) � pre(s2, tm, expn),
asspost(s1, expn) � post(s2, tm, expn))

with s1 = ((role1, val1), sub1) ∧ role1 6= (anaReal , derivVar)
∧ r ∈ {ass, diffAss}

Examples: ??, ??, ??, ??.

Assignment of Derivative Values of Variables. The assignment of the
derivative of an analog real variable v of the form v̇ = val is interpreted such
that for the next integration step, the calculated value from the right-hand side
is the constant slope for this integration step. That is, for the approximation of
the derivative v̇

v̇(t) = lim
∆t→0

v(t + ∆t)− v(t)
∆t

≈ v(t + ∆t)− v(t)
∆t

=
v(tnew )− v(t)

tnew − t
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a new value for v results:

v(tnew ) = val · (tnew − t) + v(t)
≈ v̇(t) · (tnew − t) + v(t)

Since there are possibly different publication times tnew , given by the visibility
set parameter of the flow that hosts the assignment, this calculation has to
be done for each visibility entry within that set. Therefore, a while loop is
generated that iterates the visibility entries and repeats the calculation of the
integration step, correspondingly.

((((anaReal , diffAss), val),
〈(((anaReal , derivVar), idtree1), sub1), s2, . . . , sn〉), tm, expn) 7→

(assmain((((anaReal , derivVar), idtree1), sub1), expn) � ”:= (”
�main(s2, tm, expn) � ”) · (left(” � string(lvarnewTck (expn))
� ”)− left(” � string(lvarV ,curTck (expn, v)) � ”)+”
�main((((anaReal , derivVar), idtree1), sub1), tm, expn),

pre((((anaReal , derivVar), idtree1), sub1), tm, expn)
� asspre((((anaReal , derivVar), idtree1), sub1), expn)
� pre(s2, tm, expn) �

string(lvarvisOrig(expn)) � ”:= getVisParam(); ” �
string(lvarvisIdx (expn)) � ”:= size(” � string(lvarvisSet(expn)) � ”); ”
� ”while(” � string(lvarvisIdx (expn)) � ”> 0){” �
”clear(” � string(lvarvisSet(expn)) � ”); ” �
string(lvarvis(expn)) � ”:= getEntry(” � string(lvarvisOrig(expn))
� ”,” � string(lvarvisIdx (expn)) � ”); ” �
”addEntry(” � string(lvarvisSet(expn))
� ”,” � string(lvarvis(expn)) � ”); ” �
string(lvarnewTck (expn)) � ”:= left(” � string(lvarvis(expn)) � ”); ”,

post((((anaReal , derivVar), idtree1), sub1), tm, expn)
� asspost((((anaReal , derivVar), idtree1), sub1), expn)
� post(s2, tm, expn)
� ”−−” � string(lvarvisIdx (expn)) � ”; }”)

with idtree1 = ((t , (v , acc)), subid)

Note that the main code is the calculation of one single integration step, whereas
the pre-code and post-code model the surrounding while loop: The pre-code
prepares the iteration of the visibility entries given by the visibility set parameter
and defines the condition of the loop. The post-code increments the counter
for the visibility entries and closes the loop. Here it is assumed that between
main code and post-code some send code is inserted that actually publishes the
calculated value for the current iteration; this is defined above, by prgExpN ,ass .
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Examples: ??.

Default Rule. For all other hybel item trees that are not mapped above, an
empty program is created:

(tree, tm, expn) 7→ (””, ””, ””); else

6.5.2 Evaluation Interpretation of Identifier Item Trees

For identifiers (including index expressions), the evaluation interpretation maps
identifier item trees to program strings. Similarly to hybel item trees, this also
depends on the expression node for which the program is created, and on the
flag that either requests the current or the previous value for the identifier.

codeId : treeo IdItem × {cur , prev} × ExpN → String3

There are main code, pre-code, and post-code projections, given by the map-
pings

mainId : treeo IdItem × {cur , prev} × ExpN → String
tvn 7→ π1 codeId(tvn)

preId : treeo IdItem × {cur , prev} × ExpN → String
tvn 7→ π2 codeId(tvn)

postId : treeo IdItem × {cur , prev} × ExpN → String
tvn 7→ π3 codeId(tvn)

Variable Identifiers. A variable identifier with index expression is mapped
to the local variable that represents read access to the HybridUML variable or
signal. For every identifier, the local variable is of array type, and the array
index results from the index expression:

(((t , (v , acc)), 〈((indexExp, exptree), 〈〉)〉), tm, expn) 7→
(string(lvarV ,Vlocal

(expn, v , read , tm))
� ”[” �mainId(((indexExp, exptree), 〈〉), tm, expn) � ”]”,

preId(((indexExp, exptree), 〈〉), tm, expn),
postId(((indexExp, exptree), 〈〉), tm, expn))
with t ∈ DT

Variable identifiers without index expression are treated similarly, but array in-
dex 0 is used. Therefore, variable expressions x and x [0] have the same meaning.

(((t , (v , acc)), 〈〉), tm, expn) 7→
(string(lvarV ,Vlocal

(expn, v , read , tm)) � ”[0]”, ””, ””)
with t ∈ DT

Examples: ??, ??, ??, ??, ??, ??.
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Sub-Variables of Structured Data Types. Access to a sub-variable of a
variable of structured data type is defined recursively:

(((t , (v , acc)), 〈s1, s2〉), tm, expn) 7→
(string(lvarV ,Vlocal

(expn, v , read , tm)) � ”[” �mainId(s1, tm, expn) � ”].”
�mainId(s2, tm, expn),
preId(s1, tm, expn) � preId(s2, tm, expn),
postId(s1, tm, expn) � postId(s2, tm, expn))
with t ∈ DTstruc

If there is no index expression, index 0 is applied:

(((t , (v , acc)), 〈((ts , vals), subs)〉), tm, expn) 7→
(string(lvarV ,Vlocal

(expn, v , read , tm)) � ”[0].”
�mainId(((ts , vals), subs), tm, expn),
preId(((ts , vals), subs), tm, expn),
postId(((ts , vals), subs), tm, expn))
with t ∈ DTstruc ∧ ts 6= indexExp

Examples: ??, ??, ??, ??, ??, ??.

Index Expressions of Triggers. Triggers can have index assignment subex-
pressions, which require special treatment. In contrast, triggers with conven-
tional index expressions are mapped in the same fashion as variables are:

(((recvSig , (s, recv)), 〈((indexExp, (((int , r), val), sub)), 〈〉)〉), tm, expn) 7→
(string(lvarS (expn, s, read))
� ”[” �mainId(((indexExp, (((int , r), val), sub)), 〈〉), tm, expn) � ”]”,

preId(((indexExp, (((int , r), val), sub)), 〈〉), tm, expn),
postId(((indexExp, (((int , r), val), sub)), 〈〉), tm, expn))
with r 6= indexAss

If there is no index expression, index 0 is applied:

(((recvSig , (s, recv)), 〈〉), tm, expn) 7→
(string(lvarS (expn, s, read)) � ”[0]”, ””, ””)

For triggers with index assignment subexpression, a program is created that
accepts signal occurences for all indices. The succeeding evaluation of the actu-
ally affected index is defined by the assignment interpretation of triggers, which
is introduced later.

(((recvSig , (s, recv)),
〈((indexExp, (((int , indexAss), val), sub)), 〈〉)〉), tm, expn) 7→

(”(” � string(lvarS (expn, s, read)) � ”[0]”,
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�”∨” � . . . � ”∨” � repeat for 1..n

string(lvarS (expn, s, read)) � ”[”string(n)”])”,

””, ””)
with n = |snexpn(s, expn)| − 1

Conventional Index Expressions. Conventional index expressions of iden-
tifier items are given by hybel item trees:

(((indexExp, exptree), sub), tm, expn) 7→ code(exptree, tm, expn)

Examples: ??, ??, ??, ??, ??, ??.

Default Rule. All other identifier item trees are mapped to the empty pro-
gram:

(tree, tm, expn) 7→ (””, ””, ””); else

6.5.3 Assignment Interpretation of Hybel Item Trees

Some hybel item trees have different interpretations either for evaluation of their
values or in the context of assignment. The latter is defined as a mapping

asscode : treeo HybelItem × ExpN → String3

As for code, there are main code, pre-code and post-code mappings for asscode:

assmain : treeo HybelItem × ExpN → String
tn 7→ π1 asscode(tn)

asspre : treeo HybelItem × ExpN → String
tn 7→ π2 asscode(tn)

asspost : treeo HybelItem × ExpN → String
tn 7→ π3 asscode(tn)

Variables. The assignment interpretation of any variable is determined by
the assignment interpretation of its identifier item tree:

((((t , r), idtree), sub), expn) 7→ asscodeId(idtree, expn)
with r ∈ {var , derivVar}

Examples: ??, ??, ??, ??, ??, ??, ??, ??.

Sending of Signals. Signal raise statements are composed of (1) the sending
of the signal itself, which is defined by the assignment interpretation of the
identifier item tree, and (2) the writing of the actual parameter values. The
latter is defined here. A dedicated index variable is used to choose the signal’s
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index wrt. to its multiplicity for sending. It is assumed that this variable holds
the appropriate value, prepared in the context of the raise statement.

((((sigtype, sendSig), idtree), 〈s1, . . . , sn〉), expn) 7→

(assmainId(idtree, expn)�
string(lvarSigParam(expn, s,write, 1)) � ”[”
� string(lvarsigIdx (expn, s)) � ”]” � ”:=” �main(s1, cur , expn) � ”; ”
� . . . � repeat for 1..n

string(lvarSigParam(expn, s,write,n)) � ”[”
� string(lvarsigIdx (expn, s)) � ”]” � ”:=” �main(sn , cur , expn) � ”; ”,

asspreId(idtree, expn) � pre(s1, cur , expn) � . . . � pre(sn , cur , expn),

asspostId(idtree, expn) � post(s1, cur , expn) � . . . � post(s1, cur , expn))

with idtree = ((sendSig , (s, acc)), subid)

Receiving of Signals. The receiving of signals (defined by trigger expres-
sions) leads to the assignment of local variables from the parameter values that
are associated with the signal’s occurrence. The handling of the signal itself is
defined later by a rule for the included identifier item tree.

((((sigtype, recvSig), idtree), 〈s1, . . . , sn〉), expn) 7→

(assmainId(idtree, expn)�
assmainId(s1, expn) � ”:=” � string(lvarSigParam(expn, s, read , 1))
� ”[” � string(lvartrgIdx (expn, s)) � ”]; ”
� . . . � repeat for 1..n

assmainId(sn , expn) � ”:=” � string(lvarSigParam(expn, s, read ,n))
� ”[” � string(lvartrgIdx (expn, s)) � ”]; ”,

asspreId(idtree, expn) � asspreId(s1, expn) � . . . � asspreId(sn , expn),

asspostId(idtree, expn) � asspostId(s1, expn) � . . . � asspostId(sn , expn))

with idtree = ((recvSig , (s, acc)), subid)

Assignment Expressions. The assignment interpretation of simple assign-
ments is almost identical with the expression interpretation; the only difference
is that the resulting main code forms a program statement, rather than a pro-
gram expression:

((((t , r), val), sub), expn) 7→

main((((t , r), val), sub), cur , expn) � ”; ”,

pre((((t , r), val), sub), cur , expn),
post((((t , r), val), sub), cur , expn))
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with r ∈ {ass, diffAss}

Examples: ??, ??, ??, ??.

Assignment Group Expressions. A group of assignments is transformed
into a set of loops that iterate all specified values for the bound integer variable
and always execute the bound assignment with the respective value:

((((t , r), idtreebnd), 〈(((intSet , intSpecs), val),
〈(((intSet , intRange), val1), 〈slow ,1, sup,1〉), . . . ,
(((intSet , intRange), valn), 〈slow ,n , sup,n〉)〉), boundExp〉), expn) 7→

string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] :=” �main(slow ,1, cur , expn) � ”; ”

� ”while((” � string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] ≤”

�main(sup,1, cur , expn) � ”) {”
� assmain(boundExp, expn) �
”++” � string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; }”
� . . . � repeat for 1..n

string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] :=” �main(slow ,n , cur , expn) � ”; ”

� ”while((” � string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] ≤”

�main(sup,n , cur , expn) � ”) {”
� assmain(boundExp, expn) �
”++” � string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; }”,

pre(slow ,1, cur , expn) � pre(sup,1, cur , expn) � asspre(boundExp, expn)
� . . . � repeat for 1..n

pre(slow ,n , cur , expn) � pre(sup,n , cur , expn) � asspre(boundExp, expn),

post(slow ,1, cur , expn) � post(sup,1, cur , expn) � asspost(boundExp, expn)
� . . . � repeat for 1..n

post(slow ,n , cur , expn) � post(sup,n , cur , expn) � asspost(boundExp, expn))

with idtreebnd = ((int , (vbnd , acc)), subid) ∧ r ∈ {assGroup, diffAssGroup}

Examples: ??, ??, ??, ??.

Non-Deterministic Integer Assignment Expressions. A non-
deterministic integer assignment is mapped to a program that iterates all
given specified integer values, implemented by a set of loops. For each value,
the bound boolean expression is evaluated, and the corresponding integer
value is stored, if satisfied. For this, an array variable that stores the satisfied
integers (given by lvarhits) and a size counter (from mapping lvarhitCount) are
used. Finally, from the integers with satisfied expression evaluation, a random
one is chosen.

(assTree, expn) 7→
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(string(lvarhitCount(expn, assTree)) � ”:= 0; ” �
string(lvarV ,Vlocal

(expn, vbnd)) � ”[0] :=” �main(slow ,1, cur , expn) � ”; ”
� ”while((” � string(lvarV ,Vlocal

(expn, vbnd)) � ”[0] ≤”
�main(sup,1, cur , expn) � ”) ∧ (” �
string(lvarhitCount(expn, assTree) � ”<” � string(maxHitCount) � ”)) {” �
”if(” �main(boundExp, cur , expn) � ”) {” �
string(lvarhits(expn, assTree))
� ”[” � string(lvarhitCount(expn, assTree)) � ”] :=”
� string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; ” �
”++” � string(lvarhitCount(expn, assTree)) � ”; ” �
”}” �
”++” � string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; ” �
”}” �
� . . . � repeat for 1..n

string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] :=” �main(slow ,n , cur , expn) � ”; ”

� ”while((” � string(lvarV ,Vlocal
(expn, vbnd)) � ”[0] ≤”

�main(sup,n , cur , expn) � ”) ∧ (” �
string(lvarhitCount(expn, assTree) � ”<” � string(maxHitCount) � ”)) {” �
”if(” �main(boundExp, cur , expn) � ”) {” �
string(lvarhits(expn, assTree))
� ”[” � string(lvarhitCount(expn, assTree)) � ”] :=”
� string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; ” �
”++” � string(lvarhitCount(expn, assTree)) � ”; ” �
”}” �
”++” � string(lvarV ,Vlocal

(expn, vbnd)) � ”[0]; ” �
”}” �
”if(” � string(lvarhitCount(expn, assTree)) � ”> 0) {” �
assmain(varExp, expn) � ”:=” � string(lvarhits(expn, assTree)) � ”[” �
”random()mod” � string(lvarhitCount(expn, assTree)) � ”; ”
”}”,

pre(slow ,1, cur , expn) � pre(sup,1, cur , expn) � pre(boundExp, cur , expn)
� . . . � repeat for 1..n

pre(slow ,n , cur , expn) � pre(sup,n , cur , expn) � pre(boundExp, cur , expn)
� asspre(varExp, expn)

post(slow ,1, cur , expn) � post(sup,1, cur , expn) � post(boundExp, cur , expn)
� . . . � repeat for 1..n

post(slow ,n , cur , expn) � post(sup,n , cur , expn) � post(boundExp, cur , expn)
� asspost(varExp, expn)
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with assTree = (((int , intNondetAss), ((int , (vbnd , acc)), subid)),
〈varExp, (((intSet , intSpecs), val), 〈(((intSet , intRange), val1),
〈slow ,1, sup,1〉), . . . ,
(((intSet , intRange), valn), 〈slow ,n , sup,n〉)〉), boundExp〉)

Note that there is a defined maximum number maxHitCount of integers that
can be stored intermediately, such that the non-determinism is restricted to the
first maxHitCount integers for which the bound expression is satisfied.

Examples: ??.

Default Rule. For all hybel item trees that have no assignment interpreta-
tion, the empty program is created:

(tree, expn) 7→ (””, ””, ””); else

6.5.4 Assignment Interpretation of Identifier Item Trees

Corresponding to hybel item trees, identifier item trees have an assignment
interpretation. There is a mapping to program strings, which also depends on
the expression node for which the program is created.

asscodeId : treeo IdItem × ExpN → String3

There are main code, pre-code and post-code projections, given by the mappings

assmainId : treeo IdItem × ExpN → String
tn 7→ π1 asscodeId(tn)

asspreId : treeo IdItem × ExpN → String
tn 7→ π2 asscodeId(tn)

asspostId : treeo IdItem × ExpN → String
tn 7→ π3 asscodeId(tn)

Variable Identifiers. Variable identifiers are mapped to the local array vari-
able that represents write access to the HybridUML variable or signal. The
array index results from the index expression:

(((t , (v , acc)), 〈((indexExp, exptree), 〈〉)〉), expn) 7→
(string(lvarV ,Vlocal

(expn, v ,write, cur))
� ”[” �mainId(((indexExp, exptree), 〈〉), cur , expn) � ”]”,

preId(((indexExp, exptree), 〈〉), cur , expn),
postId(((indexExp, exptree), 〈〉), cur , expn))
with t ∈ DT

Variable identifiers without index expression are treated similarly, array index
0 is applied.

(((t , (v , acc)), 〈〉), expn) 7→
(string(lvarV ,Vlocal

(expn, v ,write, cur)) � ”[0]”, ””, ””)
with t ∈ DT
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Examples: ??, ??, ??, ??, ??, ??, ??, ??.

Sub-Variables of Structured Data Types. Access to a sub-variable of a
variable of structured data type is defined recursively, in the same fashion as
for codeId .

(((t , (v , acc)), 〈s1, s2〉), expn) 7→
(string(lvarV ,Vlocal

(expn, v ,write, cur)) � ”[” �mainId(s1, cur , expn) � ”].”
� assmainId(s2, expn),
preId(s1, cur , expn) � asspreId(s2, expn),
postId(s1, cur , expn) � asspostId(s2, expn))
with t ∈ DTstruc

Without index expression, index 0 is applied:

(((t , (v , acc)), 〈((ts , vals), subs)〉), expn) 7→
(string(lvarV ,Vlocal

(expn, v ,write, cur)) � ”[0].”
� assmainId(((ts , vals), subs), expn),
asspreId(((ts , vals), subs), expn),
asspostId(((ts , vals), subs), expn))
with t ∈ DTstruc ∧ ts 6= indexExp

Signal Identifiers on Signal Reception. The assignment interpretation of
triggers is the consumption of the signal’s occurrence. This is done by publishing
the value false for the signal. Here, the value is written to the corresponding
local variable. For a conventional index expression, the affected trigger index
is given by the index expression; a dedicated trigger index variable is set to
this index as a side-effect. This is supposed to be used by special code for the
publication of the value, which is defined in section 6.5.7.

(((recvSig , (s, recv)), 〈((indexExp, (((int , r), val1), sub1)), 〈〉)〉), expn) 7→
(string(lvartrgIdx (expn, s)) � ”:=”
�main((((int , r), val1), sub1), cur , expn) � ”; ” �

(string(lvarS (expn, s,write))
� ”[” � string(lvartrgIdx (expn, s)) � ”] := false; ”,

pre((((int , r), val1), sub1), cur , expn),
post((((int , r), val1), sub1), cur , expn))
with r 6= indexAss

Without index expression, index 0 is used:

(((recvSig , (s, recv)), 〈〉), expn) 7→
string(lvartrgIdx (expn, s)) � ”:= 0; ” �
(string(lvarS (expn, s,write))
� ”[” � string(lvartrgIdx (expn, s)) � ”] := false; ”,

””, ””)
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On reception of a signal with index assignment expression, all indices of the
signal have to be iterated, in order find an affected one. The first index for
which the signal is active is taken, such that for several indices, the smallest
wins:

(((recvSig , (s, recv)),
〈((indexExp, (((int , indexAss), val1), 〈sass〉)), 〈〉)〉), expn) 7→

(string(lvartrgIdx (expn, s)) � ”:= 0; ” �
”while ((” � string(lvartrgIdx (expn, s)) � ”<” � string(n)
� ”) ∧ (¬” � string(lvarS (expn, s, read))
� ”[” � string(lvartrgIdx (expn, s)) � ”])) {” �
”++” � string(lvartrgIdx (expn, s)) � ”; ” �
”}” �
assmain(sass , expn) � ”:=” � string(lvartrgIdx (expn, s)) � ”; ” �
string(lvarS (expn, s,write)) � ”[” � string(lvartrgIdx (expn, s)) � ”]”
� ”:= false; ”,

asspre(sass , expn),

asspost(sass , expn))

with n = |snexpn(s, expn)| − 1

Signal Identifiers on Signal Sending. Sending of signals is realized by
programs that write the value true to the corresponding local variable, such
that this will be published to the signal’s channel. A dedicated index variable
holds the index value for this reason.

(((sendSig , (s, send)), 〈sidx 〉), expn) 7→

(string(lvarsigIdx (expn, s)) � ”:=” �mainId(sidx , cur , expn) � ”; ” �
string(lvarS (expn, s,write)) � ”[” � string(lvarsigIdx (expn, s)) � ”]”
� ”:= true; ”,

preId(sidx , cur , expn),

preId(sidx , cur , expn))

Without an index expression, index 0 is used.

(((sendSig , (s, send)), 〈〉), expn) 7→

(string(lvarsigIdx (expn, s)) � ”:= 0; ” �
string(lvarS (expn, s,write)) � ”[” � string(lvarsigIdx (expn, s)) � ”]”
� ”:= true; ”,

””, ””)
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Conventional Index Expressions. Conventional index expressions of iden-
tifier items are given by hybel item trees:

(((indexExp, exptree), sub), expn) 7→ asscode(exptree, expn)

Examples: ??, ??, ??, ??, ??.

Default Rule. The assignment interpretation of all remaining identifier item
trees is the empty program:

(tree, expn) 7→ (””, ””, ””); else

6.5.5 Initialization of Local Variables from Channels

Before any program code is executed that implements the evaluation or as-
signment interpretation of expression nodes, dedicated local variables must be
initialized. That are the local variables which provide read access to values
that are read from channels. All other local variables are initialized inside the
respective program code.

Therefore, the mapping initcode : P(ExpN ) → String6 provides the initial-
ization code, such that the projections define the initialization of the following
local variables:

1. The initialization code for local variables reading the current value of a
HybridUML variable from a channel is given by

initcodeV ,cur : P(ExpN ) → String
expn 7→ π1 initcode(expn)

2. Local variables reading the previous value of a HybridUML variable are
initialized by the code

initcodeV ,prev : P(ExpN ) → String
expn 7→ π2 initcode(expn)

3. The time stamp for the current value of a HybridUML variable is read
and assigned by the code

initcodeV ,curTck : P(ExpN ) → String
expn 7→ π3 initcode(expn)

4. The previous time stamp is initialized with

initcodeV ,prevTck : P(ExpN ) → String
expn 7→ π4 initcode(expn)

5. Initializing variables holding the enabled-flags of HybridUML signals is
defined as

initcodeS : P(ExpN ) → String
expn 7→ π5 initcode(expn)
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6. The initialization of signal parameters is given by

initcodeSigParam : P(ExpN ) → String
expn 7→ π6 initcode(expn)

The initialization code assignment is then defined by a collection of several
mappings. Sets of expression nodes are mapped to initialization code for the
hybel trees that represent their expressions:

initcode : P(ExpN ) → String6

expnset 7→ initcode1({(varht,read(htexpn(expn)), expn) |
expn ∈ expnset ∩ ExpNspec}
∪ {(sight,read(htexpn(expn)), expn) | expn ∈ expnset ∩ ExpNspec})

This is defined by the initialization of sets of variables and signals, within ex-
pression nodes:

initcode1 : P(P(V ∪ S )× ExpNspec) → String6

vse 7→ initcode2({(item, expn) | ∃(vs, expn) ∈ vse • item ∈ vs})

Initialization of pairs of items, i.e. variables or signals, and expression nodes, is
defined separately for the local HL3 variables listed above. Therefore, the local
variables are determined from the HybridUML variables and signals, along with
the expression node. For each local variable, the set of indices is chosen that
corresponds to the multiplicity from the HybridUML specification. Each index
is associated with a port that is used to read data from the associated channel:

initcode2 : P((V ∪ S )× ExpNspec) → String6

vse 7→ (
initcode3({({(portVNbasic

(vn), indexVN (vn)) | vn ∈ vnexpn(v , expn)},
lvarV ,Vlocal

(expn, v , read , cur), cur) | v ∈ V ∧ (v , expn) ∈ vse}),
initcode3({({(portVNbasic

(vn), indexVN (vn)) | vn ∈ vnexpn(v , expn)},
lvarV ,Vlocal

(expn, v , read , prev), prev) | v ∈ V ∧ (v , expn) ∈ vse}),
initcode3({({(portVNbasic

(vn), indexVN (vn)) | vn ∈ vnexpn(v , expn)},
lvarV ,curTck (expn, v), curTck) | v ∈ V ∧ (v , expn) ∈ vse}),

initcode3({({(portVNbasic
(vn), indexVN (vn)) | vn ∈ vnexpn(v , expn)},

lvarV ,prevTck (expn, v), prevTck) | v ∈ V ∧ (v , expn) ∈ vse}),
initcode3({({(portSNbasic

(sn), indexSN (sn)) | sn ∈ snexpn(s, expn)},
lvarS (expn, s, read), cur) | s ∈ S ∧ (s, expn) ∈ vse}),

initcode3({({(portSNbasic ,param(sn,n), indexSN (sn)) | sn ∈ snexpn(s, expn)},
lvarSigParam(expn, s, read ,n), cur) |
s ∈ S ∧ (s, expn) ∈ vse ∧ 0 ≤ n < |paramTypesS (s)|}))

Initialization for sets of local variables with corresponding sets of ports and
indices are given wrt. to the kind of data access from the channel:

Accinitcode = {cur , prev , curTck , prevTck}
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initcode3 : P(P(Port × N0)×Var)×Accinitcode → String
(pilv , acc) 7→ initcode4(anyseqseq(Port×N0)×Var

({(anyseqPort×N0(pi), lv) | (pi , lv) ∈ pilv}), acc)

The sets of local variables and the sets of variable and signal nodes are evaluated
in an arbitrary order.2

The entries of a sequence of local variables with corresponding port and
index is then transformed into code, recursively:

initcode4 : seq(seq(Port × N0)×Var)×Accinitcode → String
(〈h〉 � sq , acc) 7→ initcode5(h, acc) � initcode4(sq , acc)
(〈〉, acc) 7→ ””

A single variable along with a sequence of ports and indices is mapped to a
sequence of initialization statements, corresponding to the data access type:

initcode5 : seq(Port × N0)×Var ×Accinitcode → String
(〈(p,n)〉 � sq , lv , acc) 7→ string(lv) � ”[” � string(n) � ”] :=”
�initcode6(acc) � ”(” � string(p) � ”); ” � initcode5(sq , lv , acc)

〈〉 7→ ””

Here, the local variable is used directly, and the corresponding array index is
taken from the property or signal node.
Finally, the program statement is determined from the data access type:

initcode6 : Accinitcode → String
cur 7→ ”get”
prev 7→ ”getPrevious”
curTck 7→ ”getTime”
prevTck 7→ ”getPreviousTime”

Examples: All examples of section ?? initialize their local variables at the
beginning of the code. Note two technical differences here: (1) Initialization
and declaration of (some) variables is merged for the C++ code. Further, there
are additional wrapper variables for technical reasons, e.g. for bounds-safe array
access. (2) Some of the variables are references to the corresponding port’s data
buffer, therefore modification of these variables directly accesses the respective
buffer. For this reason, the port’s send statements do not explicitly contain the
local variable, but use the port’s data buffer by default.

6.5.6 Visibility Set Parameter Access

In addition to the initialization of local variables from channels, for some pro-
grams, a visibility set parameter is provided. This is accessed by the special
HL3 statement getVisParam, such that it is stored in dedicated local variables.

2The mapping anyseqX : P(X ) 7→ seqX is supposed to define an arbitrary sequence for all
elements of a given set x ⊆ X , i.e.: ∀ x ⊆ X • ran(anyseqX(x)) = x ∧ |anyseqX(x)| = |x |
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Therefore, for a set of expression nodes, the corresponding variables are
collected as a sequence, but omitting duplicates:

visparamseqExpN : seqExpN → seqVar
〈〉 7→ 〈〉
〈expn〉 � sq 7→ lvarvisSet(expn) � visparamseqExpN (sq)

; expn ∈ dom lvarvisSet ∧ lvarvisSet(expn) 6∈ visparamseqExpN (sq)
〈expn〉 � sq 7→ visparamseqExpN (sq) ; else

From a sequence of such variables, a program string of initializations is created:

visparamcodeseqVar : seqVar → String
〈var〉 � sq 7→ string(var) � ”:= getVisParam(); ” � visparamcodeseqVar (sq)
〈〉 7→ 〈〉

Then, initialization code for expression node sets is given:

initcodevisparam : P(ExpN ) 7→ String
expnset 7→ visparamcodeseqVar (visparamseqExpN (anyseqExpN(expnset)))

Examples: C++ provides access to operation parameters implicitly. Of course,
this is exploited for the generated code: ??, ??, ??, ??, ??, ??, ??, ??, ??.

6.5.7 Publication of Local Variable Data to Channels

After program code is executed that implements the evaluation or assignment
interpretation of expression nodes, the calculation results are contained in local
variables. In order to publish the values, the variables’ contents have to be
written to channels, via corresponding ports.

The mapping pubcode : P(ExpN ) → String4 defines the publication code,
such that the projections define the publication of the following values:

1. The publication code for local variables containing a new value of a written
HybridUML variable is given by

pubcodeV : P(ExpN ) → String
expn 7→ π1 pubcode(expn)

2. Publication of newly raised HybridUML signal (excluding its parameters)
is defined as

pubcodeS ,send : P(ExpN ) → String
expn 7→ π2 pubcode(expn)

3. The publication of parameters of a raised signal is given by

pubcodeSigParam : P(ExpN ) → String
expn 7→ π3 pubcode(expn)
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4. Publication of the consumption of a trigger only affects the signal channel
itself and is defined as

pubcodeS ,recv : P(ExpN ) → String
expn 7→ π4 pubcode(expn)

In the same fashion as the initialization code was defined in section 6.5.5, the
publication code is defined by a collection of mappings. Sets of expression
nodes are mapped to the publication code, corresponding to the hybel trees
that represent the contained expressions:

pubcode : P(ExpN ) → String4

expnset 7→ pubcode1({(varht,write(htexpn(expn)), expn) |
expn ∈ expnset ∩ ExpNspec}
∪ {(sight,write(htexpn(expn)), expn) | expn ∈ expnset ∩ ExpNspec}
∪ {(sight,read(htexpn(expn)), expn) | expn ∈ expnset ∩ ExpNspec})

This is given by the publication code for sets of variables and signals, within
expression nodes:

pubcode1 : P(P(V ∪ S )× ExpNspec) → String4

vse 7→ pubcode2({(item, expn) | ∃(vs, expn) ∈ vse • item ∈ vs})

For the sets of HybridUML variables and signals within an expression node,
publication code is distinguished as described above, i.e. sending of (1) writ-
ten variables, (2) raised signals, (3) the corresponding signal parameters, and
(4) consumption of signals are handled separately.

The local variables which hold the new values are determined from the Hy-
bridUML variables and signals, along with the expression node. For each local
variable, the set of indices corresponding to the multiplicity is created. The
ports for writing are determined and attached to the respective indices.

pubcode2 : P((V ∪ S )× ExpNspec) → String4

vse 7→ (
pubcode3,V ({({(portVNbasic

(vn), indexVN (vn)) | vn ∈ vnexpn(v , expn)},
lvarV ,Vlocal

(expn, v , read , cur), lvarvisSet(expn)) |
v ∈ V ∧ (v , expn) ∈ vse}),

pubcode3,S ,write({({(portSNbasic
(sn), indexSN (sn)) | sn ∈ snexpn(s, expn)},

lvarS (expn, s,write), lvarvisSet(expn), lvarsigIdx (expn, s)) |
s ∈ S ∧ (s, expn) ∈ vse}),

pubcode3,S ,write({({(portSNbasic ,param(sn,n), indexSN (sn)) |
sn ∈ snexpn(s, expn)},
lvarSigParam(expn, s,write,n), lvarvisSet(expn), lvarsigIdx (expn, s)) |
s ∈ S ∧ (s, expn) ∈ vse ∧ 0 ≤ n < |paramTypesS (s)|}),

pubcode3,S ,read0({expn | ∃ s ∈ S • (s, expn) ∈ vse}) �
pubcode3,S ,read({({(portSNbasic

(sn), indexSN (sn)) |
sn ∈ snexpn(s, expn)},
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lvarS (expn, s, read), lvarvisSet(expn), lvartrgIdx (expn, s), lvarvis(expn))
| s ∈ S ∧ (s, expn) ∈ vse}))

For the respective kinds of values, the sets of variables with attached ports and
indices are mapped to sequences, and the variables are iterated, in the same
fashion as it was done for the initialization code:

pubcode3,V : P(P(Port × N0)×Var ×Var) → String
v 7→ pubcode4,V (anyseqseq(Port×N0)×Var×Var

({(anyseqPort×N0(pi), lv , visSet) | (pi , lv , visSet) ∈ v}))
pubcode3,S ,write : P(P(Port × N0)×Var ×Var ×Var) → String
v 7→ pubcode4,S ,write(anyseqseq(Port×N0)×Var×Var×Var

({(anyseqPort×N0(pi), lv , visSet , sigIdx ) | (pi , lv , visSet , sigIdx ) ∈ v}))
pubcode3,S ,read : P(P(Port × N0)×Var ×Var ×Var ×Var) → String
v 7→ pubcode4,S ,write(anyseqseq(Port×N0)×Var×Var×Var×Var

({(anyseqPort×N0(pi), lv , visSet , sigIdx , vis) |
(pi , lv , visSet , sigIdx , vis) ∈ v}))

pubcode4,V : seq(seq(Port × N0)×Var ×Var) → String
〈h〉 � sq 7→ pubcode5,V (h) � pubcode4,V (sq)
〈〉 7→ ””
pubcode4,S ,write : seq(seq(Port × N0)×Var ×Var ×Var) → String
〈h〉 � sq 7→ pubcode5,S ,write(h) � pubcode4,S ,write(sq)
〈〉 7→ ””
pubcode4,S ,read : seq(seq(Port × N0)×Var ×Var ×Var ×Var)

→ String
〈h〉 � sq 7→ pubcode5,S ,read(h) � pubcode4,S ,read(sq)
〈〉 7→ ””

A single variable along with a sequence of ports and indices is mapped to a
sequence of publication statements, given by mappings that correspond to the
kind of value. Values for HybridUML variables are simply written to the chan-
nel. Besides the variable lv that holds the new value, the visibility set visSet is
available, and used directly.

pubcode5,V : seq(Port × N0)×Var ×Var → String
(〈(p,n)〉 � sq , lv , visSet) 7→ ”put(” � string(p) � ”,” � string(visSet) � ”,”
�string(lv) � ”[” � string(n) � ”]); ” � pubcode5,V ((sq , lv , visSet))

(〈〉, sq , lv , visSet) 7→ ””

Raised signals, as well as signal parameters, are only written if the signal index
coincides with the special local signal index variable’s value, which is calculated
by the code that precedes this publication code. Therefore, it is wrapped by a
conditional statement. The available variables are lv and visSet as above, and
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the signal index variable sigIdx for the comparison.

pubcode5,S ,write : seq(Port × N0)×Var ×Var ×Var → String
(〈(p,n)〉 � sq , lv , visSet , sigIdx ) 7→

”if(” � string(sigIdx ) � ”==” � string(n) � ”){” �
”put(” � string(p) � ”,” � string(visSet) � ”,”
�string(lv) � ”[” � string(n) � ”]); ”
� ”}” � pubcode5,S ,write((sq , lv , visSet , sigIdx ))

(〈〉, sq , lv , visSet , sigIdx ) 7→ ””

Triggers are only consumed, if they are actually received; therefore, the signal
index is compared with the special trigger index variable, similarly to the raising
of signals, and therefore embedded into a conditional statement. Within, the
visibility set for the publication is adapted such that only the sending port
itself acts as recipient, such that the consumption of the signal is only locally
effective. Therefore, the signal will remain active for all other abstract machines.
The variables that are used here are lv and visSet as before, the trigger index
variable trgIdx for the index comparison, and the visibility variable vis, which
is used to define the local visibility of the publication.

pubcode5,S ,read : seq(Port × N0)×Var ×Var ×Var ×Var → String
(〈(p,n)〉 � sq , lv , visSet , trgIdx , vis) 7→

”if(” � string(trgIdx ) � ”==” � string(n) � ”){” �
”setRight(” � string(vis) � ”,” � string(p) � ”); ” �
”clear(” � string(visSet) � ”); ” �
”addEntry(” � string(visSet) � ”,” � string(vis) � ”); ” �
”put(” � string(p) � ”,” � string(visSet) � ”,”
� string(lv) � ”[” � string(n) � ”]); ” �
� ”}” � pubcode5,S ,read((sq , lv , visSet , trgIdx , vis))

(〈〉, sq , lv , visSet , trgIdx , vis) 7→ ””

As a prerequisite for the calculation of the visibility set above, the mapping
pubcode4,S ,read0 defines code to precede all conditional statements for signal
consumption, that prepares the publication time and visibility vis for the value’s
publication. In order to iterate the affected expression nodes beforehand, the
mapping pubcode3,S ,read0 provides a sequence for this.

pubcode3,S ,read0 : P(ExpNspec) → String
expnset 7→ pubcode4,S ,read0(anyseqExpNspec(expnset))

pubcode4,S ,read0 : seqExpNspec → String
〈expn〉 � sq 7→

string(lvarnewTck (expn)) � ”:=” � ”getCurrentTime(); ” �
”setRight(” � string(lvarnewTck (expn)) � ”, right(”
� string(lvarnewTck (expn)) � ”) + 1; ” �
”setLeft(” � string(lvarvis(expn)) � ”,”
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�string(lvarnewTck (expn)) � ”); ”
� pubcode4,S ,read0(sq)

〈〉 7→ ””

Examples: ??, ??, ??, ??, ??, ??, ??, ??, ??. Note that the port’s send
statements do not explicitly contain a reference to a local variable, because they
use a port’s internal data buffer. Local variables for write access are defined as
references to the corresponding buffer on initialization.

6.6 HybridUML Abstract Subject Execution

This section provides the effects of the operations of abstract subjects. In sec-
tion 3.5, HL3 operational rules were defined for the execution of abstract sub-
jects. For each of these rules, a corresponding effect function was declared, but
not defined, because their definitions depend on the high-level formalism for
which a HL3 model is created. Therefore, the definitions of the effect functions
given here are specific to HybridUML.

There are two kinds of abstract subjects – (1) Abstract Machines and (2) the
Selector. Correspondingly, the definitions are structured into sections 6.6.1 and
6.6.2.

The operations’ definitions rely on some internal state of abstract subjects,
which is also specific for the high-level formalism HybridUML. Internal state
is different for abstract machines and the selector, therefore the HybridUML
internal state is the union of both:

IntState = IntStateAm ∪ IntStatesel

6.6.1 Abstract Machines

The sequential behavior of an abstract machine am ∈ Am is defined on the
basis of the tree of mode instance nodes of the associated agent instance node
mtreeAIN (ainAm(am)) – it defines the static structure of a hierarchic state-
machine. The dynamic structure is defined as internal state IntStateAm of ab-
stract machines, and consists of a (1) history mapping and a (2) current control
point mapping.

Internal State

The internal state of HybridUML abstract machines is defined by

IntStateAm = HIST × CURCP
HIST = MINspec → MINspec ∪ {λ}
CURCP = MINspec → CPIN ∪ {λ}

The history mapping hist ∈ HIST assigns a currently active submode for each
mode instance node, or λ to denote that there is none. For a given history and
a root mode instance node, the history implies the current mode configuration

modeconf : HIST × (MINspec ∪ {λ}) → seqMINspec

(hist ,min) 7→ 〈min〉 �modeconf (hist , hist(min)) ; min 6= λ

(hist , λ) 7→ 〈〉
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which is the sequence of active mode instance nodes descending the mode in-
stance node tree. The mode configuration is complete, if the sequence ends with
a leaf node, that is a node representing a mode that has no submodes. Note
that the history further contains submodes of inactive mode instance nodes, to
be restored for the mode configuration later.

The history always assigns mode instance nodes to their own submodes:

∀ hist ∈ HIST ,min ∈ MINspec•
hist(min) 6= λ ⇒ min = head(pathMIN (hist(min)))

Each mode instance node may have a current control point instance node, de-
fined by a mapping curcp ∈ CURCP , which defines a control point of the mode
itself:

∀ curcp ∈ CURCP ,min ∈ MINspec•
curcp(min) 6= λ ⇒ min = minCPIN (curcp(min))

The current control point mapping denotes which transitions are possibly en-
abled – only transitions that originate from a current control point may ever
fire.

Effect of Abstract Machines’ Initialization

The initialization of abstract machines defines an internal state si ∈ IntStateAm

such that (1) the history is empty, and (2) there is exactly one current control
point – the default entry of the abstract machine’s top-level mode instance node:

initAm : Am → IntState
am 7→ ({min 7→ λ | min ∈ MINspec},

{min 7→ λ | min ∈ MINspec} ⊕ {min 7→ demin |
min = nodeMINspec(mtreeAIN (ainAm(am))) ∧
deM (modeMI (miMIN (min))) = cpCPI (cpiCPIN (demin))})

Effect of Abstract Machines’ Update

The updating of an abstract machine determines (1) its currently enabled tran-
sitions, (2) the enabledness of the abstract machine for a flow step, and (3) the
enabling of particular flows for participation in such a flow step. This update
functionality is defined step-by-step by use of several functions:

Effect of Evaluation Programs. For the determination of enabled transi-
tions, flows, and flow-enabledness, the conditions that are given by HybridUML
trigger expressions, guard expressions, and invariant constraint expressions, are
evaluated. Therefore, programs that implement the evaluation interpretation of
expression nodes are created and executed, and their boolean result is evaluated.

For this, we define the effect of evaluation programs. In contrast to the
execution of HybridUML flow constraints and actions, the progress of evaluation
programs for HybridUML triggers, guards, and invariant constraints wrt. time
is not considered explicitly:
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1. Assignment programs for HybridUML flow constraints and actions (and
triggers) were defined in section 6.4.2, and are directly represented by
HL3 flows and transitions. They act as HL3 program subjects, and their
execution semantics is defined per program statement, by the progress
rules for program statements in section 3.6.

2. Evaluation programs for HybridUML triggers, guards, and invariant con-
straints are defined below. For their execution, the effect of evaluation
programs is defined on the basis of the same program statement effects
from section 3.6, but no progress of time is defined here. However, for the
complete update operation, an execution time duration is assumed by the
progress rule for operations of abstract subjects (section 3.5.1).
The programs that are generated for triggers, guards, and invariant con-
straints may be executed in parallel, within the HL3 scheduling phase
update phase, but they do not interfere, because they all use their own
local variables (defined in section 6.4.1), and do not publish any values on
channels. Therefore it is sufficient to consider the overall execution time
for the update operation.

The effect of an execution of a complete evaluation program is given by

ε∗ : Program × Paramprog × Subject × CONSTm ×VARmread

→ VARmwrite

(prg , param, s, c, v) 7→ ε∗(εprg(prg , param, s, c, v), param, s, c,

(εvar (prg , param, s, c, v), εchan(prg , param, s, c, v)))
; prg 6= 〈〉

(〈〉, param, s, c, v) 7→ (εvar (prg , param, s, c, v), εchan(prg , param, s, c, v))

For a program prg , the sequence of effects of the program’s statements result in
the effect of the program, as soon as the program is processed completely. The
boolean result of the program is contained in the resulting variable valuation.

Evaluation of Boolean Expression Nodes. Each expression node that
contains a boolean expression, as defined by HybridUML trigger expressions,
guard expressions, and invariant constraint expressions, (1) defines an evaluation
program, and (2) provides a boolean result on the execution of this program.

The program’s definition is given by the mapping prgExpN ,eval of section 6.5.
Then, the boolean result of the execution of a program is given by its effect
(defined by ε∗), and the dedicated return variable’s value is returned:

execbexp : BExpNspec × CONSTm ×VARmread → B
(expn, c, v) 7→

σVar (ε∗(prgExpN ,eval(〈expn〉), λ, ainExpN (expn), c, v))
(retvarBExpN (expn))

Filtering of Initial Transitions. For the determination of enabled transi-
tions, the first step is the filtering of initial transitions: Transitions that initial-
ize modes can only be enabled, if the mode’s history is empty. The following
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mapping returns false for initial transition nodes of mode instance nodes with
non-empty history:

checkInitTransTN : TNspec × IntStateAm → B
(tn, (hist , curcp)) 7→

(minCPIN (srcTNspec
(tn)) = minTN (tn)

∧ cpCPI (cpiCPIN (srcTNspec
(tn)))

= deM (modeMI (miMIN (minTN (tn)))))
⇒ hist(minTN (tn)) = λ

Here, always if (1) the transition’s parent mode coincides with the parent mode
of its source control point, (2) such that the source control point is the default
entry point of that mode, then the mode’s history must be empty for the given
transition to be enabled.

Enabling of Transitions. Transition nodes can be enabled or disabled, de-
pending on the trigger and guard expressions. For HybridUML, enabled tran-
sitions are urgent, if they have a trigger expression that is satisfied. Enabled
transitions without trigger expression are not urgent, i.e. they do not need to
be executed, but can. Additionally, initial transitions are disabled, whenever
the parent mode has non-empty history.

isEnabledTN : TNspec × IntStateAm × CONSTm ×VARmread → B
(tn, si , c, v) 7→

checkInitTransTN (tn, si) ∧∧
txn∈trgTNspec (tn)∪grdTNspec (tn)

execbexp(txn, c, v)

isUrgentTN : TNspec × IntStateAm × CONSTm ×VARmread → B
(tn, si , c, v) 7→ isEnabledTN (tn, si , c, v) ∧ trgTNspec (tn) 6= �

Note that trigger and guard expressions are evaluated by the execution of the
corresponding evaluation programs, as defined before.

Enabled Transitions of Control Points. For each control point instance
node, the set of enabled transitions consists of its outgoing transitions that are
enabled:

enabledTransCPIN : CPINspec × IntStateAm × CONSTm ×VARmread

→ P(TNspec)
(cpin, si , c, v) 7→

{tn ∈ TNspec | srcTNspec
(tn) = cpin ∧ isEnabledTN (tn, si , c, v)}

Analogously, urgent transitions are collected for control points:

urgentTransCPIN : CPINspec × IntStateAm × CONSTm ×VARmread

→ P(TNspec)
(cpin, si , c, v) 7→

{tn ∈ TNspec | srcTNspec
(tn) = cpin ∧ isUrgentTN (tn, si , c, v)}
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Enabled Transitions of Mode Configurations. For a mode configuration
with root mode instance node min, the currently enabled transitions are col-
lected: (1) The enabled transitions of the root mode’s current control point are
included, if there is one, and (2) all enabled transitions of its active submode
are added recursively, if the history is not empty:

enabledTransMIN : MINspec × IntStateAm × CONSTm ×VARmread

→ P(TNspec)
(min, (hist , curcp), c, v) 7→ {tn ∈ TNspec |

∃ cpin ∈ CPINspec • (curcp(min) = cpin
∧ tn ∈ enabledTransCPIN (cpin, (hist , curcp), c, v))

∨ ∃min2 ∈ MINspec • (hist(min) = min2

∧ tn ∈ enabledTransMIN (min2, (hist , curcp), c, v))}

Similarly, urgent transitions are determined:

urgentTransMIN : MINspec × IntStateAm × CONSTm ×VARmread

→ P(TNspec)
(min, (hist , curcp), c, v) 7→ {tn ∈ TNspec |

∃ cpin ∈ CPINspec • (curcp(min) = cpin
∧ tn ∈ urgentTransCPIN (cpin, (hist , curcp), c, v))

∨ ∃min2 ∈ MINspec • (hist(min) = min2

∧ tn ∈ urgentTransMIN (min2, (hist , curcp), c, v))}

Enabled Transitions of Abstract Machines. The first part of the update
result – the set of enabled transitions of an abstract machine – is given by the
transition nodes that are enabled for the top-level mode of the abstract machine:

enabledTransAm : Am × IntStateAm × CONSTm ×VARmread → P(Trans)
(am, si , c, v) 7→ {t ∈ Trans | tntrans(t) ∈

enabledTransMIN (nodeMINspec(mtreeAIN (ainAm(am))), si , c, v)}

Satisfied Invariant Constraints of Mode Configurations. The first step
for the determination of the second part of the update result, that is the check
for the abstract machine’s enabledness for a flow step, is the evaluation of the
invariant constraints of mode configurations. Therefore, their conjunction is
evaluated by

checkInvMIN : MINspec × IntStateAm × CONSTm ×VARmread → B

(min, (hist , curcp), c, v) 7→
∧

mxn∈invMINspec (min)

execbexp(mxn, c, v)

∧ ((∃min2 ∈ MINspec • hist(min) = min2)
⇒ checkInvMIN (min2, (hist , curcp), c, v))

That is, the invariant constraints of the root mode are checked, and recursively
the invariant constraints for the currently active submode, if there is one. Note
that for the evaluation of invariant constraints, a corresponding program is
executed, as defined before.
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Stable Mode Configurations. Additionally, flow-enabledness requires a sta-
ble mode configuration. A mode configuration is stable, if it is complete, and for
all active modes, the current control point is the respective default exit point.
Therefore, for the mode configuration’s root mode instance node, (1) the cur-
rent control point is checked, and (2) if it is no leaf mode, then a non-empty
history is required. (3) Finally, the history mode is examined recursively.

checkDxMIN : MINspec × IntStateAm → B
((sM ,mi , ain), (hist , curcp)) 7→

∃(min2, cpi) ∈ CPINspec • (curcp(sM ,mi , ain) = (min2, cpi)
∧ cpCPI (cpi) = dxM (modeMI (mi)))

∧
(submodeM (modeMI (mi)) 6= �
⇒ ∃min2 ∈ MINspec •

min2 = hist(min) ∧ checkDxMIN (min2, (hist , curcp)))

Flow-Enabledness of Mode Configurations. A mode configuration per-
mits a flow of time, whenever (1) its invariants are satisfied, (2) the configuration
is stable, and additionally, (3) there are no urgent transitions.

isFlowPossibleMIN : MINspec × IntStateAm × CONSTm ×VARmread → B
(min, si , c, v) 7→ checkDxMIN (min, si) ∧ checkInvMIN (min, si , c, v)

∧ urgentTransMIN (min, si , c, v) = �

Flow-Enabledness of Abstract Machines. The permission of an abstract
machine to let time pass – the second part of the update result – is determined
by the top-level mode of the abstract machine:

isFlowPossibleAm : Am × IntStateAm × CONSTm ×VARmread → B
(am, si , c, v) 7→

isFlowPossibleMIN (nodeMINspec(mtreeAIN (ainAm(am))), si , c, v)

Activation of Associated Flow Expressions. The third part of the update
result is defined on the basis of a given mode instance node tree: All associated
flow expressions are activated correspondingly to the tree’s mode configuration:
(1) On activation of the root mode’s flow expression, the current active sub-
mode’s flow expressions are activated, too, recursively. All inactive submodes’
flow expressions are deactivated. (2) On deactivation of the root mode’s flow
expressions, all submodes’ flow expressions are deactivated, too.

activateFlowsMIN : MINspec × IntStateAm × B → (FlowExpN � B)
(min, (hist , curcp), b) 7→

flowMINspec
(min)× {b} ∪⋃

min2∈chld

activateFlowsMIN (min2, (hist , curcp), false) ∪

⋃
min2∈{hist(min)}\{λ}

activateFlowsMIN (min2, (hist , curcp), b)

; chld = childrenMINspec(treeMIN (min)) \ {hist(min)}
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Activation of Abstract Machines’ Flow Expressions. The flow expres-
sions of an abstract machine’s top-level mode are always activated. From the
corresponding mode configuration, the activation or deactivation of flow expres-
sions of submodes result.

activateFlowsAm : Am × IntStateAm → (Flow� B)
(am, si) 7→ {f 7→ b | fxnFlow (f ) 7→ b ∈

activateFlowsMIN (nodeMINspec(mtreeAIN (ainAm(am))), si , true)}

Definition of update. The effect of the operation update of a HybridUML
abstract machine am is the combination of (1) the flow-enabledness of am,
(2) the enabled transitions of am, and (3) the activation state of the associated
flows:

update : Am × IntState × CONSTm ×VARmread

→ IntState ×AmState × (Flow� B)
(am, si , c, v) 7→

(si , (isFlowPossibleAm(am, si , c, v), enabledTransAm(am, si , c, v)),
activateFlowsAm(am, si))

; si ∈ IntStateAm

Formally, the result of update for si 6∈ IntStateAm is arbitrary; but this is not
effective since initAm , update, and notify always define a resulting state si ∈
IntStateAm .

Further note that HybridUML abstract machines only read, but do not mod-
ify their internal state on update.

Effect of Abstract Machines’ Notification

The notification of a HybridUML abstract machine occurs whenever in a pre-
ceding transition phase of the HL3 model execution a transition was executed
that is associated with the abstract machine. Then the abstract machine ad-
justs its internal state by taking the transition without executing its actions,
such that the transition’s source control point is left and its target control point
is entered, potentially affecting the history as well.

Entering of Control Points. When a control point instance node cpin is
entered, it becomes the current control point instance node of its parent mode
instance node, i.e. curcp(minCPIN (cpin)) = cpin. The mapping

setcurcp : IntStateAm × CPINspec → CURCP

defines this, but the entering of a control point has several further implica-
tions. (1) If the control point is the default entry, then the history is resumed
recursively for the mode, if possible:

((hist , curcp), cpin) 7→
setcurcp((hist , curcp ⊕ {minCPIN (cpin) 7→ cpin}), deh)

; cpCPI (cpiCPIN (cpin)) = deM (modeMI (miMIN (minCPIN (cpin))))
∧minCPIN (deh) = hist(minCPIN (cpin))
∧ cpCPI (cpiCPIN (deh)) = deM (modeMI (miMIN (minCPIN (deh))))
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(2) If for a leaf mode the control point is the default entry, then it is directly
transferred to the default exit:

((hist , curcp), cpin) 7→ setcurcp((hist , curcp), dx )
; cpCPI (cpiCPIN (cpin)) = deM (modeMI (miMIN (minCPIN (cpin))))

∧ cpCPI (cpiCPIN (dx )) = dxM (modeMI (miMIN (minCPIN (cpin))))
∧ submodeM (modeMI (miMIN (minCPIN (cpin)))) = �

(3) If the control point is the default exit, then all parent modes are also set to
their default exits recursively:

((hist , curcp), cpin) 7→
setcurcp((hist , curcp ⊕ {minCPIN (cpin) 7→ cpin}), dxp)

; cpCPI (cpiCPIN (cpin)) = dxM (modeMI (miMIN (minCPIN (cpin))))
∧ cpCPI (cpiCPIN (dep)) = dxM (modeMI (miMIN (minCPIN (dep))))
∧miMIN (minCPIN (cpin))
∈ submodeM (modeMI (miMIN (minCPIN (dxp))))

(4) By default, the current control point of the mode is just set:

((hist , curcp), cpin) 7→ curcp ⊕ {minCPIN (cpin) 7→ cpin} ; else

Leaving of Control Points. Leaving of a control point instance node cpin
assigns the special value λ to the parent mode instance node, in order to indicate
that it has no current control point (anymore): curcp(minCPIN (cpin)) = λ.
This is defined by the mapping

unsetcurcp : IntStateAm × CPINspec → CURCP
((hist , curcp), cpin) 7→ unsethistcp((hist , unsetparcp(curcp ⊕

{minCPIN (cpin) 7→ λ},minCPIN (cpin))),minCPIN (cpin))

The complete mode configuration gets unset automatically, i.e. the control
points of all parent modes and history modes are unset, too, recursively in
both cases:

unsetparcp : CURCP ×MINspec → CURCP
(curcp,min) 7→ unsetparcp(curcp ⊕ {minp 7→ λ},minp)

; miMIN (min) ∈ submodeM (modeMI (miMIN (minp)))
(curcp,min) 7→ curcp ; else

unsethistcp : IntStateAm ×MINspec → CURCP
((hist , curcp),min) 7→ unsethistcp((hist , curcp ⊕ {minh 7→ λ}),minh)

; minh 6= λ∧minh = hist(min)
((hist , curcp),min) 7→ curcp ; else

Modification of the History. On the firing of a transition, the history is
modified, corresponding to the transition’s target control point:

newhist : HIST × TNspec → HIST
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In the majority of cases, transitions (indirectly) connect submodes, such that
the history of their own parent mode is set to the mode of the target control
point. Because of the syntactical constraints for HybridUML transitions (see
section 4.2), this situation is identified by the direction of the control point, i.e.
when it is an entry point:

(hist , tn) 7→ hist ⊕ {minTN (tn) 7→ minCPIN (tarTNspec (tn))}
; kindCP (cpCPI (tarTNspec (tn))) = entry

Otherwise, i.e. if the control point is an exit point, the transition leads to the
exit point of its own parent mode. Since this must not be the default exit (for
the same syntactical restrictions as above), the history is cleared for that mode:

(hist , tn) 7→ hist ⊕ {minTN (tn) 7→ λ}
; kindCP (cpCPI (tarTNspec

(tn))) = exit

Firing of Transitions. A transition fires by (1) leaving its source control
point, (2) modifying its parent mode’s history, and (3) entering its target control
point:

fire : IntStateAm × TNspec → IntStateAm

((hist , curcp), tn) 7→ (setcurcp(
(newhist(hist , srcTNspec

(tn)),
unsetcurcp((hist , curcp), srcTNspec

(tn))),
tarTNspec

(tn)),
newhist(hist , srcTNspec

(tn)))

Definition of notify. The effect of the operation notifyTrans of a Hy-
bridUML abstract machine am is then defined by the firing of the given transi-
tion, provided that it is a transition of am:

notify : Am × IntState × Trans → IntState
(am, si , t) 7→ fire(si , tntrans(t)) ; si ∈ IntStateAm ∧ amhuml,trans(t) = am
(am, si , t) 7→ si ; else

6.6.2 HybridUML Selector

The selector defined in this section is the HybridUML simulation selector.
It is tailored for the simulation of HybridUML specifications, such that a
maximum set of HybridUML-specific HL3 model executions is defined. Any
non-determinism of the HybridUML specification is actually simulated non-
deterministically. In contrast, a HybridUML test selector would restrict the
set of executions by applying some elaborate test selection algorithm, or a Hy-
bridUML implementation selector could solve non-determinism by making fixed
choices.
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Internal State

The HybridUML selector only has internal state that models non-determinism.
We do not define this explicitly, but assume that there is a function

rndstepselector : IntStatesel → IntStatesel

that calculates some kind of random sequence on the internal state.

Effect of Selector’s Initialization

The initialization of the selector has two separate effects: (1) Corresponding
to the notion of the internal state of the selector given above, we assume that
the initialization defines an appropriate starting point for the random sequence
modeling non-determinism. (2) Since the selector has the responsibility to check
the initial HL3 model state for well-formedness, the initial valuation of the
model’s channels is checked whether it satisfies the init state constraints of the
agent instance nodes, represented by the abstract machines of the HL3 model.

Initial State Well-Formedness Check. In order to check the init state con-
straints of the HybridUML model (see also sections 6.4 and 5.1 for discussions
of init state constraints), expression nodes that represent the constraints are
evaluated. This is done in the same fashion as for trigger expressions, guard
expressions, and invariant constraint expressions in section 6.6.1, for the defi-
nition of the abstract machine’s operation update. Expression nodes define a
respective program that is executed and that returns a boolean result value.
The initial state is well-formed, if the conjunction of all constraints’ results is
satisfied:

checkinitState : S → B
(c, v) 7→

∧
ixn∈iscAm(c,v) execbexp(ixn,

(subjectvar (c), chanport(c), subjectport(c)),
(modelTime(v), σVar (v), κChan(v)))

The init state constraints are provided by the abstract machines of the HL3
model:

iscAm : S → P(BExpNspec)

(c, v) 7→
⋃

m∈am(c)

alliscAINspec
(ainAm(m))

Definition of initsel. The effect of the operation init of the HybridUML
simulation selector is (1) the creation of the internal state, and (2) the well-
formedness check of the channels’ initial valuation:

initsel : S → IntState × B
s 7→ (si , checkinitState(s))
with appropriate internal state si

Remember from section 3.5.2 that the consequence of a failed well-formedness
check is that there is no valid execution of the complete HL3 model.
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Effect of Selector’s Selection

The calculation of a selection by the selector either (1) defines a set of transitions
to be executed in a transition phase, or (2) chooses a flow phase, such that
the currently activated flows are calculated. Additionally, HybridUML signals
are unset before a succeeding flow phase, in order to implement a zero-time
duration for signals.

In the following, several functions are defined and combined to the complete
functionality of the selector’s operation getSelection.

Flow-Enabledness of the Simulation. The possibility of a flow step of
the simulation is determined in a straight-forward way: a flow step is only
admissible, if all abstract machines allow it:

selectflow : ΣAm → B
sAm 7→ ∀m ∈ dom sAm • flowAmState(sAm(m))

Collection of Enabled Transitions. For the selection of transitions, the
separate sets of transitions from the abstract machines are collected, such that
a set of transition sets results that contains the set of enabled transitions for
each abstract machine:

collecttrans : ΣAm → P(P(Trans))
sAm 7→ {trs ∈ P(Trans) | ∃m ∈ dom sAm • trs = transAmState(sAm(m))}

Non-Conflicting Transitions. The HybridUML semantics is an interleav-
ing semantics, i.e. logically there are no parallel HL3 transitions (i.e. discrete
steps), but transitions are executed sequentially. The strict definition of this in-
terleaving would lead to transition phases of the HL3 model execution that only
execute one single HL3 transition, with the drawback that for n available light
weight processes, only one could be active, while the others would be idle. As an
optimization of the execution (with n > 1), transitions that are non-conflicting
can be executed in parallel, without modifying the interleaving semantics.

Since local HL3 variables are exclusively accessed by each subject, and there-
fore no racing conditions occur during the parallel execution, only the execution
sequence is significant. Two transitions are non-conflicting, whenever neither of
both transitions relies on the results of the other one, such that any execution
sequence leads to the same result, which is the result of the logical sequence of
the interleaving semantics.

This is guaranteed, if the HL3 channels from which one transition reads
values (the read set) are disjoint from the channels on which the other transition
writes (the write set):

nonconfl : Trans × Trans → B
(t1, t2) 7→ readset(t1) ∩ writeset(t2) = �

∧ readset(t2) ∩ writeset(t1) = �

For each two transitions, nonconfl maps to true if the transitions are non-
conflicting, and to false if they are in conflict.

The read sets and write sets are defined as mappings from transitions to sets
of channels. All channels for HybridUML variables and signals are collected
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for which an expression node exists, such that the variable or signal is accessed
(read or written, resp.) by the corresponding expression. From section 6.3,
mappings to determine variables and signals that are accessed by expressions
are applied:

readset : Trans → P(CHNVar ∪ CHNSig)
t 7→ {c ∈ CHNVar | ∃ vn ∈ vnconn,max ,CHNVar

(c)•
∃ expn ∈ trgTNspec

(tntrans(t)) ∪ ran actTNspec
(tntrans(t)) •

varVN (vn) ∈ varht,read(htexpn(expn))}
∪
{c ∈ CHNSig | ∃ sn ∈ snconn,max ,CHNSig

(c) •
∃ expn ∈ trgTNspec

(tntrans(t)) ∪ ran actTNspec
(tntrans(t)) •

sigSN (sn) ∈ sight,read(htexpn(expn))}

writeset : Trans → P(CHNVar ∪ CHNSig)
t 7→ {c ∈ CHNVar | ∃ vn ∈ vnconn,max ,CHNVar (c)•

∃ expn ∈ trgTNspec (tntrans(t)) ∪ ran actTNspec (tntrans(t)) •
varVN (vn) ∈ varht,write(htexpn(expn))}
∪
{c ∈ CHNSig | ∃ sn ∈ snconn,max ,CHNSig (c) •
∃ expn ∈ trgTNspec (tntrans(t)) ∪ ran actTNspec (tntrans(t)) •
sigSN (sn) ∈ sight,write(htexpn(expn)) ∪ sight,read(htexpn(expn))}

Note that read signals are included in the write set, because signals are consumed
on reception, and therefore the corresponding value is written on the respective
channel.

Sets of Non-Conflicting Transitions. From sets of transition sets, every
possible allowed transition combination can be generated, such that (1) at most
one transition per input set is included, and (2) there are no conflicting tran-
sitions in each output set. This prepares the selection of a set of transitions
of the HL3 model for a (possibly) succeeding transition phase. Every abstract
machine can take one transition at most, because their behavior is sequential.
Their transitions may not interfere, in order to guarantee a valid execution opti-
mization for an arbitrary interleaving of the transitions, because every possible
execution sequence of these transitions is allowed.

nonconfltrans : P(P(Trans)) → P(P(Trans))

{trs1, . . . , trsn} 7→ {trs ∈ P(
n⋃

i=1

trsi) | ∀ t1, t2 ∈ trs, k , l ∈ {1..n}•

((t1 ∈ trsk ∧ t2 ∈ trsl ∧ t1 6= t2 ⇒ trsk 6= trsl)
∧nonconfl(t1, t2))}

Choice of a Transition Set. From the set of allowed transition combina-
tions, one is chosen:

selecttrans : ΣAm × IntStatesel → P(Trans)
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(sAm , si) 7→ trs
such that
trs ∈ nonconfltrans(collecttrans(sAm))
∧ (∃ trs2 ∈ nonconfltrans(collecttrans(sAm)) • trs2 6= �) ⇒ trs 6= �

Here, mainly the given internal selector state determines which of the available
transition sets is chosen. The choice is not entirely non-deterministic, because
trs 6= � is always preferred. Otherwise the HL3 model execution could step
through any number of empty transition phases, and therefore the model’s real-
time execution could fail (see section 3.4.1 for successful model executions) even
if successful runs exist for the model.

Choice of Flow or Transition Phase. Based on the availability of tran-
sitions and the enabledness for a flow step, the selector chooses either a
transition phase or a flow phase. (1) If both transitions are available and a
flow step is possible, depending on the internal selector state, a random choice
is made, such that either the transitions are removed or the flow step is dis-
abled. (2) Otherwise, the transition set and the flow flag are left untouched.
HybridUML models exist for which a transition phase with empty transition
set can result here, they are deemed to be not well-formed.

selectflowortrans : ΣAm × IntStatesel → B× P(Trans)
(sAm , si) 7→ (flow , trs)

(selectflow(sAm) ∧ selecttrans(sAm , si) 6= �) ⇒
((flow , trs) ∈ {(true,�), (false, selecttrans(sAm , si))})

(¬selectflow(sAm) ∨ selecttrans(sAm , si) = �) ⇒
((flow , trs) = (selectflow(sAm), selecttrans(sAm , si)))

Creation of a Selection. To all transitions which are selected, a visibility
set is added that defines when the results of the respective action would become
visible. For HybridUML, this is always the current tick, incremented by 0.1, i.e.
no time passes, but causality between succeeding transition phases is modeled.
This publication time tick is the same for all potential recipients:

selection : ΣAm × IntStatesel ×ModelTime → Selection
(sAm , si , tick) 7→ (π1 selectflowortrans(sAm , si),

{tr 7→ Port × {tick + 0.1} | tr ∈ π2 selectflowortrans(sAm , si)})

Resetting of Signals. As a side-effect of the selection, the HybridUML se-
lector resets signals whenever model time evolves, i.e. when it selects a flow
phase. This ensures that signals have no time duration. To all available signal
channels, the value false is written for all possible recipients, in order to indicate
that no signal is active anymore. For this, it is assumed that the given port set
P contains ports for exactly the respective channels. The publication time is
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the current time tick, increased by 0.1, which will be earlier than current model
time in the next update phase (when signals will be read next). That means,
signals are reset immediately.

resetSignals : ModelTime × P(Port) → ChanState
(tick ,P) 7→ ({tick + 0.1} × P)× {false}

Definition of select. The main effect of the operation getSelection of
the HybridUML simulation selector is the selection between flow phase and
transition phase, along with the transitions and their visibility sets. Addition-
ally, the signal channels’ state may be modified, due to the resetting of signals.
Finally, the internal state is adjusted.

select : ModelTime × P(Port)× IntState × ΣAm

→ IntState × Selection × ChanState
(tick ,P , si , sAm) 7→ (rndstepselector (si), selection(sAm , si , tick), schan)

with schan =
{

resetSignals(tick ,P) if π1 selectflowortrans(sAm , si)
� else
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