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8 The Proof Method of Owicki & Gries

8.1 Basic intuition of the method of Owicki & Gries

Since the generalization of Floyd’s method generates a set of verification con-
ditions whose size is exponential in the number of processes, as an alternative
a more manageable proof method is adopted which is based on local induc-
tive assertion networks which additionally satisfy the interference freedom test
formulated by Susan Owicki and David Gries [OG76]. We try to improve the
situation by deriving predicates associated with global locations from predicates
attached to local locations. First these local predicates in Pi are proved to be
locally correct, i.e., partially correct for the sequential execution of Pi when Pi

is considered in isolation as a separate process. We investigate what must be
added to these proofs in order to achieve partial correctness of P1 ‖ . . . ‖ Pn.

Let P ≡ P1 ‖ . . . ‖ Pn. Associate predicates to local locations of P instead of
to its global locations: assume that for every local location li in Pi there exists
a predicate Qli . In order to apply the inductive assertion method, Definition
3.2, associate with every global location l = 〈l1, . . . , ln〉 of P (where li denotes
a location of Pi) the predicate Ql ≡ Ql1 ∧ . . . ∧ Qln ; the resulting inductive
assertion network is called Q1 × . . .×Qn. Next this assertion network is shown
to be inductive by proving the verification conditions for all steps. That is, for
each transition b → f leading from l = 〈l1, . . . , ln〉 to l′ = 〈l′1, . . . , l′n〉 we have
to prove

|= Ql ∧ b → Ql′ ◦ f,

i.e.,
|= (Ql1 ∧ . . . ∧Qln ∧ b) → (Ql′1

∧ . . . ∧Ql′n) ◦ f.

By the definition of a transition in a parallel composition, l differs from l′ in
at most only one local location. Suppose this step is a transition in Pi. Then
lj ≡ l′j , for i 6= j, and hence Qlj = Ql′j

. We shall demonstrate that it is sufficient
to prove:

1. |= Qli ∧ b → Ql′i
◦ f,

i.e., the local verification condition in Pi, and

2. |= Qlj ∧Qli ∧ b → Qlj ◦ f , for all j 6= i,
that is, all predicates Qlj associated with other processes Pj , with j 6= i,
are invariant under execution of this particular transition in Pi. In other
words, executing a transition in Pi does not interfere with the validity of
the local assertions Qlj chosen in the other processes.
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This can be understood as follows:

Ql ∧ b = (by definition and propositional logic)
(
∧
j 6=i

Qlj ∧Qli ∧ b) ∧ (Qli ∧ b) → (by 1 and 2 above)

(
∧
j 6=i

Qlj ◦ f) ∧Ql′i
◦ f = (by definition and propositional logic)

Ql′ ◦ f.

Consequently, the combination of conditions 1 and 2 above leads to a sound
proof method.

Condition 1 implies that process Pi is partially correct w.r.t. < Qsi ,Qti >
in isolation. We say that Pi is locally correct w.r.t. < Qsi

,Qti
>, for i =

1, . . . , n. Condition 2 corresponds to the interference freedom test of Owicki &
Gries [OG76].

This leads to a more efficient method for proving partial correctness of P1 ‖
. . . ‖ Pn: first prove partial correctness for every process Pi in isolation, and
then check interference freedom. In order to compute the complexity of this
new method, again suppose that Pi has r locations and s edges. Now we have
to find n× r local assertions and then we must prove for every edge

• local correctness: 1 verification condition, and

• interference freedom: there are (n−1)×r assertions in the other processes,
so (n− 1)× r verification conditions.

Since there are n× s edges in P1‖ . . . ‖Pn, we obtain n× s× (1+ (n− 1)× r)
verification conditions. Clearly this improves upon the global method, which
required n × s × rn−1 verification conditions, and reflects the so-called state
explosion associated with parallel composition.

Example 8.1 Consider program P ≡ P1 ‖ P2 as in Figure 1.

P1 : ��
��

s1 -y := y + 1 ��
��

t1 P2 : ��
��

s2 -y := y + 2 ��
��

t2

Figure 1: A very simple concurrent program.

We prove that P is partially correct w.r.t. specification < y = 0, y = 3 >,
i.e.,
|= {y = 0} P {y = 3}. Take the assertion network Q defined in Figure 2.

1. It is easy to check that Pi is partially correct w.r.t. < Qsi
,Qti

>, for
i ∈ {1, 2}.

2. Verify interference freedom:

• We show that Qs1 and Qt1 are invariant under y := y +2, as follows.

– Assume Qs1 ∧ Qs2 holds. Then y = 0, and thus after executing
y := y + 2 we have that Qs1 ≡ y = 0 ∨ y = 2 holds.

– Assume Qt1 ∧ Qs2 holds. Then y = 1, and thus after executing
y := y + 2 we have that Qt1 ≡ y = 1 ∨ y = 3 holds.
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��
��

s1Qs1

def= y = 0 ∨ y = 2

?

y := y + 1

��
��

t1Qt1
def= y = 1 ∨ y = 3

‖

��
��

s2 Qs2

def= y = 0 ∨ y = 1

?

y := y + 2

��
��

t2 Qt2
def= y = 2 ∨ y = 3

Figure 2: And its associated inductive assertion network.

• Similarly, Qs2 and Qt2 are invariant under y := y + 1.

3. • |= y = 0 → Qs, since Qs ≡ Qs1 ∧Qs2 and |= Qs1 ∧Qs2 ↔ y = 0, and

• |= Qt → y = 3, since Qt ≡ Qt1 ∧Qt2 and |= Qt1 ∧Qt2 ↔ y = 3.

8.1.1 Incompleteness of the proposed method

Example 8.2 (Incompleteness of the proposed method) Consider P ≡
P1 ‖ P2 as in figure 3.

P1 : ��
��

s1 -y := y + 1 ��
��

t1 P2 : ��
��

s2 -y := y + 1 ��
��

t2

Figure 3: An even simpler concurrent program.

The aim is to prove that P is partially correct w.r.t. specification < y =
0, y = 2 >. Analogously to the previous example, we investigate whether the
assertion network given in Figure 4 is interference free.

��
��

s1Qs1

def= y = 0 ∨ y = 1

?

y := y + 1

��
��

t1Qt1
def= y = 1 ∨ y = 2

‖

��
��

s2 Qs2

def= y = 0 ∨ y = 1

?

y := y + 1

��
��

t2 Qt2
def= y = 1 ∨ y = 2

Figure 4: And a failed attempt at defining an interference free inductive asser-
tion network for it.

Clearly Pi is partially correct w.r.t. < Qsi
,Qti

>, for i ∈ {1, 2}. These
predicates, however, are not interference free. For instance, assume that Qs1 ∧
Qs2 holds. Then y = 0 ∨ y = 1, and thus after executing y := y + 1 we have
that y = 1 ∨ y = 2 holds. Hence Qs1 ≡ y = 0 ∨ y = 1 is not invariant under
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execution of y := y + 1 in P2.
A second problem is that Qt1 ∧Qt2 does not imply y = 2.

It is even impossible to find assertions that prove specification < y = 0, y =
2 > for P using program variable y only! In order to show this, suppose we have
Qsi andQti which are locally correct for Pi and, moreover, |= y = 0 → Qs1∧Qs2 ,
and |= Qt1 ∧Qt2 → y = 2. From the first implication, |= y = 0 → Qs1 ∧Qs2 , we
obtain that Qs1 and Qs2 hold for a state which assigns the value 0 to y. Since
we assumed local correctness, this implies that Qt1 and Qt2 hold for a state
which assigns the value 1 to y, thus |= y = 1 → Qt1 ∧Qt2 . This, however, leads
to a contradiction with the second implication, |= Qt1 ∧Qt2 → y = 2.
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