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8 The Proof Method of Owicki & Gries

8.1 Basic intuition of the method of Owicki & Gries

Since the generalization of Floyd’s method generates a set of verification con-
ditions whose size is exponential in the number of processes, as an alternative
a more manageable proof method is adopted which is based on local induc-
tive assertion networks which additionally satisfy the interference freedom test
formulated by Susan Owicki and David Gries [OGT76]. We try to improve the
situation by deriving predicates associated with global locations from predicates
attached to local locations. First these local predicates in P; are proved to be
locally correct, i.e., partially correct for the sequential execution of P; when P;
is considered in isolation as a separate process. We investigate what must be
added to these proofs in order to achieve partial correctness of Py || ... || Py.
Let P= Py || ... || Pn. Associate predicates to local locations of P instead of
to its global locations: assume that for every local location [; in P; there exists
a predicate Q;,. In order to apply the inductive assertion method, Definition
3.2, associate with every global location I = (ly,...,l,) of P (where [; denotes
a location of P;) the predicate Q; = Qj, A ... A 9y, ; the resulting inductive
assertion network is called Q1 x ... x Q,,. Next this assertion network is shown
to be inductive by proving the verification conditions for all steps. That is, for

each transition b — f leading from [ = (Iy,...,1,,) to I’ = (I1,...,1},) we have
to prove

EOAb— Qpof,
ie.,

|:(Qll/\~-~/\Ql”/\b>—>(Ql/1/\.../\Ql:l)of_

By the definition of a transition in a parallel composition, [ differs from I’ in
at most only one local location. Suppose this step is a transition in P;. Then
l; = l.;" for i # j, and hence Qlj = Ql;. We shall demonstrate that it is sufficient
to prove:

1. ):leAb_)Ql;Of7

i.e., the local verification condition in P;, and

2. F Qi ANQi, Ab— Qo f, forall j # i,
that is, all predicates Q;; associated with other processes P;, with j # i,
are invariant under execution of this particular transition in P;. In other
words, executing a transition in P; does not interfere with the validity of
the local assertions Ql]. chosen in the other processes.



This can be understood as follows:

WNES (by definition and propositional logic)
(A Qi ANQi, Ab) A (Q, Ab) — (by 1 and 2 above)

J#i

(A Qiof)A Quof= (by definition and propositional logic)
J#i

Quolf.

Consequently, the combination of conditions 1 and 2 above leads to a sound
proof method.

Condition 1 implies that process P; is partially correct w.r.t. < Qy,, Qs >
in isolation. We say that P; is locally correct w.r.t. < Q,,Q:, >, for i =
1,...,n. Condition 2 corresponds to the interference freedom test of Owicki &
Gries [OGT76].

This leads to a more efficient method for proving partial correctness of Py ||
... || P,: first prove partial correctness for every process P; in isolation, and
then check interference freedom. In order to compute the complexity of this
new method, again suppose that P; has r locations and s edges. Now we have
to find n x r local assertions and then we must prove for every edge

e local correctness: 1 verification condition, and

e interference freedom: there are (n—1) X r assertions in the other processes,
so (n — 1) x r verification conditions.

Since there are n x s edges in Pi||...||P,, we obtain n x s X (1+ (n—1) x r)
verification conditions. Clearly this improves upon the global method, which
required n x s x r™~! verification conditions, and reflects the so-called state
explosion associated with parallel composition.

Example 8.1 Consider program P = P; || P, as in Figure 1.
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Figure 1: A very simple concurrent program.

We prove that P is partially correct w.r.t. specification < y = 0,y = 3 >,
ie.,
E {y =0} P {y = 3}. Take the assertion network Q defined in Figure 2.

1. It is easy to check that P; is partially correct w.r.t. < Q,,, Qs >, for
i€ {1,2}.

2. Verify interference freedom:

o We show that Qg, and Q;, are invariant under y := y+ 2, as follows.
— Assume Qg, A Q, holds. Then y = 0, and thus after executing

y =1y + 2 we have that Q,, =y =0V y = 2 holds.
— Assume Q¢, A Qg, holds. Then y = 1, and thus after executing

y =y + 2 we have that Q;,, =y =1V y =3 holds.
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Figure 2: And its associated inductive assertion network.

e Similarly, Q,, and Q;, are invariant under y :=y + 1.

3. e Ey=0— Qg since Qs = Q;, NQs, and E Q,, AQg, «— y =0, and
e = Q;— y=3,since Q; = Qy, NQyp, and = Qy, AN Qy, =y =3. [J

8.1.1 Incompleteness of the proposed method

Example 8.2 (Incompleteness of the proposed method) Consider P =
Py || P, as in figure 3.

= +1 = +1

Figure 3: An even simpler concurrent program.

The aim is to prove that P is partially correct w.r.t. specification < y =
0,y = 2 >. Analogously to the previous example, we investigate whether the
assertion network given in Figure 4 is interference free.
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Figure 4: And a failed attempt at defining an interference free inductive asser-
tion network for it.

Clearly P; is partially correct w.r.t. < Qs,, Qs >, for ¢ € {1,2}. These
predicates, however, are not interference free. For instance, assume that Qg A
Q,, holds. Then y = 0V y = 1, and thus after executing y := y + 1 we have
that y = 1 Vy = 2 holds. Hence Q,;, =y =0V y =1 is not invariant under



execution of y :=y + 1 in Ps.
A second problem is that Q, A Q,, does not imply y = 2.

It is even impossible to find assertions that prove specification < y =0,y =
2 > for P using program variable y only! In order to show this, suppose we have
Q,, and Qy, which are locally correct for P; and, moreover, =y =0 — Q4 AQ,,,
and = Qi A Qy, — y = 2. From the first implication, =y =0 — Q4 A Qs,, we
obtain that Qg and Q, hold for a state which assigns the value 0 to y. Since
we assumed local correctness, this implies that Q;, and Q, hold for a state
which assigns the value 1 to y, thus |y =1 — Qi A Qy,. This, however, leads
to a contradiction with the second implication, = Q¢ A Qp, — y = 2. U
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