Verifikation nebenlaufiger Programme
Wintersemester 2004 /05

Ulrich Hannemann Jan Bredereke

5 Proving Convergence

A program is called convergent, if it does not have any infinite computations,
that is, it either terminates or becomes deadlocked, but will never go on forever.
Of course, in general we can only expect a program to converge when started
from certain initial states. Let ¢ be a precondition. We define a program to be
p-convergent, if it does not admit infinite p-computations. In this section, we
look at methods for proving that a program is convergent.

The importance of this notion is that in order to prove a program to be
totally correct, in the present framework one has to prove that it is both partially
correct and convergent and has no failing computations.

5.1 Wellfounded Sets

The basic idea for proving convergence is to show that there is a bound on
the remaining computation steps from any state that the program reaches. This
notion of bound is formalised by the concept of wellfounded set in mathematics.

Let W be a set and < a binary relation on W x W. We say < is an ordering
if it is:

1. Irreflexive, ie., a £ a for any a € W,
2. Asymmetric, i.e., a < b implies b £ a for any a,b € W,
3. Transitive, i.e., a < b and b < ¢ implies that a < ¢ for any a,b,c € W.

Note that conditions 1 and 3 imply condition 2 (which in its turn implies con-
dition 1). Such an ordering can be partial in the sense that there may exist
pairs of unrelated elements in the set. The partially ordered set (W, <) is called
wellfounded if there exists NO infinitely descending sequence in (W, <):

coo = wg < wy < wg, with w; € W.

One of the simplest wellfounded sets is the set of nonnegative integers IN =
{0,1,2,...}, with the ordering of the “less than” relation ‘<’. As we shall see,
we (only) use this set in the completeness proof in this chapter. Hence, in prin-
ciple, it suffices to use nonnegative integers to prove that the kind of program
we study here is convergent. Nevertheless, forcing the use of nonnegative in-
tegers in practice often leads to complicated assertions and ranking functions,
a notion introduced later. Therefore, other sorts of wellfounded sets are used,
too. One such example is the product of two (simpler) wellfounded sets with
the lexicographical order. More precisely, let (W7, <1) and (Wa, <2) be two
wellfounded sets, then the partially ordered set (W, <) defined by
W = W, x Wa and

(mhnl) < (mg,ng) &f (m1 <1 mg) \Y ((m1 = mg) N (TL1 <92 ’IlQ)),

is also wellfounded. This construction can be easily extended to the product of
an arbitrary (finite) number of wellfounded sets. This associated partial order
is called lexicographical ordering.

5.2 A Proof Method for Convergence

In this section we give a proof method for establishing convergence of a program.
This method builds directly on the one for partial correctness developed in the
previous sections.

Definition 5.1 (Floyd’s wellfoundedness method) Given a transition di-
agram P = (L,T,s,t), in order to verify that it is ¢-convergent with respect
to a precondition ¢ we use Floyd’s wellfoundedness method for proving conver-
gence (i.e., either termination or deadlock) of sequential programs as formulated
below:

1. Find an assertion network Q, show that it is inductive, and that = ¢ — Q4
holds.

2. Choose a wellfounded set (W, <) and a network p = {p; |l € L} of partially
defined ranking functions p; : X — W for every [€ L, and prove points 3
and 4 below:

3. Qy implies that p; is defined, i.e., for every o,
E Q;(o) implies pi(c) € W.
4. Every transition | = I’, with a = ¢ — f, decreases the ranking function,

ie.,
= QiAc— pi = (prof)

Here p; > (pr o f) denotes the predicate defined by
(o1 > (pr o) (0) = ttiff pu(o) = pur(f(0))- i

Example 5.2 As a first step, consider proving convergence of the following
simple program in Figure 1 with respect to the trivial precondition true. To
make it a little more interesting, we assume that x belongs to the set of real
numbers, which is not wellfounded w.r.t. the “less than” relation ‘<’.

. <
OO

r:i=x—1 x>0

Figure 1: A terminating program over the real numbers.

The assertion network is chosen as:

Next we consider the ranking function network. We have to map real num-
bers to a wellfounded set. Let nni(x) be the function which returns the next
nonnegative integer for a real number z (so for —v/2 and 7, it returns 0 and
4, respectively). The ranking function network defined over the lexicographical
ordering IN x IN of nonnegative integers IV is as follows:

Checking validity of the verification conditions is trivial; the ranking func-
tions are always defined, and decrease along each transition, as shown below:

m s — 1y, the first component of the ranking function does not
increase, whereas the second decreases by one,

mo : 11 — s, the first component of the ranking function decreases
at least by one when xz > 0, and

w3 : 8 — t, the first component of the ranking function does not
increase, whereas the second decreases by one. |

Example 5.3 Consider again the integer root-finding program from Examples
3.1 and 3.3. Now we want to show that it is convergent with respect to the
precondition ¢ ='y; > 0. We take the same assertion network as before, namely,

=%
)
-

Q) =1 >0

QU E W <y)A(ys=1y3) Alys=2%y2 + 1)

Q@ =B <y)Als=@+D*)A(y=2x%y2+1)
Q@) =3 <y < (2 +1)%

We already proved in Example 3.3 that it is inductive. The initial condition
E ¢ — Qp holds trivially. Next we choose as wellfounded set the lexicographi-
cally ordered product IN x IN x IN over the set of nonnegative integers IN, and
define the ranking functions as follows:

po(9) = (1 +1,0,0)

p1(7) = (Y1 — Y3, y1 — ¥2,2)

p2(7) = (maz(yr — y3,0),y1 — y2,1)
Pg(?j) = (0705())'

We now show that Q; implies that p; is defined. The only problematic cases
are p; and po, because the expressions y; — y3 and y; — y2 may not be defined
over the set of nonnegative integers. First, look at p;. We immediately have
Yy > y% = y3 from Q;. It is also obvious that y; > ys follows from y; > yg
Secondly, consider py. From Qs, it follows that y; > o holds for the same
reason.

What remains to be proved is that the ranking functions decrease along
every transition. This is proved as follows:

m1 i lg — 11, the first component of the ranking function decreases at
least by one,

o : 1y — lg, the first and second components of the ranking function
do not increase, whereas the third decreases by one,

73 : lo — [y, the first component of the ranking function does not
increase, whereas the second decreases by one,

7y log — I3, the first and second components of the ranking function
do not increase, whereas the third decreases by one. |

5.3 Soundness and Semantic Completeness

Next we prove soundness and semantic completeness of the method.

Theorem 5.4 (Soundness)

Let P = (L,T,s,t). If Q is an inductive assertion network for P, p is a ranking
function network over the wellfounded set (W, <) satisfying points 3 and 4 of
Definition 5.1, and = ¢ — Q, then P is p-convergent.

Proof
Proving soundness is straightforward. Just consider an arbitrary ¢-computation

n: (lo;o0) — (l1;01) — ...,

with lop = s, then inductiveness of Q implies that Q is invariant, and hence =
© — Qg implies, using conditions 3 and 4 of Definition 5.1, that p;, (c0), pi, (01), - - -
are all defined. Furthermore, the chain

plo(JO) = Py (Ul) ISR

is decreasing. Due to the wellfoundedness of W, the above chain is finite, and,
hence, 7 is also finite.
|

The completeness proof is more complicated. Define a tree to be of finite
degree if each of its nodes has no more than a finite number of direct descendant
nodes (children). First, we prove the following lemma due to Konig [K6n32].

Lemma 5.5 (Ko6nig’s lemma) An infinite tree of finite degree must have an
infinite path.

Proof
Let ng be the root of an infinite tree T' of finite degree. Let the descendants of
ng be ny,...,ny,. Each node n;,i = 1,...,m is the root of a subtree T;. Since

the number of nodes in the complete tree is infinite and there are finitely many
T’s, at least one of them must contain an infinite number of nodes. Let n;, be
the root of a subtree T;, which is infinite. We now repeat the argument with
respect to n;, and its immediate descendants nf,...,n;. At least one of them

must be the root of an infinite tree. Let us denote it by n,,. Repeating the
argument we trace in the tree T" a path

N0y Mgy y Mgy v v e

of nodes each of which is the root of an infinite tree. The process will never
terminate since we are continuously examining roots of infinite subtrees. Con-
sequently the traced path is an infinite path in T'.

|

An immediate corollary of Kénig’s lemma is that a tree of finite degree which
has no infinite paths must be finite. In other words, in such a case there exists a
constant such that all paths in the tree are not longer than that constant. We
need this result to define the ranking functions.

Theorem 5.6 (Semantic completeness)
If P is ¢-convergent, then there exist assertion and ranking-function networks
satisfying the verification conditions for proving convergence.

Proof
Let P = (L, T,s,t). We choose the same assertion network Q as in the semantic
completeness proof of the partial correctness method, namely, the one consisting
of semantic ¢-minimal predicates. By Theorem 4.4, it is inductive, and = ¢ —
Q, holds.

As wellfounded set we choose (IN, <), and define the ranking functions p; :
¥ — W as

pi(o) & the length of the longest computation path starting at | in state o.

The two extra conditions, namely, that the minimal predicate Q; implies that
the ranking function p; is defined, and that the ranking functions decrease along
each transition, remain to be shown.

Obviously, if there exists an infinite computation starting at [with state o
then p;(o) is undefined. Konig’s lemma ensures that in the other case, namely,
when there is no infinite computation starting at | with o, p;(o) is indeed de-
fined. To see this, we construct the computation tree starting from | with o. The
nodes of the tree are the configurations in the computation, and one node is an
immediate descendant of another if and only if it is a configuration which is
the result of one transition from the latter. To see why this construction leads
to a tree, note that there is always at least one node, namely, the root (I;o).
The degree of this tree is finite, because one configuration can only lead to a
finite number of direct descendant (follow-up) configurations in one step. (This
follows from the finiteness of T'.) By the assumption that there are no infinite
computations from (I; o), the tree also does not have infinite paths. Therefore,
by Konig’s lemma the tree is finite, and, consequently, p;(c) is defined. To
establish the first verification condition, we now only need to show that, when
the minimal predicate Q; holds in state o, there are no infinite computations
from (l; o). By the definition of Q;, there exists a partial computation 7 starting
from a state which satisfies ¢ and reaching | with ¢. Clearly, the partial com-
putation 7 can be continued by any computation 7’ starting from (l;). Since
P is ¢-convergent, this implies that any computation from (l; o) is also finite.

Establishing the second condition now becomes straightforward, because it
is easy to see that by the definition of p; the value of the defined ranking function
decreases by at least one along each transition.

We have shown semantic completeness of the method by using the same
assertion network as before and constructing a particular ranking-function net-
work, which satisfies the verification conditions 3 and 4 of Definition 5.1.

|

The kind of completeness shown here is semantic completeness, because we
(i) define the ranking functions p; mathematically, by giving an existence proof
(and not by expressing them, e.g., using first-order predicate logic), and (ii)
prove that the verification conditions for proving convergence are valid mathe-
matically, i.e., we did not prove the implications within some formal system.

References

[K6n32] D. Konig. Theorie der endlichen und unendlichen Graphen. Technical
report, Leipzig, 1932.

