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Why will testing remain a crucial verification and
validation activity ?

> Simple answer: because standards for safety-critical systems
development will never allow certification without testing
> More elaborate answers:

» Complex HW/SW systems cannot be captured in a completely
formal way — therefore at least HW /SW integration and system
integration testing will remain important for system verification

» Software testing plays an increasingly important role for the
verification of automatic code generators

» 100% software correctness is not always the main issue, because

> 100% software correctness does not imply system safety (recall
Leveson: “ Safety is an emergent property”)
» Systems containing software bugs can still be safe
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Model-based equivalence testing ...

...is a variant of exhaustive testing:

> The goal of the test suite is to establish an equivalence relation
between specification model and implementation
» Typical equivalence relations are
» Bi-similarity
» Failures equivalence
» From a practical point of view, proof of refinement properties

by means of exhaustive testing is often more relevant than
equivalence testing
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Model-based equivalence testing versus model checking

>

>

White-box equivalence testing identical to model (equivalence)
checking
Grey-box equivalence testing differs from model checking:

» The implementation model is only partially known, e. g., the
maximal number of states and the interface latency of the
implementation

Black-box equivalence testing is impossible, due to the
time-bomb problem: The SUT may behave properly for an
unknown number of execution loops and fail after some hidden
state condition (e. g., a counter overflow) arises

In principle, all tests could be assumed to be grey box, since
hardware limitations always impose a finite state system. This
limit, however, will be so large that no practical application of
equivalence testing is feasible.
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Chow's Theorem (1)

» Tsun S. Chow. Testing Software Design Modeled by Finite-State
Machines. IEEE Transactions on Software Engineering SW-4,
No. 3, pp. 178-187(1978).

» Equivalence testing for deterministic Mealy automata

> One of the first contributions showing that equivalence proof by
grey-box testing is possible with a finite number of test cases

> The test case construction method according to Chow is also
called W-Method

> For a more detailed error classification extending the examples
below see Chow's paper and

Robert. V. Binder: Testing Object-Oriented Systems. Addison
Wesley (1999).
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Chow's Theorem (2): Pre-requisites

v

A and B are Mealy automata over the same alphabet ¥ = /U O

v

| contains input symbols, O output symbols
» Transition functions
da: Q(A) x 1 — Q(A)x Oand g : Q(B) x| — Q(B) x O
are total functions
» For 6(q1,x) = (g2, y) we also write g1 1, Q.
» If input sequence p = (x1,...,xk) leads from state gy to final
state go, we write g1 SLN go.

» We require A and B to be minimal (this simplifies the proof, but
is not essential)

v

A is used as the model, B as the implementation.
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Chow's Theorem (3): Pre-requisites

The set of states Q(A) has cardinality n, card(Q(B)) = m
Initial states: ga, gs.

Test cases are input traces p € /*.

vV v . v.Y

The specification automaton A serves as test oracle: The

generated input trace, when exercised on B, leads to an output
trace which can be observed, and the resulting |/O-trace u € ©*
can be automatically checked against A, whether it is a word of

L(A)

» P C [* is called transition cover of A, if:

Va1 2 gy € a:IpEP qaLo quAp ~ (x) EP
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Chow's Theorem (4): Pre-requisites

» W C I* is called characterisation set of A if for all
q1,q2 € Q(A), there exists a w € W distinguishing g; and ¢»,
i. e.. w applied to g; results in an output trace which differs
from the one resulting from application of w to g».

» Define X" = {p e I* | #p = n} for n> 0.

» Define Uy - Us = {u1 ~ Up ‘ ui € U;,i = 1,2} for U, U, C I1*.

» Define W(A), the set of W-test cases of A by

m—n

wA) =P-(|J X" w)

i=0
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Chow's Theorem (5)

Chows Theorem If B passes all W-test cases from WW(A) then A and
B are bi-similar (written A = B).

Remarks.

» “Passing a test case from W(A)" means to generate the same
outputs as A for every input sequence w € W(A)

» Bi-similarity for finite deterministic Mealy automata just means
language equivalence.

» Bi-similarity of minimal Mealy automata is equivalent to the
existence of an isomorphism f : A — B: f is bijective and
satisfies f(ga) = f(gg) and

Va1, q2 € Q(A) 1 g1 X, 92 = f(q1) LA f(q2)
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Chow'’s Theorem (5b) — lllustration

A
- c/d
al S0 o s1
alb
Transition cover P
a a c
0. .
a ¢ PX W
P X W:
@ e .

@ Universitat Bremen

Characterisation set W
w={c}
Assume card(Q(B)) <= card(Q(A))+1
x! ={ac)
P={<>a,cca cc}
Test Cases:
c ac cc cac ccc
ac aac cac caac ccac
CC acc ccc cacc ccce
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Chow's Theorem (5c) — lllustration: Time Bomb

al- c/d alb

SO &{ Sl >
U cle

a/e/\/

0 Test Cases:

PX W c ac cc cac ccc Failure is found by caac

P xlw; ac aac cac caac ccac (last ¢ input not needed to uncover failure)
1

P X W: CC acc cce cace ccee
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Chow'’s Theorem (5d) — Illustration: Output failure

B cle
- c/d
al S0 o s1
ale /V
0 Test Cases:

PX W C ac cc cac ccc Failure is found by ca(c)
P X1W: ac aac cac caac ccac Only transition cover is required to
PX W: CC acc ccc cacc ccce uncover output failures
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Chow's Theorem (5e) — lllustration: Transition failure
B "Trapdoor" cle
al- '\/
c/d \
SO & Sl
alb
Test Cases:
PX W C ac cc cac ccc Failure is found by ac
P X W: ac aac cac caac ccac
P X W: CC acc ccc cacc ccece
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Chow's Theorem (6): Preparations for the proof

Definition 1: Let V C /* a set of input traces

1. Two states g; € Q(A), gj € Q(B) are V-equivalent (g; ~v g;),
if each p € V produces the same outputs when exercised from g;
as when exercised from g;.

2. Automata A and B are V-equivalent (A ~y/ B), if their initial
states are V-equivalent, i. e., ga ~v gB

Obviously ~y is an equivalence relation on Q(A) x Q(B)
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Chow's Theorem (7): Proof

Obviously,
AxB = (VW CI": A~y B)

holds for all bi-similar automata (A = B). Therefore we can re-write
Chow's theorem as

Chow’s Theorem — Variant 2: A~y B = A= B

The proof of variant 2 results from the lemmas below. We assume
that A has n states and B m > n states and that both are minimal.
The characterisation set of A is denoted by W.
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Chow's Theorem (8): Proof

Lemma 1: Suppose characterisation set W of A partitions Q(B) into
at least n equivalence classes. Then Z = [JT " (X’ - W) partitions
Q(B) into m classes. This means that every two states Q(B) can be
distinguished by W(A)

Proof.: Define Z(¢) = Uf:O(Xi - W). Obviously Z(m —n) = Z.
Perform induction proof for £ =0,1,...m — n:

Z(¢) partitions Q(B) into £+ n classes (%)

Choosing £ = m — n implies the lemma.
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Chow's Theorem (9): Proof of Lemma 1

Proof of (x) — induction start: For / = 0 (x) coincides with the
assumptions of the lemma.

Assumption: For given ¢ € {0,1,...m—n—1} Z(¥) partitions Q(B)
into at least £ 4 n classes

Induction step: We show that Z(¢ + 1) partitions Q(B) into at least
¢+ n+1 classes

If Z(¢) already partitions Q(B) into £+ n+ 1 or more classes then we
have nothing to prove. Otherwise there exists k > ¢ such that
(observe that Z(k) = Z(k — 1) U Xk - W)

Jr,rn € Q(B) i n ~zu-1) A n #xkw) r
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Chow'’s Theorem (10): Proof of Lemma 1

If k = ¢+ 1 there is nothing more to show since (x) holds for
Z(k)=Z(¢(+1).
Otherwise, if k >0+ 2, let p = (x1,...,xk) — w,w € W the input

sequence distinguishing r; and r.

(X1, Xk 1) (X1, Xk 1)
Choose r{,ry suchthat n = "= " r{, n = "= ' rh. Then r{,r}

can be distinguished by Z(¢ + 1). O
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Chow's Theorem (11): Lemma 2

Lemma 2: Let Z = [J7,"(X' - W) as introduced in Lemma 1. Then
A = B if and only if the following conditions are fulfilled

1. The initial states of A and B are Z-equivalent: ga ~7 g5.

2. For all a € Q(A) exists b € Q(B) such that a ~7 b.

3. For all a; X1, aj in A exists b;, bj € Q(B), such that a; ~7 b;,

aj ~z b_,' and b,‘ x_/y) b_,'.
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Chow's Theorem (12): Proof of Lemma 2

Proof Step (a). If A= B, then (1,2,3) are directly implied by the
existence of an isomorphism f : Q(A) — Q(B).

Proof Step (b). Suppose (1,2,3) hold. We have to establish the
existence of an isomorphism f : Q(A) — Q(B). To this end we will
show that function f specified by

f(qa) = as
(ga <X1£$X€> alNdgs <X1£$X€> b) = f(a)=b

is well-defined, one-one and surjective. Then (3) additionally implies
that Va € Q(A) : a ~z f(a) holds, too.
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Chow's Theorem (13): Proof of Lemma 2

Well-definedness of f. It has to be shown that different input traces

e X 9’ 7X . .
ga <X1’:$XZ> a, qa ™ = g a, leading to the same target state a in A

will also lead to the same target state in B.

(ST 7k>

Therefore suppose gg <X1£$XZ> b and gg b’ in B. It has to be

shown that b=b'.
Because of (3) we can conclude

a~zbANar~yz b (**)

We will now show that Z distinguishes every pair of states in B, so
that (**) implies b = b’. This establishes well-definedness of f.
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Chow's Theorem (13): Proof of Lemma 2

Z distinguishes every pair of B-states. The characterisation set W
of A partitions Q(A) into n = card(Q(A)) classes (since A is
minimal).

Now (2) and (3) imply that W also partitions Q(B) into at least n
classes: Suppose a; and ap are distinguished by w € W. Suppose

(%) . .
ga <X1:$XZ> a; and g4 ="' a5. These two input traces will lead us

according to (3) to states by, by € Q(B) such that a; ~7 b;, i =1,2.
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Chow's Theorem (14): Proof of Lemma 2

Because of (3) and W C Z, sequence by =% has to generate the
same outputs as a; = and b, == the same outputs as ap =
Since w produces different outputs when applied to a; and a,
respectively, the same has to hold for by == and by ==. Therefor w
also distinguishes by and by, and therefore by # bs.

Since W C Z and since W partitions Q(B) into at least n classes, we
can apply Lemma 1 to conclude that Z distinguishes all states of B.
Let b € Q(B), then b ~z b’ implies b = b’ which shows
well-definedness of f.
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Chow's Theorem (15): Proof of Lemma 2

f is one-one. Let a; € Q(A),i =1,2,a; # a and

b; = f(a;) € Q(B). We have to show that by # by.

Since a1 %“w a2 and W C Z we conclude a1 %7 ap. (3) implies

aj ~z f(a;j) = bj,i = 1,2 and therefore by 47 by, and therefore also

by % by.
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Chow's Theorem (16): Proof of Lemma 2

f is surjective. Given b € Q(B) and an input sequence gg <X1£$XZ> b.
Since A and B are deterministic, the target states b € Q(B), a € Q(A)

are uniquely determined by gg (xng) b and ga <X1’£$XZ> a. Since we
already know that that f is well-defined this implies f(a) = b. O
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Chow's Theorem (17): Lemma 3

Lemma 3: Let W(A) = P - Z, where P is the transition cover of A
and Z = UZ,"(X" - W). Then A ~yy(a) B if and only if
1. The initial states of A and B are Z-equivalent: ga ~z g5.
2. For all a € Q(A) exists b € Q(B) such that a ~7 b.
3. For all a; X, aj in A exists b;, bj € Q(B), such that a; ~7 b;,
aj ~z bj and b,‘ x_/y) )j -
Observation. Since (1,2,3) are identical with the only-if condition of

Lemma 2, and therefore imply A = B, Lemma 3 directly implies Chow'’s
theorem, variant 2, because with Lemma 3

A~pzB<s Ax=B

holds.
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Chow's Theorem (18): Proof of Lemma 3

Proof of Lemma 3 — (a). Suppose (1,2,3) hold. Then Lemma 2
implies A = B and this trivially implies A ~yy4) B.

Proof of Lemma 3 — (b). Suppose A ~p.7 B. Given a € Q(A) and
input sequence p € P with gp =£s a2, This sequence p exists because
P is a transition cover. Since A and B are deterministic b is uniquely
determined by gg <X1"£XZ> b. Since ga ~p.zqgand pe P,a~z b
follows, and this shows (2) and (3) (observe that () € P).
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Chow's Theorem (19): Proof of Lemma 3

Let a1 */% 2, a transition in A. Let p € P with ga =2 ;. Since P is
a transition cover, p exists and also p ~ (x) € P. Define

b1, by € Q(B) uniquely by gg 2 by and gg p;<>><) by,
Now A ~p.z B implies a; ~z bj,i = 1,2. In addition, transition

by ﬂ by has to satisfy y’ = y, because otherwise a; and b; could be

distinguished by input x, and this would be a contradiction to
dy ~z b1. O
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Chow's Theorem (20): BFS-Algorithm for Transition Cover
Construction

Overview over the algorithm presented on the next slide by function
tc:

» Breadth-first search (BFS) over deterministic finite (Mealy)
automaton (DFA) A

> tc returns set of input traces representing the transition cover
> « is the “usual” queue used in BFS-algorithms

» N C Q(A) is an auxiliary subset of A-states which should not be
inserted into queue o anymore.

» 7 maps states g from where the transition graph of A should be
further explored to the previously constructed input trace leading
from g4 to gq.
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Chow's Theorem (21): Transition Cover Construction

function tc(in A : DFA) : P(I*)
begin
te:={()} a:=(qa); N:={aa}; 7:={qa— ()}
while 0 < #a do
u = head(«);
foreach x € | do
q = 6a(u, X);
tc:=tcU{r(u) ~ (x)};
if g & N then
N:=NU{q};
ri=1@{q— 7(u) ~ ()
ai=ao~(q);
endif
enddo
a = tail(a);
enddo
end
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Chow's Theorem (22): Characterisation set construction

» Characterisation set W can be generated as a "by-product” of
the standard procedure for constructing a minimal DFA A for
given DFA A’

» Using a minimal DFA as specification model is not necessary, but
desirable for the W-method application, since this keeps the size
of the transition cover as small as possible.

» Therefore, given possibly non-minimal DFA A’, we simultaneously
reduce A’ to its minimal DFA A and construct W.

» It is reasonable to assume that

» A’ does not contain any unreachable states g
» A’ has no accepting state (since as a reactive system it should not
terminate)
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Chow's Theorem (23): Characterisation set construction

Notation:

> wa: QA) x| — Oswal(g,x)=y < (3¢ € Q(A) : da(g,x) =
(q’,y)) maps (Source state,Input) to the associated output y. In other
words, wa = T 0 d4.

> A QA) x T — Q(A); Ma(g,x) =g & (3y € 0:6a(g,x) =
(d’,y)) maps (Source state,Input) to the associated target state ¢’,
that is, Ag = m 0.

> We suppose that all states q, ¢" € Q(A) are uniquely numbered, so that
a relation <C Q(A) x Q(A) is well-defined and g # ¢’ either implies
g<q orqg <aq.

@ Universitat Bremen
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Chow's Theorem (24): Characterisation set construction

Notation (continued):

> Specification

od : Q(A) x Q(A) #— Q(A) x Q(A)
(9.q') fallsg<d

d(q,q') =
od(a 4 (¢',q) fallsq’ <gq

defines a map on pairs (q,q") € Q(A) x Q(A) which sorts pairwise
distinct states according to their <-order.

» For input traces w, w’ € I* we write w < w/, if w is a true prefix of w’

> 5: Q(A) x Q(A) #— [* is defined as a function mapping
distinguishable states (g, q') € Q(A) x Q(A) to non-empty input traces
revealing this distinction by producing different outputs when exercised
on g and ¢'.
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Chow's Theorem (25): Characterisation set construction

procedure W(inout A : DFA, inout W : P(/*))

begin
D :P(Q(A) x Q(A)); // Ordered distinguishable state pairs
8:Q(A) x Q(A) #— I*; // Map elements from D to input trace
D:={}; B:=A{}
// Initialisation: Insert all ordered pairs of states into D
// which can be distinguished by a single input
distinguishedByOne(A, D, [3);
// Identify all distinguishable state pairs, while constructing W
generateW(A, D, 3, W);
// Optionally, reduce the DFA
reduceA(A, D, 3);

end
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Chow's Theorem (26): Characterisation set construction

procedure distinguishedByOne(in A : DFA,
inout D : P(Q(A) x Q(A)),
inout 3 : Q(A) x Q(A) /- I*)
begin
foreach p < g € Q(A) x Q(A) do
foreach x € | do
if wa(p, x) # wa(g, x) then
D:=Du{(p,q)};
B=p®{(p.q)— (x)}h
endif
enddo
enddo
end
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Chow's Theorem (27): Characterisation set construction

procedure generateW(in A : DFA,

inout D : P(Q(A) x Q(A)),
inout 8 : Q(A) X Q(A) #— I*,

out W : P(I*))
begin
b : bool; b := false;
do
foreach p < g € (Q(A) X Q(A)) — D do
foreach x € | do
v = Aa(p, x); z:= Aal(q, x);
if od(v, z) € D then
b := true;

w = (x) ~ B(od(v, 2));

//Remove traces which are prefixes of the new (longer) one

foreach (p’, q') € D do
if B(p’,q’) < w then
=B8®{(p,q)—w}

endif
enddo
B:=p&{(p,q) — w}
D:=DU{(p,q)}:
endif
while b;
W := ran(B);
end
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Chow's Theorem (27): Characterisation set construction

procedure reduceA(inout A : DFA,
inout D : P(Q(A) x Q(A)))
begin
A, : DFA;
// Definition of equivalence classes:
// [Pl ={q € Q(A) | od(p,q) ¢ D}
// States of the minimised DFA are equivalence classes,
// each class represented by a state p of A which is
// member of a distinguishable pair (p, q) or (g, p) in D.
Q(Ar) :=={[p] | 3q € Q(A) : od(p, q) € D};
qa, = [qal;
ba, = {([p], x) = ([Aa(p, x)],wa(p, x)) | (p,x) € Qa x I};
// Well-definedness of 04, follows from properties of
// equivalence classes [p].
A=A
end
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Similar results for other formalisms — overview

» Hennessy and deNicola showed that refinement properties can be
established by (possibly infinite) number of tests for CCS-like
process algebras

» Brinksma and Tretmans produced similar results for conformance
testing against Lotos models

> Peleska and Siegel provided solutions for testing against CSP
models

» Vandraager et. al. extended Chow's theorem to timed automata

@ Universitat Bremen Jan Peleska 38



[
12' Technologie-Zentrum Informatik

Conclusion of Part |

» Equivalence or refinement proofs by means of exhaustive
grey-box testing are possible for untimed and timed automata
and process algebras with synchronous (blocking) communication

» Exhaustive testing has exponential complexity in the number of
states

> Apart from the complexity problem, the results presented here do
not handle the problem of complex data structures and guard
conditions: The state space has to be unfolded completely in
order to apply the algorithms in a direct way.

The next part of the tutorial shows how to cope with this
problem
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