
Executable HybridUML and its Application to
Train Control Systems?

Kirsten Berkenkötter, Stefan Bisanz, Ulrich Hannemann, and Jan Peleska

University of Bremen,
P.O. Box 330 440

28334 Bremen, Germany
{kirsten,bisanz,ulrichh,jp}@informatik.uni-bremen.de

Abstract. In this paper, the authors introduce an extension of UML for
the purpose of hybrid systems modeling. The construction uses the pro-
file mechanism of UML 2.0 which is the standard procedure for extending
the Unified Modeling Language. The “intuitive semantics” of the syntac-
tic extension is based on the semantics for hierarchic Hybrid Automata,
as suggested by Alur et. al. In contrast to Alur’s formalism, HybridUML
allows to label transitions not only with conditions and assignments, but
also with signals. Furthermore, our approach associates formal seman-
tics by definition of a transformation from HybridUML specifications
into programs of a “low-level” language which is both executable in hard
real-time and semantically well-defined. When compared to approaches
assigning semantics directly to the high-level constructs of a formal spec-
ification language, the transformation approach offers two main advan-
tages: First, semantics can be more easily adapted to syntactic extensions
by extending the transformation in an appropriate way. Second, all mod-
els are automatically executable, since the low-level language is.

1 Introduction

A real-time system is called hybrid if it processes time-continuous variables in
addition to discrete-range parameters. The (piecewise) continuous evolution over
dense time of real or complex observables occurs naturally in physical models
and in the development of (embedded) control systems monitoring some contin-
uous observables (e.g. temperature, speed) via analog sensors and setting others
(e.g. voltage, thrust) using actuators.

In this paper, the authors introduce HybridUML, a novel specification for-
malism for hybrid systems, and the Hybrid Low-Level Language Framework HL3

for generating programs to be executed in hard real-time on cluster hardware
architectures.
? The work presented in this article has been investigated by the authors in the context

of the HYBRIS (Efficient Specification of Hybrid Systems) project supported by the
Deutsche Forschungsgemeinschaft DFG as part of the priority programme on Soft-
ware Specification – Integration of Software Specification Techniques for Applications
in Engineering.

H. Ehrig et al. (Eds.): INT 2004, LNCS 3147, pp. 145-173, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

As suggested by its name, HybridUML is based on the syntax of the Unified
Modeling Language UML 2.0 [OMG03a,OMG03b]. Since core UML does not
support the specification of time-continuous behavior, a language extension is
required. To this end, the authors introduce a new profile, that is, a definition
of new UML constructs introduced by means of UML stereotypes applied to
existing language elements. In particular, HybridUML extends the UML vari-
ant of Statecharts by augmenting state descriptions using invariants and flows
or algebraic conditions. The latter ones describe time-continuous variable evo-
lutions taking place while the system resides in the respective state. Transi-
tions may be triggered by conditions and signals (i.e. atomic events) and lead
to actions consisting of variable assignments and signal generations. Following
the suggestions of existing formalisms [Hen96,AGLS01], transition execution is
conceptually performed in zero-time, but with interleaving semantics. Parallel
components process signals in a synchronous, but non-blocking way: A signal
s generated by some transition is available in multicast-fashion to other agents
for their next computation step. Time passes during the phases where agents
reside in a given state, and time-continuous variables change according to the
flow/algebraic conditions applicable in the current agent states.

The HL3 framework developed by the authors consists of a re-usable hard
real-time runtime environment R and a design pattern P for compilation tar-
gets of arbitrary hybrid specifications. Given a high-level formalism H – such as
HybridUML – for the description of hybrid systems, transformations ΦH from
high-level specifications S into instances ΦH(S) of the HL3 pattern P can be
developed. For (ΦH(S), R), a formal semantics S(ΦH(S), R) is defined so that
the transformation both provides a semantic definition of S and an executable
program whose behavior will be consistent with S(ΦH(S), R). Similar to ma-
chine code, HL3 should not be used for manual programming, but as a target
language for automated transformations. In contrast to machine code, the real-
time semantics of HL3 programs can be determined in a direct way, thereby
assigning formal meaning to the high-level specification used as the transfor-
mation source. This is achieved by using a very limited range of instructions
for multi-threading, timing control, and consistent handling of global state in
presence of concurrency.

Though today numerous formalisms and verification approaches are avail-
able for hybrid systems (see references in the related-work section below), their
application in an industrial “real-world”-context is still rare. According to our
analysis, two main causes are responsible for this situation:

– The syntax developed for hybrid formalisms within research communities
was too specialized and not supported by conventional software engineering
tools available to practitioners.

– While the underlying theories supported formal verification by theorem prov-
ing or model checking, they did not support the development of optimized
code for embedded control systems.

With respect to the first cause we suggest to augment existing well-accepted
formalisms of software engineering by new specification constructs describing

time-continuous behavior. From today’s point of view, the Unified Modeling
Language UML 2.0 is the best candidate for such an approach: It is currently
the most widely known software-engineering formalism supported by a variety of
tools. Furthermore, language extension is an inherent feature of UML, therefore
well-constructed UML tools should support this extension as well.

The second cause is related to both practical and theoretical considerations:
From a practitioner’s point of view, the effort invested into formal specification
and verification – which will certainly be considerably higher than the effort
spent on elaborating informal conventional specifications – is only justified if the
specifications can be easily transformed into executable systems. For example,
we do not expect that the amount of time required for developing executable
code by step-wise refinement will ever be widely accepted among project leaders
and developers of embedded systems.

From a theoretic point of view, the problem is even more subtle: If a trans-
formation into executable code is available, how can the consistency between
high-level specification semantics and execution behavior of the low-level im-
plementation using conventional programming languages and operating systems
be ensured? A practical consequence of this problem consists in the fact that
the simulation facilities provided by many case tools never declare which formal
high-level semantics has been used as a reference for the encoded simulation
behavior.

In “classical” UML [RJB99,OMG03a,OMG03b], the definition of a universal
formal semantics has been deliberately avoided. Instead, the various language
constructs are only associated with a general informal meaning so that their
purpose in various modeling situations becomes clear. In [RJB99, pp. 105] this
approach is motivated by the fact that the semantic interpretation of specifica-
tion constructs depends on the specific project context, and precise behavior is
only obtained by transformation into the target programming language. While
this avoids the obligation to prove consistency between executable system and
high-level specification semantics, it still poses the problem that in general, it
will be infeasible to capture the potential behavior of software written in Java,
C/C++, or Ada, when executed in a specific target environment.

Our suggestion to overcome this problem is to restrict the infinite variety
of possible compilation targets for hybrid specifications according to the HL3

framework introduced below: First, the framework fixes a specific hard real-time
runtime environment which avoids uncertainties introduced by using arbitrary
operating systems. Second, all specifications written in a given hybrid high-level
formalism have to be compiled using a transformation function which generates
instances of abstract classes pre-defined by the framework. As a consequence,
the variable compilation targets depending on formalism and specification are
restricted with respect to software architecture and interfaces to the runtime
environment. Therefore the behavioral semantics of the executable target can
be given more easily than for an unrestricted compilation into a programming
language. If the high-level formalisms have been introduced informally, the trans-
formation defines the semantics as well. If, however, the transformation has only

been created in order to translate specifications with given high-level semantics
into executable code, the consistency between abstract specification behavior
and executable compilation target still has to be verified. Due to the restrictive
structure of compilation targets and runtime environment, this proof obliga-
tion is at least easier to discharge within the HL3 framework than for arbitrary
transformations designed in an intuitive way.

Before presenting a more formal definition, the “look-and-feel” of the new
HybridUML profile is illustrated in Section 2 by means of a train control sys-
tems case study defined by the DFG priority programme Software Specification
– Integration of Software Specification Techniques for Applications in Engineer-
ing [DFG]. The UML 2.0 profile defining HybridUML in a systematic way is de-
scribed in Section 3. For illustration purposes, these definitions refer to the case
study introduced before. Conforming to the general UML approach, the profile
defines some basic semantic features together with the syntax, but is still quite
far from a complete formal description of behavioral properties. To achieve this,
we first introduce the HL3 framework in Section 4. This is used in Section 5 to
specify the full HybridUML semantics by providing a transformation into HL3.
Apart from describing the specification capabilities offered by the HybridUML
profile, this paper focuses on the transformation concept and the semantic model
of the HL3 framework. Other areas of interest – such as hard real-time simu-
lation, automated test data generation against HybridUML specifications, and
performance measurements of HL3 implementations on multi-CPU computer
clusters – are briefly discussed in the conclusion (Section 6), with references to
current work in progress.

Due to the usual space limitations, the HybridUML profile definition, the
HL3 semantics, and its performance as a time-triggered hard real-time runtime
environment on cluster architectures cannot be exhaustively described in this
paper. We refer to [BBHP04] for a detailed description of HybridUML profile
and [BBH+04] for semantics, implementation, and real-time measurements of
HL3.

Hybrid systems have been studied extensively in various research commu-
nities since the early nineties. The definition and investigation of the Duration
Calculus (see [ZRH93,RRS03] and further references given there) provided fun-
damental contributions to understanding Hybrid Systems. The introduction of
Hybrid Automata [Hen96] demonstrated the feasibility of verification by model
checking for hybrid specifications. The applicability of hybrid automata to large-
scale systems was improved by the introduction of hierarchical hybrid spec-
ifications [AGLS01]. Alternative hierarchical approaches closer to the State-
charts formalism have been described in [KMP00] (together with a proof theory)
and [BBB+99] (verification by model checking).

We mention GIOTTO [HHK03] as today’s most prominent example of a hard
real-time language with well-defined semantics. Similar to our HL3 framework,
GIOTTO follows the time-triggered systems paradigm described in [Kop97].
The time-triggered approach is particularly well-suited for real-time programs
discretising time-continuous evolutions, since it guarantees bounded timing jitter

for periodic schedules. In contrast to this, other approaches to hard real-time
focus on the fast response to external interrupts, see [RTAI03,Lab04] for popular
real-time variants of the Linux operating system.

2 HybridUML by Example: Radio-Based Train Control

In this section, HybridUML is introduced and illustrated by means of an appli-
cation example – the specification of a radio-based train control system. This is
one of two case studies within the scope of the DFG priority programme Software
Specification [DFG].

HybridUML as Profile for UML 2.0 One of the mostly critized points of
UML 1.4 is the lack of formal specification. Especially the real time community
needs this for building safe systems. As this fact has not changed with UML 2.0,
another solution must be found for using UML in the real-time domain.

To overcome this deficiency, we propose HybridUML as a UML 2.0 profile.
UML 2.0 offers profiles as a powerful extension mechanism for tailoring UML
to specific working areas. Based on a metamodel like the Meta Object Facil-
ity (MOF) or usually UML itself, a profile specifies new model elements called
stereotypes. Each stereotype is dependent on exactly one element of the corre-
sponding metamodel (see Fig. 5 for an example). These stereotypes customize
the used metamodel in different ways: introducing a new terminology, e.g. for
Enterprise Java Beans, introducing new syntax, either for elements without syn-
tax or new symbols for elements with syntax, introducing new semantics and
constraints, or adding further information like transformation rules from model
to code. A set of stereotypes forms a profile.

A profile can be applied by a model or a package in a model. All stereo-
types can be used as modeling elements. As every stereotype extends an already
known element, the model is still a valid UML model if the profile is taken away.
Profile application is visualized by a dependency with the keywort �apply�
attached. The profile itself is a package and therefore depicted like this with the
keyword �profile� above its name. The HybridUML profile thus takes a subset
of UML, modifies it according to the requirements on a specification formalism
for hierarchical hybrid systems, and associates it with a precise semantics. The
most important constraint on applying the HybridUML profile is using only the
model elements specified in it.

Radio-Based Train Control An important part of the specification of the
train control system is the coordination of train and railroad crossings in order
to ensure that whenever the train crosses the road, the crossing is safe (i.e. it is
locked for cars, pedestrians etc.). A special feature is the absence of signals and
train monitoring equipment on the track, i.e. train and crossings always guaran-
tee a safe and consistent state of the complete system on behalf of state requests
and notifications. Particularly, the train controller continuously (re-)calculates
velocity-dependent locations on the track at which requests must be sent, or at

which the brake has to be activated. There are related investigations concern-
ing the “generalized railroad crossing” applying a more abstract model of the
system, e.g. [HL94].

In this case study, a single train is considered that moves on a single track
without switches. There are velocity target points on the track with dedicated
velocities that the train must not exceed. There are two kinds of velocity target
points: (1) Conditional velocity target points are assigned to railroad crossings
and have a target velocity v = 0. If the crossing is not safe, the velocity target
point is active and the train has to stop there. (2) The route atlas contains
a (piecewise constant) static velocity profile that defines a maximum allowed
velocity for each location on the track. Each location for which this velocity gets
lower implies a fixed velocity target point, denoting a restrictive velocity change.
These points are always active.

v1

v2

v

x

vtp[1].v

vtp[3].v

vtp[2].v = 0

static velocity profile

brakePoint[1] vtp[1] brakePoint[2] vtp[2] brakePoint[3] vtp[3]

dynamic velocity profile

Fig. 1. Dynamic velocity profile defined by velocity target points on the track

Figure 1 is an abstract view on a track example with fixed (vtp[1], vtp[3])
and conditional (vtp[2]) velocity target points. In consideration of the train’s
maximum deceleration, the static velocity profile and the velocity target points
define the dynamic velocity profile, resulting in brake points – the locations on
the track where the train must start braking in order to reach the target velocity
at the respective target point. The brake points depend on the train’s current
velocity; in the diagram, example values for current velocities v1 and v2 are given,
whereas v1 leads to brake point brakePoint[1] and v2 implies brakePoint[2] and
brakePoint[3], respectively. A safety-critical aspect of the train control system
is to ensure that the speed limit of target velocity points is never broken. The
remainder of this section focuses thereon.

Architectural Structure The main building block for modeling architectural
structure within HybridUML is called agent in conformance with related work.
Agents are concurrently operating entities and can be combined by parallel com-

position, or grouped together enclosing them with a hiding operator. For precise
interface descriptions we distinguish local and global variables and signals. Hy-
bridUML allows communication between concurrent agents via shared variables
as well as via message passing to model multicasting of signals.

Agent TrainController consists of several (parallel) agents as defined in its
structure diagram (Fig. 2), including their interdependencies. It calculates and
provides the required acceleration a of the train. Therefore the train’s location
x and the user-requested acceleration auser from the locomotive driver are read
from the environment. These are time-continuously changing variables. Further,
several locally defined constants affect the computation of a, like the route atlas
ra which is defined as a data structure. It contains the velocity target points vtp
that consist of a location x, a target velocity v, and its type (fixed or conditional).
Finally, radio messages are received that provide status information about the
railroad crossings.

a

v

a

const

brakingRequired

vtpActive[]

brakingRequired

const

x

v

vtpActive[]

ra

ra

closeAckknowledged[]

x

v

x

v

x

location ra

const

crossingStatus(. . .)
vtpActive[]

crossingActivated(. . .)

activateCrossing(. . .)

crossingNotActivated(. . .)

closeAckknowledged[]

statusFailed(. . .)

crossingStatusReq(. . .) crossingStatusReq(. . .)

activateCrossing(. . .)

recvCrossing[](. . .)recvCrossing[](. . .)

crossingActivated(. . .)

crossingNotActivated(. . .)

crossingStatus(. . .)

sendCrossing[](. . .)

const

vtpActive[]

v

x

class TrainController

emergency()

: TrainRadioController

crossingDefect(. . .)

sendOc(. . .)

recvOc(. . .)

: UserInteractionController

: BrakePointController

const

x

v

ra

: CloseRequestController

sendCrossing[](. . .)

recvOc(. . .)

sendOc(. . .)

acceleration

: EmergencyController

ra

emergency()
: LocalizationController

: CrossingStatusController

auser

vallowed

tclosedTooLong[]

auser auser

vallowed

tclosedTooLong[]

closingFailed(. . .)

: MovementController

Fig. 2. Structure diagram of agent TrainController.

The highlighted basic agents BrakePointController and MovementController
are discussed in the following.

Agent BrakePointController provides the boolean variable brakingRequired
that denotes that the train has to brake because of any velocity target point.
This is determined by the train’s location x, its current speed v, and the set of

currently active velocity target points (which is defined by vtpActive[] consisting
of a boolean variable for each velocity target point).

Behavioral Specification The behavior of a basic agent is given by an associ-
ated hierachical state machine. As typical for hybrid systems, there are basically
two ways of acting: either some discrete transition is taken or time passes and the
continuous variables change over time according to their specified constraints.

The behavior definition (shown in Fig. 3) is based on the continuous
(re-)calculation of the set of brake points brakePoint[i] for all velocity target
points:

algeBrakePoint ≡
∀i ∈ {1..V TP COUNT} • brakePoint[i] = ra.vtp[i].x− ra.vtp[i].v2−v2

2·const.amin

(1)

The variable brakingRequired is set in a discrete fashion, dependent on con-
dition:

condBrakingRequired ≡
∃i ∈ {1..V TP COUNT}•
vtpActive[i] ∧ brakePoint[i] ≤ x ∧ ra.vtp[i].v < v ∧ ra.vtp[i].x > x

(2)

It denotes the situations that require braking because at least one brake point
of an active velocity target point is reached by the train while its speed is too
high. Note that only velocity target points in front of the train are considered,
because particularly the opening of a crossing behind the train shall not affect
it.

Thus the mode BrakingRequired is active for exactly these situations, whereas
the mode BrakingNotRequired is complementary. The transitions in combination
with the invariants model the mandatory mode changes according to the condi-
tion such that variable brakingRequired is always up-to-date.

The responsibility of agent MovementController (Fig. 4) is to determine the re-
quired acceleration a. It constrains the user-requested acceleration auser on behalf
of brakingRequired, the current velocity v, the currently allowed velocity vallowed,
and a special signal emergency. It is modeled strictly hierarchically, initially in
mode normal. Submode userControlled maps the user-requested acceleration to
a, whereas submode enforcedBraking forces the train to brake. Similarly to Brak-
ingRequired, the active submode directly depends on a condition:

condBraking ≡
brakingRequired ∨ v > vallowed

(3)

In case of enforced braking, the submode braking defines a to be the maximum
deceleration until the train stops. Otherwise, there is a distinction between unre-
stricted and restricted appliance of auser: The mode restricted guarantees that the
minimum (0) and maximum (vallowed) velocities are not violated, else unrestricted
maintains a = auser. Again, a condition controls this:

condUnrestricted ≡
(v < vallowed ∨ auser ≤ 0) ∧ (v > 0 ∨ auser ≥ 0)

(4)

[inv: ¬((2) condBrakingRequired)]

BrakingNotRequired

[inv: (2) condBrakingRequired]

BrakingRequired

/ brakingRequired := false
[¬((2) condBrakingRequired)]

[(2) condBrakingRequired]
/ brakingRequired := true

statemachine brakePointControl

[alge: (1) algeBrakePoint]

Fig. 3. Behavior of agent
BrakePointController.

[alge: a = auser]

[inv: (4) condUnrestricted]

unrestricted

restricted

[alge: a = 0]

[inv: ¬((4) condUnrestricted)]

[¬((4) condUnrestricted)]

[(4) condUnrestricted]

[inv: ¬((3) condBraking)]

userControlled

braking

[inv: (3) condBraking]

enforcedBraking

[(3) condBraking]

[¬((3) condBraking)]

braking

statemachine movementControl

normal

emergency

[inv: v ≥ 0]

Fig. 4. Behavior of agent MovementController.

Finally, mode braking is re-used in movementControl – if the signal emergency
(that is caused by violating a velocity target point) is received, the train is
definitely stopped.

3 The HybridUML Profile

In this section we give a brief overview on the most relevant elements of the
HybridUML profile, their relation to existing UML constructs, and their intuitive
semantics. For a detailed language description we refer the reader to [BBHP04].

Types and Expressions HybridUML uses typed variables. As UML provides
only Integer, String, and Boolean as basic types, we have to extend explicitly
PrimitiveType to get the datatype Real. In this way, we can use real-valued
variables within the profile. For better separaton of concerns, we also need ana-
log real numbers as extension which can be changed continuously according to
flow conditions in Modes while variables of type Real can only be changed dis-
cretely by transitions. AnalogReal thus is a specialization of Real. For better
readability in large applications, we introduce StructuredDataType as an in-
stance of DataType to define a structure. All StructuredDataTypes of a model
are implicitly collected in a package which is imported by all diagrams of this
model.

For describing the valuation of AnalogReal variables, specific expressions
are needed, i.e. differential expressions and algebraic expressions. Invariant ex-
pressions are needed to define state invariants. RTExpression is an instance of

Expression (see Fig. 5) which defines mathematical and logical terms that may
be dependent on time. RTExpression is an abstract metaclass that cannot be
instantiated.

DifferentialExpression AlgebraicExpression InvariantExpression

RTExpression
Expression

<<stereotype>> <<stereotype>> <<stereotype>>

{required}
<<stereotype>>

(from Kernel)

Fig. 5. Stereotypes for RTExpressions

The real-time expression is given as a string, just as in Expression. Furthermore,
the expression must be mathematically or logically evaluable. The notation and
semantics are given by the concrete subtypes, i.e., specializations of RTExpres-
sion, which are: AlgebraicExpression, to describe algebraic terms dependent on
time, DifferentialExpression, to describe differential terms dependent on time,
and InvariantExpression, to describe logical terms used for modeling invariants
a variable must fulfill.

Constraints To describe the restrictions on the valuation of analog variables
in modes we introduce RTConstraints. As an instance of Constraint, RTCon-
straint is a UML constraint which is restricted in order to describe an RTEx-
pression. DifferentialExpressions and AlgebraicExpressions can be attached to
AnalogReal variables, InvariantExpressions can be attached to all variable types.
RTConstraint is visualized in the same way as UML 2.0 constraints, i.e. an RT-
Expression term given in curly brackets. In Modes, brackets are used.

Clocks and Timers We do not use the UML 2.0 time model as it has no formal
semantics and as it is not powerful enough for our purposes. A Clock is modeled
by a variable of type AnalogReal that uses a DifferentialEquation for modeling
the flow of time. Therefore we inherit from AnalogReal to get a clock. The flow of
time is specified as a differential equation: Let t be the value of a Clock instance.
Then the following expression always holds: ṫ = 1. As the differential equation is
explicitly given, it is not added as a constraint following the variable. Similarly
we have timers which are set with a value and count downwards, consequently
they are specified by the differential equation ṫ = −1.

Variables and Signals Variables in HybridUML can be shared between agents
for communication purposes. They are visualized in the same way as UML 2.0
Ports, which are linked by connectors. The shared variable model requires con-
nected interfaces to hold the same value. VariablePorts are depicted as a rectan-
gle on the boundary of the owning classifier. Instead of visualizing the attached
interfaces in lollipop-notation, a required interface (corresponding to read-only
access) is a white filled rectangle and a provided (corresponding to read/write

access) interface is a black filled rectangle. In class diagrams, only the variable
owned by the VariableInterface of the port will be shown.

RTSignals are introduced as a different means for communication between
Agents, as pure communication via shared variables can be managed when mod-
eling small systems, but tends to be cumbersome for larger systems. RTSignal is
an instance of Signal (from Common Behaviors) which defines an asynchronous
message. An RTSignal is depicted in composite structure diagrams in correspon-
dence with SignalPorts and SignalInterfaces similar to shared variables.

Using these elements of UML allows to represent the communication struc-
ture between agents in a composite structure diagram (see Fig. 2) as far as their
shared variables and signals are concerned. In statemachine diagrams, RTSignals
are used in combination with SignalEvents and ModeTransitions. SignalEvents
carry RTSignals. They are used as triggers in Modes. Nevertheless, we prefer the
term event as this is usual for state machine models.

Agents Agents are stereotypes of classes and consist of VariablePorts, Signal-
Ports, private variables, Modes, initial states, and parameters. Initial states are
specified in Agent instances just as concrete values for parameters. Modes are
class variables and cannot be changed by Agent instances. Parameters are used
for better scalability. They specify constants that can be used in invariants and
other expressions used in the Agent instance and its Mode(s).

An Agent instance can own an internal structure which may consist of Agent
instances itself. Agents communicate by shared variables (represented by Vari-
ablePorts and VariableConnectors) and signals (as modelled by SignalPorts and
SignalConnectors).
In the HybridUML profile we distinguish basic Agents which are not nested and
own a single top-level Mode, and composite Agents which are composed from
subagents and have many top-level Modes. Clocks are global for all parts of an
Agent. We do not model them as VariablePorts as this would be obfuscating.
Parameters are constant global variables for usage in constraints of all kind.
The top-level Modes define the behavior of the system. The semantics of a basic
Agent are defined by the (trace) behavior of its top-level Modes, constructed
from the respective relations describing the continuous behavior and the discrete
transitions of a Mode (see below).

The standard operations on concurrent components like the composition of
two Agents A1‖A2, application of a hiding operator, and renaming of the vari-
ables of an AgentInstance, can be reflected in the representation of an Agent’s
internal structure in a composite strucure diagram. An execution of an Agent A
follows a trajectory, which starts in some initial state and is a sequence of flows,
i.e. continuous changes to the analog variables, interleaved with discrete steps
of agents. While continuous steps are performed simultaneously by all Agents,
discrete steps are performed by one Agent at a time, possibly changing variables
or taking part in communication via events.

Agents are depicted like UML classes with internal structure. In a class dia-
gram, the internal structure is visualized as aggregated classes. The parameter
list of each Agent is given behind its name in parentheses in the first compart-

ment of the class symbol. VariablePorts and their included VariableInterfaces
and variables as well as SignalPorts and their included SignalInterfaces and sig-
nals are given as attributes in the second compartment of the class symbol. In
the class diagram, for variables only the name and type are shown, for signals
the name and parameters are given. Optionally, in the third compartment of the
class the Mode of the Agent is given. This is the name of the Mode followed
by concrete parameters listed inside parentheses. A parameter of a Mode may
also be a parameter of the Agent, i.e. the concrete value is given in an Agent
instance.

The internal structure of composite Agents is shown in a composite structure
diagram (see as example Fig. 2). The name of the Agent is given in the upper left
corner with the keyword class before it. After that, the concrete parameters of
the composite Agent follow. Here read/write access of global variables is shown
as ports with required and provided interfaces. The same holds for sending and
receiving signals.

Agent instances are visualized as objects in composite structure diagrams.
Behind the objects’ name and type the concrete parameters are given in paren-
theses in the first compartment of the object symbol. In the second compartment,
optionally the respective initState is given as a constraint, i.e. in curly brackets.
The Mode of the Agent is given in a statechart diagram. The name of the Mode
with the keywort statemachine before it is given in the upper left corner of the
diagram.

Modes Sets of states of a basic agent are described by Modes which may con-
tain submodes themselves and transitions. In our profile, Mode is an instance of
StateMachine describing an Agent’s behavior. As Modes may have flow condi-
tions, they are (hierarchical) hybrid state machines. Each Mode contains exactly
one region, i.e. there is no parallel behavior inside a Mode. It is entered and left
by control points, which are partitioned into entry and exit points. Top-level
Modes are connected to an Agent. They use the global variables and signals
defined in this Agent. Modes can have parameters for better scalability. Within
Modes, the time-continuous behavior is defined by differential equations and
algebraic constraints and limited by invariants. When a mode is executing a
continuous step, the hierarchical state machine as a whole is acting, i.e. modes
on all levels, from the top-level mode to the leaf modes, have to coordinate for
this. Part of this coordination is that any possible valuation of analog variables
has to comply to the constraints attached to all active modes on the various
levels.

Discrete steps are described by transitions between modes where taking a
transition does not take time. Transitions consist of a condition part and an
action part. As condition, we can have a boolean expression, i.e. firing that
transition depends on the state, or a signal trigger, i.e., an event based invocation,
or both. As action of a transition we allow instantaneous operations on variables
and sending of a signal. When a transition is taken, discrete variables may be
updated or signals can be sent and received. Preemption and interrupts are

modeled by using group transitions, i.e. exiting a higher level Mode via some
distinguished exit point.

An execution of a Mode consists of a sequence of steps which can be cho-
sen out of three different types: a continuous step according to the respective
constraints, a discrete step according to the condition and action of a transition
within the mode, and an environment step that can change all but the local vari-
ables of that mode. The last variant represents an activity of a different Mode
on the same hierarchical level. For a top-level mode no environment steps in this
sense are possible, as it is the solitary Mode of that level.

Modes are visualized the same way as UML 2.0 StateMachines (see Fig. 4).
Parameters are given behind the name of the Mode in parentheses. The invariant
is marked inv, the flow conditions with flow, and algebraic expressions are marked
with alge. As these are constraints, they are given in brackets.

Transitions In order to provide a clear-cut interface of Modes while avoiding
inter-level transitions we use control points for Modes as sources and targets of
transitons. Entry points are depicted as small circles on the border of a Mode
with an optional name attached to it while exit points are depicted as small
solid black-filled circles. Every Mode has one default entry point and one default
exit point which are not depicted explicitly. We employ ModePseudostate as an
instance of Pseudostate to denote control points.

ModeTransition is an instance of Transition depicted by an arrow with open
arrowhead. ModeTransitions are taken according to their condition part, i.e.,
their guard constraints or a triggering SignalEvent. The guard constraint is given
in brackets followed possibly by the SignalEvent. The ModeTransitionActivity
is separated from the guard by a slash. In UML 2.0, Transitions can only have
Activities as effect. As ModeTransitionActivity thus is an instance of Activity, it
can be an updateActivity which updates variables according to some instruction,
or it can be a sendActivity which emits a SignalEvent.

4 HL3 – the Hybrid Low-Level Language Framework

As indicated in Section 1, the Hybrid Low-Level Language Framework HL3 is a
generic compilation target for hybrid high-level formalisms H. It has been de-
signed to support the transformation ΦH of specifications S written in H into
executable code (ΦH(S), R), thereby assigning a formal semantics S(ΦH(S), R)
to the compilation target. The generated HL3 program is suitable for hard real-
time execution, to be used either for developing embedded applications or for
their automated test in hardware-in-the-loop configurations. The concepts de-
scribed here have been implemented on multi-CPU computers where CPUs can
be reserved exclusively for the HL3 runtime environment. In order to support
executability on specific target hardware, high-level specifications S consist of
three parts: (1) The behavioral specification S1, written, for example, in Hy-
bridUML, (2) the architectural specification S2 describing the available cluster
nodes, CPUs, hardware interfaces and the mapping from S1-objects to concrete

hardware, (3) the physical constraints specification S3 describing the required fre-
quencies for the discretization of time-continuous evolutions, writing to/reading
from hardware interfaces, as well as the required precision for discrete time-
dependent steps.

evaluates condition

enables/disables via guard

trigger init(), notifyTrans(), update()

HL3 Framework

Abstract Machine
+id: amId
+amStatus: active|suspended|stopped

+init()
+notifyTrans(tr:transId)
+update()
+getTrans(id:amId): set of transId
+isFlowEnabled(id:amId): bool

Selector
+init(): bool
+getSelection(leftFlowPhase:bool): Selection

Flow
+id: flowId
+guard: bool
+frequency: int

+integrate(v:VisibilitySet)

Interface Module
+id: ifmId
+freqPoll: int
+freqTx: int

+poll(v:VisibilitySet)
+transmit()

TimeService
+clustertime: nat
−hl3time: timeTick

+getHL3Time(): timeTick
+setHL3Time(t:timeTick)
+synchronize()

ClusterCommunication
+tx(n:nodeId,d:seq of byte)
+rx(n:nodeId): seq of byte

Channel
−e: set of ChannelEntry

+put(d:seq of byte,v:VisibilitySet)
+get(id:amId + ifmId): seq of byte

Scheduler

getTrans(),isFlowEnabled()

trigger init(), getSelection()

Periodic scheduling of integrate()

Periodic scheduling of poll(), transmit()

Transition
+id: transId
+c: Condition
+a: Action

trigger action a.action()

 get/setHL3Time()
getHL3Time()

 getHL3Time()

AbstractMachine,
Flow,
InterfaceModule,
Transition,
Selector
read/write global state to/from
instances of Channel

Fig. 6. Design pattern for the HL3 run-time environment.

The framework is sketched in Fig. 6, with additional definitions of basic types
shown in Fig. 7. Its underlying idea is to provide a re-usable hard real-time
processing infrastructure – the runtime environment R – and a design pattern
P for the formalism- and specification-dependent components to be executed
within the runtime environment.

The HL3 runtime environment R consists of a user space Scheduler running
on reserved CPUs without interruptions from the underlying operating system

(Linux with a kernel-extension developed by the authors’ research group). In
addition, TimeService and a communication service (Channel and ClusterCom-
munication) provide the mechanisms to ensure consistent data views within the
cluster configuration. The Scheduler enforces time-triggered real-time system be-
havior [Kop97]: All activities to be performed by the components of a HL3

instance are scheduled at pre-determined points in time which are multiples of
a fixed time unit.

The design pattern P consists of the abstract classes AbstractMachine, Se-
lector, Transition, Flow, Interface Module, and their relations with each other
and with the runtime environment R. Pattern P facilitates the development
of the transformation ΦH by defining the abstract interfaces and relationships
we regard as essential for creating the full compilation target. Instances of Ab-
stractMachine are used to implement the local behavior of sequential components
specified in the high-level formalism. Each new high-level specification S gives
rise to a new set αH(S) of abstract machines, to be generated by a transforma-
tion αH . The Selector enforces global behavioral constraints on the concurrent
systems, such as the synchronous execution of transitions. Since these constraints
depend on the formalism H, but not on the concrete specifications S, Selector
has to be instantiated just once for each new high-level formalism H. As we are
dealing with hybrid systems, sequential components may run through discrete
and time-continuous processing phases. Discrete steps are represented in HL3

by instances of Transition, time-continuous ones by instances of Flow.
For handling application-specific hardware interfaces, another abstract spec-

ification is given: Instances of Interface Module create a hardware abstraction
layer, hiding driver-specific details and the location of hardware interfaces within
the cluster from scheduler, flows, and transitions.

As a result, the complete transformation ΦH from H into executable HL3

instances can always be structured as

ΦH(S) = (αH(S), τH(S), φH(S), ιH(S),SelectorH)

where αH , τH , φH , and ιH generate collections of abstract machines, transitions,
flows, and interface modules, respectively.

In the paragraphs below, additional details of HL3 are presented. For a
complete description, the reader is referred to [BBH+04].

TimeService Executable HL3 systems are clusters connected by high-speed
local area networks. As a consequence, relativistic effects between cluster nodes
may be neglected, so we can assume the existence of global physical time, denoted
by @t ∈ R+ with physical unit [sec]. The HL3 TimeService provides a cluster time
value clustertime ∈ N (corresponding to the notion of global time in [Kop97])
which is related to physical time according to

@t = γ · clustertime + ω + π, where π ∈ [−γ −Π, γ + Π]

Constant γ ∈ Q is the cluster time granularity with physical unit [sec], ω is
a constant to be added because clustertime begins at 0 on cluster startup, and
Π is the precision of the cluster time, taking into account physical clock drift

Action
+id: actId
+readSet: set of varId
+writeSet: set of varId

+action(v:VisibilitySet)

ChannelEntry
+v: VisibilitySet
+data: seq of byte

timeTick
+t0: nat
+t1: nat

VisibilitySet
+visibleAt: set of VisibilityAttribute

VisibilityAttribute
+t: timeTick
+scope: set of (amId + ifmId)

Selection
+isFlowEnabled: bool
+trans: set of (transId x VisibilitySet)

Transition
+id: transId
+c: Condition
+a: Action

Condition
+id: condId
+readSet: set of varId

+isTrueCondition(): bool

Fig. 7. Basic types referenced in the HL3 framework.

and jitter between clocks at local cluster nodes. Typically, 10−9 ≤ γ ≤ 10−6 and
precision values Π ≤ 10µsec are feasible, using combinations of software and
hardware clock synchronization mechanisms.

Logical HL3-time can be obtained by all HL3 programs as a pair t0.t1 ∈
timeT ick with type timeT ick = N × N, and the natural ordering a0.a1 ≤ b0.b1

iff a0 < b0 ∨ a0 = b0 ∧ a1 ≤ b1. Component t0 represents the time tick as visible
to the time-dependent conditions evaluated in abstract machines. It is always
ensured that t0 ≤ clustertime, but – depending on the high-level formalism to
be encoded in HL3 – t0 may be kept constant for several ticks of clustertime, in
order to simulate the execution of transitions in zero time. The second component
t1 of the logical HL3-time is used to distinguish causally related events which
occur during the same time tick t0. Component t1 is reset when t0 is incremented
and increased between different transition scheduling phases.

Within the HL3 framework, the Selector component is responsible for main-
taining the desired relation between logical HL3-time and clustertime via the
setHL3time() operation provided by TimeService.

Channels One of the main objectives of the HL3 infrastructure is to pro-
vide a consistent view on global model data. This is motivated mainly
by three requirements: (1) To our knowledge, all existing high-level for-
malisms are based on an atomic transition concept: For processing transition
[C(x1, . . . , xn)]e/a(x1, . . . , xn), it is assumed that the valuations of all variables
(x1, . . . , xn) referenced in condition or action expressions do not change while the
expressions are processed. Even in formalisms which do not postulate zero-time
for transition execution it is always assumed that the calculation is performed
atomically – meaning in zero-time – but time passes before the earliest possible
point in time when the next transition can be fired. (2) The discretization of
time-continuous flows requires that all flows synchronously performing a ∆t in-
tegration step view the same pre-state of all observables, even if only one CPU
is available for processing quasi parallel integration steps. In particular, state
changes performed by one flow must not become visible to other flows referenc-
ing the related variables before the actual integration step has been completed.
(3) As the HL3 framework supports cluster hardware architectures, a consistent
view of data at all cluster nodes is mandatory.

To implement these requirements, HL3 uses abstract data types called Chan-
nels. Channels are data containers providing two operations (see Fig. 6): The
put(d:seq of byte,v:VisibilitySet) method stores data items d in the
channel c, together with a VisibilitySet v. The elements of v are VisibilityAt-
tributes a = (t, scope), where t = t0.t1 is a logical HL3 time tick and scope a set
of abstract machine or interface module identifications. The interpretation of a
is as follows: When retrieving the data from a channel using the d = c.get(id)
command, the returned value d satisfies the following constraints:

∃x ∈ c.e, a ∈ x.v.visibleAt • (x.data = d ∧ id ∈ a.scope ∧ a.t ≤ getHL3Time()) ∧
(∀y ∈ c.e, b ∈ y.v.visibleAt • (id ∈ b.scope ∧ b.t ≤ getHL3Time()⇒ b.t ≤ a.t))

Intuitively speaking, the identification id of the caller is a member of a scope
attribute set associated with d. Among all data items contained in the channel
such that id is within their scope, d is the most recent entry associated with a
visibility time attribute which is less or equal to the current logical HL3 time
value.

By associating a set of visibility attributes with each data item contained
in a channel, it is possible to widen the visibility scope at later points in time.
This can be used, for example, in formalisms where changes become immediately
visible within the local context of the executing agent, but are published later
to other agents (e.g. at the beginning of a new macro step).

Every put() operation on a channel leads to immediate distribution of the
data within the whole cluster. This is performed by the ClusterCommunication
service. If the visibility attributes refer to a future point in time, all cluster nodes
will have a consistent view on this data, as long as the distribution is completed
before the data becomes visible.

Abstract Machines Sequential components of a high-level formalism are
mapped to Abstract Machines in HL3. The task of each abstract machine is

– to indicate which transitions might be taken by the sequential component,
– to enable and disable flows according to the current state, and
– to indicate whether a flow phase may be started according to the abstract

machines’ local state.

While the concrete behavior of an abstract machine depends on the high-level
formalism and the concrete high-level specification, the HL3 framework defines
a universal abstract interface for them: Operation getTrans(id:amId) returns
the list of all transitions which might be performed in the current state. To this
end, the abstract machine evaluates both the local static location data and the
global state provided by channels. Since abstract machines represent sequential
components, all high-level formalisms with a notion of nondeterminism require
to select one out of several transitions which might be chosen in a specific state.
Observe, however, that abstract machines do not perform this selection and
never trigger associated actions. The former task is delegated to the Selector,
the latter to the Scheduler.

After some enabled transition has been selected and its action per-
formed, the associated abstract machine is notified by the scheduler (opera-
tion notifyTrans()) to trigger changes between locations within that abstract
machine. The execution of actions associated with transitions will generally af-
fect the global state encoded in channels. Therefore, the scheduler will call the
update() operation of each abstract machine after transitions or flows have been
performed. This operation initiates a new evaluation of all invariants and tran-
sition conditions applicable in the present state, possibly leading to a new set of
enabled transitions within each abstract machine.

We expect that in every conceivable high-level formalism the execution of
flows or transitions is mutually exclusive. Otherwise racing conditions might
prevent the discrete change of observables due to simultaneous changes by flows.
As a consequence, an abstract machine may indicate whether in the current state
only transitions, only flows, or one of both may be performed. Depending on the
local abstract machine state, the execution of flows may be disabled. This may
happen in the case of high-level formalisms based on the maximal progress con-
cept (sequential components with enabled transitions must fire) or allowing the
definition of urgent transitions. Flows are also disabled if the abstract machine
resides in a location whose invariant has just been violated, so that a transi-
tion becomes mandatory. The information whether flows may be performed is
obtained via the isFlowEnabled(id:amId) operation.

A technical detail related to distributed execution of HL3 components is indi-
cated by the fact that the getTrans(id:amId) and isFlowEnabled(id:amId)
operations have been declared on class level in Figure 6: While each abstract
machine instance is created on a single cluster node only, where also their
init(), update(), and notifyTrans() operations are scheduled, getTrans()
and isFlowEnabled() may be called anywhere. This is motivated by the fact
that the Selector should be able to call these operations from arbitrary nodes.
The suggested implementation for abstract machines is to store the actual return
values of these operations in associated channels, at the end of each update()

operation. Since channel data is consistently available on all nodes, getTrans()
and isFlowEnabled() can return these values wherever they are called.

Selector The Selector is a centralized instance enforcing synchronization con-
ditions for transition execution with respect to the high-level formalism. The
abstract interface required by the HL3 framework offers a getSelection() op-
eration to the scheduler. It returns an indication whether a flow phase may be
started and a (possibly empty) set of transition identifications with associated
visibility sets. The transitions returned are the result of a selection procedure
among all possible transitions offered by the abstract machines in their current
state. In formalisms where transition sequences are supposed to be executed in
zero time, the Selector keeps the same value for logical HL3 time t0 until all
transitions within a zero-time step have been performed. Before the next flow
phase, logical time is adapted to physical time. The actions associated with
these transitions can be concurrently scheduled. Since actions derive pre-state
from channels and change global state via channels as well, they may be triggered
on arbitrary nodes and CPUs.

Note that even for the same high-level formalism it can be useful to apply
different Selector instances: For application development, a selector will usually
resolve nondeterministic transition selection – which may be allowed according
to the high-level formalism – to deterministic execution sequences. In contrast
to this, a simulation or testing system will require a selector which is capable of
producing all transition schedules possible according to the high-level formalism.

Transitions Instances of Transition implement atomic state transformers, en-
abled by abstract machines. In order to support the partitioning of high-
level model state into discrete locations and additional variables, transi-
tions are equipped with a trigger condition, represented by Boolean function
condition(). In contrast to high-level formalisms allowing condition expressions
over global or local variables, HL3 requires that condition functions retrieve state
information from channels. The associated get(id) calls use the identification
of the abstract machine owning the transition. Furthermore, each transition is
associated with a (possibly empty) Action, implemented as a function reading
the same channel data pre-state as the trigger condition, but also setting a post
state via channels, to become visible at the point in time and for the indicated
scope defined by the input parameter. Observe that HL3 transitions are not
equipped with any signal or event mechanism. We consider these as objects of
higher-level formalisms, to be implemented in HL3 by means of channels, the
scheduler, and the selector component. This design decision could be revised
as soon as the hardware platforms could provide semantically well-defined and
fast signal mechanisms. However, our analysis of current PC or embedded con-
troller hardware indicates that there is no such universally suitable mechanism
for the embedded application domain. The concept of locations – if required by
the high-level formalism – is encoded inside abstract machines. As a result of an
action execution, abstract machines may be suspended, activated, or stopped,
and the guards enabling/disabling flow execution may be set.

Flows Instances of Flow represent integration functions as a result of the dis-
cretization of time-continuous evolutions. The scheduler will activate all flows
according to their specified frequency, provided that their guard attribute evalu-
ates to true. The integration function integrate(v:VisibilitySet) is written
in standard C/C++ syntax, but retrieves pre-state from channels instead of
global or static local variables. Since flows are executed on behalf of their en-
abling/disabling abstract machines, they inherit the scope from the abstract
machine. Based on current logical HL3 time, the integrate()-operation reads
the latest visible state and writes global data back to channels, to be published
according to the visibility set v. Observe that HL3 flows require integration
functions which can be called with regular frequency. If the high-level formalism
specifies flows by differential equations, these have to be solved using separate
tools – such as Matlab – generating numerical libraries from given differential
equations, for the purpose of discrete ∆t integration.

Interface Modules A hardware abstraction layer conforming to the time-
triggered system concept is provided by Interface Modules which are software
components in one-to-one correspondence with hardware interfaces. Interface
modules are scheduled with fixed frequency and perform an abstraction from
raw data received on hardware interfaces to channel data and vice versa. When
scheduled with the poll(v:VisibilitySet) operation, raw data is read from
the interface and placed into the abstraction channel, using the visibility set
passed by the scheduler with the call. If t0.t1 is the HL3 time tick when the
data has been received, the visibility set v ensures that the data will have been
distributed to all cluster nodes before the earliest publishing time t′0.t

′
1 > t0.t1

defined by any visibility attribute contained in v. Conversely, each interface
module retrieves the latest visible version of the associated channel data when
scheduled and transmits this data item via driver and interface hardware. Ob-
serve that interface modules allow to use also interrupt-driven hardware devices
in a time-triggered system: Interrupt handlers store the received data in inter-
mediate buffers. Interface modules read the buffers when they are scheduled and
publish the data via channels for the next periodic point in time, as required for
the given interface in the physical constraints specification.

Scheduler Based on the synchronized cluster time introduced above, the Sched-
uler dispatches activities according to the following concept: Periodic scheduling
of flows and interface polling is pre-planned at compile time, following the prin-
ciples introduced for GIOTTO [HHK03]. For optimization purposes, activities a
whose changes become effective at logical HL3 time (u0.u1) may be scheduled
simultaneously with activities b to be published at (v0.v1) ≤ (u0.u1), if the pre-
states for a are based on the visibility at an earlier time tick (w0.w1) < (v0.v1).
Since all activities as well as the cluster communication have bounded maxi-
mum length, each scheduler instance can determine when to start a new activity
whose pre-state depends on the result of preceding ones, without the need to
implement a commit protocol between cluster nodes.

5 HybridUML Semantics

The semantics of HybridUML specifications is defined by a transformation
ΦHUML to the Hybrid Low Level Language HL3. As required by the HL3

framework, a HybridUML specification is mapped to a selector and a collection
of flows, transitions, and abstract machines (the aspects depending on architec-
tural and physical constraints specifications are not considered here).

As described in Section 3, the main building block of a HybridUML speci-
fication is a set of basic agent instances. Their infrastructure for interaction is
provided by connections between sets of variables or signals from different agent
instances such that connected variables actually denote the same single shared
variable or signal, respectively. For each connected set of variables or signals
that cannot be extended we choose a unique Channel in terms of the low-level
language HL3 as representative of this set. This includes singleton sets, i.e. un-
connected global variables and signals as well as local variables. As each variable
and each signal is mapped to exactly one maximal set of connected variables or
signals there is a function chan : V ar ∪ Sig → Chanhl3 that identifies the cor-
responding channel of a variable or signal. Signals are represented as channels
carrying boolean data.

Transformation φHUML of Algebraic and Flow Constraints Algebraic
and flow constraints of the HybridUML model are distributed over the modes
of the basic agents. They define the set of HL3-Flow instances by a mapping
flowhl3 : Flow ∪Alge → Flowhl3: (1) The operation integrate() is provided by
a mapping proc : Exp → ophl3 that defines an HL3 operation of the form void
op() for each HybridUML expression. The mapping of algebraic expressions is
straightforward – variables v are mapped to local HL3 variables that are read
from or written to chan(v), operators are mapped to corresponding HL3 oper-
ators. Flow expressions are transformed by use of an appropriate (numerical)
mathematical toolkit like Matlab. (2) For the boolean guard, a separate Chan-
nel is created. It is controlled by the abstract machine (described below) that
corresponds to the flow constraint of the HybridUML model. (3) The frequency
is obtained from the physical constraints specification. (4) A consecutive id is
generated.

Transformation τHUML of Transitions Transitions in the HybridUML model
connect the submodes of basic agents. The Transition instances t as well as the
corresponding instances a of Action and c of Condition are given by
transhl3 : Trans → {(t, a, c) ∈ Transhl3 ×Acthl3 × Condhl3 | t.a = a ∧ t.c = c}.

Transitions. A Transition instance is created that contains one condition and
one action as described below. A consecutive transition id is generated.

Conditions. (1) The operation isTrueCondition() evaluates a boolean expression
that is given by a mapping bexp : Expbool → ophl3. Similarly to proc, the map-
ping provides C expressions that directly implement the expression from the

HybridUML model; quantifiers on finite sets are realized by for-statements.
Additionally, the (optional) signal is incorporated and treated as a conventional
boolean variable. (2) The read set is created from the channels of the variables
and the signal within the generated expression. (3) A consecutive condition id is
generated.

Actions. (1) Similar to the integration operation of flows, action(. . .) is defined
by proc; sending of signals is realized by sending true on the corresponding
channel. The visibility parameter of action(. . .) is applied to the channels of the
write set exactly as it is received (see below). (2) The writeSet consists of the
channel identifiers that correspond to the written variables, i.e. the variables from
action(. . .) that are on the left-hand side of assignments. (3) The variables from
the right-hand sides define the channel identifiers in readSet. (4) A consecutive
action id is generated.

Transformation αHUML of Sequential Control Components Sequential
control components are exactly the basic agent instances mentioned above. They
are represented by instances of AbstractMachine: am : Agentbasic → AMhl3. Note
that the arrangement of the basic agent instances to composite agent instances
(through some levels of hierarchy) only provides the distribution and renaming
of shared variables and signals, which is completely represented by the channel
mapping chan.

An abstract machine defines the discrete behavior of a top-level mode, which
in turn defines the discrete behavior of exactly one basic agent.

Data structure. The abstract machine defines a (recursive) data structure that
maps to the hierarchical structure of the top-level mode, such that the Mode
instances form a mode tree. Within the tree, the sequence of active submodes,
beginning with the root mode, constitutes the mode configuration, i.e. the set of
all currently active modes. Based on the mode tree, the data structure is defined
in a straightforward way:
Mode A Mode consists of a set of control points of type ControlPoint, a set
of submodes of type Mode, a set of transitions of type ModeTransition, a set of
flow constraints of type FlowConstraint, and a set of invariant constraints of type
InvariantConstraint. Additionally, a history variable points to the currently ac-
tive submode. InvariantConstraint An InvariantConstraint contains a boolean
function that evaluates according to a mode’s invariant specification. Flow-
Constraint A FlowConstraint represents an algebraic or flow constraint from
the HybridUML model. It references the low-level Flow according to flowhl3.
Particularly, the boolean guard is controlled in order to enable or disable the
associated integration operation, depending on the current mode configuration.
ControlPoint A ControlPoint contains outgoing transitions of type ModeTran-
sition. Furthermore, a reference to its parent mode is included. The distinction
between entry and exit control point is included as a flag. ModeTransition
A ModeTransition connects a source and a target ControlPoint. It can fire, if

its Signal is present, and if its Guard evaluates to true. The firing of a tran-
sition (possibly) causes a discrete state change, therefore it is associated with
the corresponding low-level transition of type Transition assigned by transhl3

that encapsulates this. Since a transition may affect the history of its containing
mode, a reference to the Mode is also contained. Signal A Signal references a
boolean flag that denotes if the corresponding signal is currently active. Guard
A Guard contains a boolean function that implements the corresponding guard
of a transition.

Additional entities exist in the data structure but are not described here.
They are used for efficiency; for example, the set of currently enabled transitions
is stored explicitly.

Data structure instantiation. A basic HybridUML agent defines an instance of
the data structure: For each mode, an instance of Mode exists. Each Mode apart
from the top-level mode is inserted into its parent’s set of submodes. For its
algebraic and flow conditions, FlowConstraint instances are created and linked to
the appropriate Flow instances. Every invariant expression is represented by a
boolean function bool exp() provided by bexp. A ControlPoint instance is cre-
ated for every control point of the specification and linked with the corresponding
Mode.

Each transition from the HybridUML model is represented by a ModeTran-
sition instance which is linked to the ControlPoint instances that represent its
source and target, respectively, as well as with its parent mode. The transition’s
parent mode is the mode for that it connects either two submodes or the mode it-
self with a submode. Every ModeTransition is equipped with a Guard, an optional
Signal, and the Transition instance described earlier. The guard, the signal, and
the action are taken from the HybridUML model in the same way as described
for low-level Action and Condition instances, whereas the guard represents the
Condition without signal. Figure 8 shows the data structure instance for the basic
agent BrakePointController from Section 2.

readSetTransBrakingRequired ≡
{v | ∃i ∈ {1..V TP COUNT}•

v ≡ chan(vtpActive[i]) ∨ v ≡ chan(brakePoint[i])∨
v ≡ chan(ra.vtp[i].v) ∨ v ≡ chan(ra.vtp[i].x)
} ∪ {chan(x), chan(v)}

(5)

The HL3 operations within guards and invariants (as well as actions and flows)
operate on the HL3 channels (representing the HybridUML variables and sig-
nals). Therefore, local HL3 variables of appropriate types are used and dis-
tributed to the respective channels.

Execution semantics. The semantics of the abstract machine is given by the
execution of the set of provided operations:
init() Executes the initialization step of the agent: The top-level mode’s de-
fault entry point is entered. notifyTrans(tr:transID) Accepts the notification

: InvariantConstraint

condition() = bexp(¬(2) condBrakingRequired)

: InvariantConstraint

condition() = bexp((2) condBrakingRequired)

: Guard

condition() = bexp((2) condBrakingRequired)

: Action

readSet = ∅
id = 0

writeSet = {brakingRequired}
action() = proc(brakingRequired := true)

: ControlPointsource dx

condition() = bexp(¬(2) condBrakingRequired)

: Guard

: Action

writeSet = {brakingRequired}
readSet = ∅

action() = proc(brakingRequired := false)

id = 1

: AbstractMachine

: FlowConstraint

invariant invariant

BrakingNotRequired : Mode BrakingRequired : Mode

submode submode

: ControlPoint

dx
source

de

: ControlPointtarget

: Transition

id = 0

: Transition

id = 1

id = 1
readSet = (5) readSetTransBrakingRequired

: Condition

: Condition

id = 0
readSet = (5) readSetTransBrakingRequired
isTrueCondition() = bexp((2) condBrakingRequired)

isTrueCondition() = bexp(¬(2) condBrakingRequired)

: ModeTransition

: ModeTransition

parentparent

brakePointControl : Mode

topLevelMode

dx
: ControlPoint : ControlPointde

flow

: Flow

id = 0
integrate() = proc((1) algeBrakePoint)

: ControlPoint targetde

Fig. 8. Instantiated data structure of Agent BrakePointController. The mode tree is
highlighted.

which transition was chosen and executed externally. Internally, the correspond-
ing ModeTransition fires without executing its action, thus here it adjusts its in-
ternal state correspondingly by entering a new control point. update() Updates
the internal data structure with respect to the current values of the correspond-
ing channels: (1) A flag flowEnabled is set if this abstract machine is in a state
that allows time to pass. This is given iff all invariants of the mode configuration
are satisfied and there is no mandatory step. Therefore, the invariants of the
mode configuration are recalculated. A mandatory step is a step that initially
consumes a signal (i.e. that is triggered by a signal) or a step that does not start
at a default exit point. (2) The set enabledTrans of enabled transitions is gener-
ated. (3) The set enabledTrans and the flag flowEnabled are written to respective

special channels, such that exactly these values are provided by subsequent calls
of getTrans(amId) and isFlowEnabled(amId).

The precise behavioral description of the above operations is given by their
implementation. For example, notifyTrans(id:ID) defines a discrete step:1

Abstract Machine The transition itself fires:
void AbstractMachine::notifyTrans (transID tr) { m_trans[tr].fire(); }

ModeTransition The transition fires by (1) leaving its source control point,
(2) (optionally) resetting a consumed signal, (3) modifying its parent mode’s
history and (4) entering its target control point.

void ModeTransition::fire() {

m_source.leave(); if (m_pSignal != 0) m_pSignal->setActive(false);

writeHistory(); m_target.enter(); }

ControlPoint When a control point is left, its parent mode has no active con-
trol point anymore:

void ControlPoint::leave() {getParentMode().setCurrentControlPoint(0);}

When a control point is entered, it becomes the active control point of its parent
mode:
void ControlPoint::enter() {getParentMode().setCurrentControlPoint(this);}

Mode The setting of a mode’s current control point has several implications:
(1) The mode’s current control point is the new control point. (2) If the control
point is the default entry, then the history is resumed recursively for the mode,
if possible. (3) If for a leaf mode the control point is the default entry, then it
is directly transferred to the default exit. (4) If the control point is the default
exit, then all parent modes are also set to their default exits recursively. (5) If
the control point is a non-default control point or a default entry that cannot
resume a history, then the parent modes are recursively modified such that they
have no current control point.

void Mode::setCurrentControlPoint(ControlPoint* pControlPoint) {

m_pCurrentControlPoint = pControlPoint;

if ((pControlPoint == m_pDe) && (m_pHistory != 0))

m_pHistory->setCurrentControlPoint(m_pHistory->m_pDe);

else if ((pControlPoint == m_pDe) && (m_leafMode))

setCurrentControlPoint(m_pDx);

else if ((pControlPoint == m_pDx) && (m_pParent != 0))

m_pParent->setCurrentControlPoint(m_pParent->m_pDx);

else if (m_pParent != 0) m_pParent->setCurrentControlPoint(0); }

In this way, we calculate the set of current control points which is required to
determine the set of enabled transitions of the abstract machine. One of the fol-
lowing situations results: Initialization – the set consists of exactly one default
entry of a non-leaf mode. There is no complete mode configuration, and only a
transition that initializes the current mode can be enabled. Stable – the set con-
sists of exactly the default exits of all modes of the current mode configuration
from the root mode to the leaf mode. This is a (potentially) stable situation that
may allow time to pass. Transitions of all hierarchy levels can be enabled. Un-

1 The remaining definitions are omitted because of space restrictions.

stable – the set consists of exactly one non-default control point. Steps through
non-default control points implicitely make up a compound step that must not
be interrupted, therefore only continuation transitions may be enabled next.

HybridUML Simulation Semantics Definition SelectorHUML For the
coordination of flows, transitions, and abstract machines with respect to the
simulation semantics of HybridUML, a customized Selector is provided. The
selector defines an initialization operation init():bool:

The initial valuation of the channels has to be given by the environment,
i.e. from outside the HL3 specification. Initialization constraints result from the
initStates of the agent instances within the HybridUML model. They control if
there is an execution of the model for the given valuation. If all these constraints
evaluate to true, initialization is completed successfully, otherwise unsuccessfully.

The operation getSelection(leftFlowPhase:bool): Selection is defined as follows:
(1) The logical HL3 time hl3time is adjusted. If the preceding scheduler phase
was a flow phase, i.e. if leftF lowPhase, then setHL3Time(clustertime,0) of
TimeService is activated and therefore the model time is updated to the clus-
ter time. Since model time has increased, on every channel that represents a
HybridUML signal, false is written, and thus signals are reset. Otherwise, af-
ter a transition phase (¬leftF lowPhase), the t1 component is incremented:
setHL3Time(getHL3Time().t0,getHL3Time().t1+1);
(2) It is determined if a flow of time would be admissible for the complete model,
which is denoted by the conjunction flowEnabled =

∧n
i=0 isF lowEnabled(ami)

for all abstract machines.
(3) The sets tri = getTrans(ami) of (identifiers of) enabled transitions are re-
quested for all abstract machines.
(4) A set tr = {id ∈

⋃n
i=0 tri | ∀t1 ∈ Transition, t2 ∈ Transition • ((t1.id ∈

trk, t2.id ∈ trl) ∧ (t1 6= t2 ⇒ trk 6= trl) ∧ (t1.a.readSet ∪ t1.c.readSet) ∩
t2.a.writeSet = ∅)} is chosen non-deterministically. Thus, a set of transition
identifiers is chosen that (1) contains up to one transition identifier per abstract
machine and that (2) contains only identifiers of transitions that are indepen-
dent of each other, i.e. every possible execution sequence of these transitions is
allowed. Note that n = |tr| > 1 is just an optimization of n successive transition
phases selecting one transition each. If ¬flowEnabled, tr 6= ∅ is preferred, oth-
erwise the HybridUML model is deadlocked.
(5) If tr 6= ∅ ∧ flowEnabled, then an “almost” non-deterministic choice is made
between transitions and flows: Since the scheduler always executes possible tran-
sitions, as long as there is enough time left before the next flow phase, tr = ∅
may be enforced.
(6) A visibility attribute attv is created that satisfies attv.t.t0 = hl3time.t0 ∧
attv.t.t1 = hl3time.t1 + 1, and which has an unrestricted scope attv.scope, i.e.
every abstract machine or interface module that reads the channels of the writ-
ten variables is included. The visibility set {attv} is attached to every transition:
trv = {(t, v) ∈ Transition× V isibilitySet | t.id ∈ tr ∧ v = {attv}}.

(7) Finally, a Selection s with s.isF lowEnabled = flowEnabled and s.trans =
trv is returned by update.

6 Conclusions

We have introduced HybridUML, a novel specification formalism for the descrip-
tion of hybrid systems. HybridUML was defined as a profile extending UML 2.0.
The main intention of this approach is to facilitate the understanding of the
formalism for users already familiar with the UML and to utilize existing UML
tools for the development of hybrid specifications. The “look-and-feel” of Hy-
bridUML was illustrated by means of a case study describing a distributed radio-
based train control system. The semantics of HybridUML has been obtained via
transformation into the Hybrid Low-Level Language framework HL3, thereby
obtaining semantically well-defined programs which can be executed in hard
real-time.

When compared to GIOTTO [HHK03], our HL3 framework differs in the fol-
lowing aspects: (1) The HL3 channel concept – corresponding to GIOTTO ports
– explicitly supports visibility time stamps and scope. We regard these mecha-
nisms as very helpful for ensuring consistent data views on different cluster nodes
in time-triggered systems. (2) The HL3 framework has been explicitly designed
to facilitate the automated generation of compilation targets from higher-level
formalisms. This is reflected by the pre-defined roles and interfaces of abstract
machines and selector. (3) GIOTTO tasks have a low granularity, corresponding
to single flows, transitions or transition collections emanating from the same loca-
tion. Transitions between locations as, for example, between hierarchic states of a
statechart, have to be modeled by GIOTTO mode switches disabling/activating
“task vectors”. In contrast to this, the HL3 abstract machines encode behavioral
models of complete sequential agents; only the flows and actions are separated
from the abstract machines, in order to optimize scheduling.

Our current investigations related to semantic issues focus on the respective
advantages and tradeoffs presented by interleaving semantics versus “true par-
allelism” interpretations for transitions executed in the same “zero-time phase”.
The interleaving semantics as defined in this paper and suggested in [AGLS01] is
compatible with the rely-guarantee verification method [dR+01, pp. 447] devel-
oped for shared-variable concurrency. Therefore its utilization gives us the advan-
tage of well-understood formal concepts and proof theories. A major drawback
is the fact that interleaved transition execution – while being perfectly well-
suited on single-processor platforms – cannot easily be distributed for parallel
execution on several processors: The action of one transition may invalidate the
firing condition for another transition, so in the worst case – if the write sets
of the actions for all available transitions overlap with the read sets of all their
conditions or actions – it is mandatory to execute one transition at a time. In
contrast to this, Statecharts semantics [DJHP98] defines truly parallel execution
rules for transitions simultaneously enabled in parallel components: All transi-
tions available at the beginning of a macro step have the same view on the state

components within their scope and may fire simultaneously. Their state changes
become visible in subsequent micro or macro steps. Obviously, these execution
rules are well-suited for multi-processor scheduling environments. However, this
advantage has to be paid by increased verification complexity, as, for exam-
ple, reflected by the problem of racing conditions occurring due to simultaneous
changes to the same variables in the same step.

Apart from facilitating the development of hard real-time target systems, our
transformation strategy supports automated testing of hybrid systems. Here, Hy-
bridUML agents are used both for the specification of the system under test and
for the description of environment behavior to be simulated in specific test exe-
cutions. While the transformation from HybridUML into the abstract machines
of HL3 is the same for target system development and testing, different selector
instances are used in these two situations: For developing target systems, the se-
mantic freedom which could be exploited by the selector in the non-deterministic
choice among possible transition interleavings, as well as the decision when to
trigger enabled, but non-urgent transitions, should be resolved in a deterministic
way which can be relied on to meet all periodic schedules. In contrast to this, a
selector for testing hybrid systems may apply strategies to simulate the greatest
possible variation of environment behavior, in order to increase the structural
coverage of the system under test and to check its robustness. A more detailed
description of testing aspects is currently under preparation [BBPT04].

The authors would like to emphasize that HL3 is not just an experimental
runtime environment for research purposes. Its current version is used for em-
bedded systems testing of controllers for the Airbus A380 aircraft family [VS04].
Test engines operate with cluster configurations consisting of 3, 5, or more multi-
CPU PC nodes.

Acknowledgements. The authors are indebted to Aliki Tsiolakis for her stimu-
lating comments and suggestions on HL3, its semantics, and implementation.
Christof Efkemann and Kai Thomsen did a formidable job in their development
of a Linux kernel patch for CPU reservation and interrupt relaying.

References

[AGLS01] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement for
hierarchical hybrid systems. In Proceedings of the 4th International Work-
shop on Hybrid Systems: Computation and Control, LNCS vol. 2034, pp.
33–48, 2001.

[BBB+99] T. Bienmüller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm, H. Hun-
gar, and P. Jansen. Verification of automotive control units. In Correct
System Design,LNCS vol. 1710, pp. 319–341, 1999.

[BBH+04] K. Berkenkötter, S. Bisanz, U. Hannemann, J. Peleska, and A. Tsiolakis.
The Hybrid Low Level Language HL3. Technical Report 34, Technologie
Zentrum Informatik TZI, Universität Bremen, to appear July 2004.

[BBHP04] K. Berkenkötter, S. Bisanz, U. Hannemann, and J. Peleska. The Hy-
bridUML Profile for UML 2.0. Technical Report 32, Technologie Zentrum
Informatik TZI, Universität Bremen, June 2004.

[BBPT04] K. Berkenkötter, S. Bisanz, U. Hannemann, J. Peleska, and A. Tsiolakis.
Automated Test Data Generation for Hybrid Systems.

[DFG] Priority Programme Software Specification – Integration of Software Spec-
ification Techniques for Applications in Engineering. http://tfs.cs.tu-
berlin.de/projekte/indspec/SPP.

[RTAI03] Dipartimento di Ingegneria Aerospaziale Politecnico di Milano. RTAI home-
page. http://www.aero.polimi.it/ rtai/about/index.html, 2003.

[DJHP98] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time
semantics of STATEMATE designs. LNCS vol. 1536, pp. 186–238, 1998.

[dR+01] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhneche,
M. Poel, and J. Zwiers. Concurrency Verification. Number 54 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, UK, April 2001.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the
11th Annual Symposium on Logic in Computer Science (LICS), pp. 278–
292. IEEE Computer Society Press, 1996.

[HHK03] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91, pp.
84–99, 2003.

[HL94] C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case study
in formal verification of real-time systems. In IEEE Real-Time Systems
Symposium, pp. 120–131. IEEE Computer Society, 1994.

[KMP00] Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hybrid
systems. Acta Informatica, 36(11):836–912, 2000.

[Kop97] H. Kopetz. Real-Time Systems – Design Principles for Distributed Em-
bedded Applications. The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, 1997.

[Lab04] FSM Labs. RT-Linux homepage. http://www.rtlinux.org, 2004.
[OMG03a] OMG. UML 2.0 Infrastructure Specification, OMG Adopted Specification.

http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf, September 2003.
[OMG03b] OMG. UML 2.0 Superstructure Specification, OMG Adopted Specification.

http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf, August 2003.
[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

– Reference Manual. Addison-Wesley, 1999.
[RRS03] M. Rönnkö, A. P. Ravn, and K. Sere. Hybrid action systems. Theoretical

Computer Science, 290:937–973, January 2003.
[VS04] Verified Systems. RT-Tester 6.x – User Manual. Technical Report Verified-

INT-014-2003, Verified Systems International GmbH, Bremen, 2004.
[ZRH93] C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus

for hybrid real-time systems. In Hybrid Systems, pp. 36–59. The Computer
Society of the IEEE, 1993. Extended abstract.

http://tfs.cs.tu-berlin.de/projekte/indspec/SPP
http://tfs.cs.tu-berlin.de/projekte/indspec/SPP

