
Test Automation Meets Static Analysis

Jan Peleska∗

University of Bremen
jp@tzi.de

Helge Löding†

University of Bremen
hloeding@tzi.de

Tatiana Kotas
∗

Verified Systems International GmbH
kotas@verified.de

Abstract: In this article we advocate an integrated approach for the automation of
module or software integration testing and static analysis. It is illustrated how fun-
damental methods of static analysis, in particular abstract interpretation by interval
analysis, contribute to the solution of problems typically encountered in the field of
automated test case/test data generation. Conversely, test data generation algorithms
are useful to improve results obtained in static analyses: Potential errors identified
in the unit under test (UUT) during an analysis can be confirmed by constructing
concrete test data leading to the erroneous UUT state. False alarms resulting from
over-approximating abstractions applied during the analyses can be uncovered using
test automation algorithms disproving the reachability of associated code portions and
program states.

1 Introduction

In the general literature discussing software quality assurance, there is a common un-
derstanding that the software verification process should be supported by both tests and
static analyses [Lig02], the latter ranging from informal inspections to rigorous applica-
tion of formal methods [CCF+06]. This understanding is also reflected by the applicable
standards for – potentially safety-related – software development in avionics [SC-92] and
railway control. Moreover, it is advisable that the persons performing tests simultaneously
perform the associated analyses, since the more intimate knowledge of the unit under test
(UUT), which is usually gained from the inspections, helps to specify more relevant test
data and more comprehensive test oracles. As a consequence, integrated tool support for
software testing and static analysis is desirable from the perspective of verification experts
responsible for performing these tasks within a software development project. From the
tool builders’ perspective, it turns out that test automation and static analysis share a con-
siderable amount of common methodology as well as concrete techniques and algorithms.
Therefore, the objective of this article is twofold: First, we illustrate how fundamental
techniques from static static analysis, in particular abstract interpretation, are important

∗Partially supported by the BIG Bremer Investitions-Gesellschaft under research grant 2INNO1015B.
†Partially supported by Siemens Transportation Systems in Braunschweig.

pre-requisites for the solution of the test case/test data generation problem. Second, it
is shown how an integrated test case/test data generation component can be applied to
improve static analysis tools by confirming potential UUT errors with concrete test data
leading to erroneous program states, or uncovering false alarms by disproving the reacha-
bility of these undesired states.

2 Combined Module Testing and Static Analysis

Functional and Structural Module Testing. Recall that for structural module testing,
test cases are derived from the objective that certain aspects of the code control structure
(statements, branches, atoms in branching conditions etc.) should be covered during test
executions. In functional testing the input data to the UUT is derived from functional spec-
ifications, such as pre- and postconditions and intermediate assertions (e. g. invariants) de-
scribing the expected module behaviour. It is obvious that a functional specification is also
required for structural testing, in order to check the module behaviour when executed with
the test cases derived from the code structure. In any case, automated test data generation
boils down to the solution of reachability problems, typically represented by edges, states,
paths or regions of control flow graphs (CFGs) representing the UUT: In structural testing,
we aim to cover nodes (for statement coverage) or branches (for decision coverage) of
the CFG. For functional testing consider some UUT f() to be tested against precondition
P (v) and a postcondition Q(v, v@pre), where v@pre denotes the pre-state of the variable
symbols whose valuation may be changed by execution of f(). For illustration purposes,
assume that Q(v, v@pre) can be written as a conjunction of implications

Q(v, v@pre) ≡
k∧

i=1

(Ci(v, v@pre) ⇒ Qi(v, v@pre))

so that a functional test should at least find test data such that every situation Ci(v, v@pre)
is covered, while always observing the precondition P (v). Now consider the augmented
UUT function

f_aug(...) {
if (P(v)) {

f(...);
if (C_1(v,v@pre)) { assert(Q_1(v)); /* B1 */ }
...
if (C_k(v,v@pre)) { assert(Q_k(v)); /* Bk */ }

}

Then functional test data generation for f() requires coverage of f aug()-branches B1,
B2, ...,Bk.

Core components for test case generation tools. It is interesting to note that the core
components of test automation systems (Fig. 1) were already suggested in 1976 by Ra-
mamoorthy et. al. [RHC76]: (1) The path selector identifies program paths p which are
suitable candidates for execution according to the underlying (structural or functional) test

strategy. (2) Based on the branching conditions along p and the sequential statements
between branches, the constraint generator constructs the (first-order) predicates to be
solved for the (sequence of) input variables in order to stimulate the execution of path p.
(3) The constraint solver constructs a solution, that is, an appropriate value assignment to
the input variables, for the given constraints or indicates why p is infeasible, that is, why
no value assignment resulting in execution of p can be found.

Intermediate SUT model representation. In order to support various formalisms and
test paradigms, such as code-based white-box and model-based black-box testing, the sys-
tem under test (SUT) and/or its specification are first transformed1 into an intermediate
model representation (IMR) which is independent on the concrete SUT code or specifi-
cation syntax (Fig. 1): The IMR consists of a class library allowing to encode hierarchic
hybrid transition systems. For testing C++ modules (methods or C-functions), a compila-
tion front-end derived from gcc [Löd] parses the SUT code and generates (1) a control
flow graph (CFG) representation in 3-address code of the SUT and (2) a detailed infor-
mation base supporting queries about types, variables/objects and their sizes. Based on
these information, the IMR model of the SUT is instantiated. (3) Sub-functions/methods
invoked by the SUT are represented by their own CFGs, and function/sub-function rela-
tion defines a hierarchy between them. The type and variable information base contains
scope information, so that identically named local variables of different methods, as well
as synonymous global, static and local variables can be distinguished.

Constraint
Generator

Strategy
Test

Interpreters

Symbolic Abstract

Interval
Analysis

Linear
Arithmetic

Bit−
Vector

String

Boolean

In
te

rm
ed

ia
te

 M
od

el
 R

ep
re

se
nt

at
io

n

S
U

T
 −

 M
em

or
y

M
od

el
S

U
T

 −
 A

bs
tr

ac
t M

od
el

Constraint Solver

Symbolic Test Case Generator
(Path Selector)

Test Data:
Input Assignment

Approximation
Solution Set

S
U

T
 C

od
e/

M
od

el
 P

ar
se

rs

C
++

 M
od

ul
e+

S
pe

ci
fic

at
io

n
U

M
L2

.0
 S

ta
te

ch
ar

ts

Figure 1: Generic architecture for test automation systems.

For functional testing, the UUT CFG is augmented by graph components representing pre-
and postconditions and intermediate assertions as indicated above.

1Currently, parser front-ends for C/C++ and UML 2.0 Statecharts are available.

Abstract Interpretation by Interval Analysis. Given a path through a CFG as suggested
by the symbolic test case generator and the associated collection of constraints it remains
to decide about the solution strategies to be applied by the solver. To this end, we observe
that (1) one path can generally be covered by more than one input vector and (2) it is often
desirable (e. g. for the purpose of boundary value testing) to be able to approximate the full
solution set S for a given conjunction of constraints. As a consequence a solver should not
only be capable to calculate one isolated solution v ∈ S. These consideration suggest an
abstract interpretation approach by means of interval analysis: For each variable symbol
x we consider interval valuation I(x) = [x, x]. This valuation is performed in the infinite-
hight lattice of intervals which has been extensively studied within the context of abstract
interpretation as well as numerical analysis [JKDW01, BFPT06]. The partial order v is
given by the subset relation between intervals; the smallest and largest elements are ⊥ =
{} (empty interval) and > = [−∞,∞], respectively. Given intervals I = [i, i], J = [j, j],
their least upper bound is given by the interval hull I t J = [min{i, j},max{i, j}] and
their greatest lower bound is given by I u J = I ∩ J . Operations ω on program variables
are lifted to their abstracted monotonic equivalents by

I[ω]J = [min{x ω y | x ∈ I ∧ y ∈ J},max{x ω y | x ∈ I ∧ y ∈ J}]

which can be evaluated very efficiently if the operations ω themselves are monotonic: For
example, [x, x][+][y, y] = [x + y, x + y] and [exp]([x, x]) = [exp(x), exp(x)]. Integral-
valued variables are abstracted into the sub-lattice of intervals with integer bounds, and
Boolean valuations are represented as single-point integer intervals [1, 1](= true) and
[0, 0](= false). Interval analogues of arithmetic constraints can be handled in three-
valued logic, for example, [x, x][<][y, y] evaluates to true if x < y, to false if x ≥ y
and otherwise to undecided(= [0, 1]).

Numerical interval analysis provides a wide variety of solvers for interval constraints.
In contrast to Boolean SAT solvers, for example, interval analysis solvers can handle
Boolean, integer and floating point arithmetics, including transcendent mathematical func-
tion, within the same framework. We will now illustrate the application of this theory for
both static analysis and test case generation purposes in the examples below.
Example 1: Identification of unreachable code. Consider structural test case generation
for C function

1 double globx;
2 double globy;
3
4 double f(double x, double y, int i) {
5 double z;
6 int j, k, error0 = 0;
7 if (i < 0) k = 0; else k = i;
8 if ((x < 5.0) and (y < exp(x))) x = x - y - globy;
9 else x = y - x - globx;

10 for (k += 1; k < x and error0 == 0; k *= 2) {
11 if (0 >= k) error0 = 1;
12 }
13 if (error0 == 0) z = log((double)k-x); else z = 0;
14 return z;
15 }

with precondition P1 ≡ x, y, globx, globy, i ∈ [−10, 10]. Before even starting to generate
test data suitable to cover certain branches or statements it is advisable to perform a quick
check whether some code portions are obviously unreachable. This can be performed
using abstract interpretation by interval analysis, with the following execution rules: (1)
The effect of constant assignments x = c; on interval level is the single-point interval
I(x)[x = c;] = [c, c]. (2) The effect of a variable assignment x = y; is assignment of
intervals, I(x)[x = y;] = I(y). (3) The effect of expression evaluation x ω y is the
interval I(x)[ω]I(y). (4) The effect of a branching condition if (C) B_1 else B_2
on a variable x is I(x)[B1] if I[C] = [1, 1] (that is, the interval interpretation of condition
C evaluates to true), I(x)[B2] if I[C] = [0, 0] (i. e. interval evaluation of C to false
and I(x)[B1] t I(x)[B2] otherwise (i. e. interval evaluation of C to undecided).

Applying these rules to the conditional statement in line 7 results in effect I(k)[k =
0;] t I(k)[k = i;] = [−10, 10], because I(i) = [−10, 10], so I(i)[<][0, 0] = [0, 1].
Using constraint propagation techniques for this abstract interpretation, we can improve
this result by noting that assignment k = i; only happens for the subinterval [0, 10] of I(i),
so the resulting interval for k can be contracted by [0, 10]. The effect of the interval inter-
pretation of lines 8 — 9 is calculated in a similar way, and neither if- nor else branch in
lines 8,9 can be proven to be unreachable. The interval valuation at the entry of the for loop
in line 11 is I(k) = [0, 10], I(error0) = [0, 0], I(x) = [−30, 30]. The interval interpre-
tation of the loop in lines 10 — 12 is repeated until a fixpoint is reached2 with valuations
I(k) = [1, 352], I(error0) = [0, 0], I(x) = [−30, 30] (again, the result for I(k) can be
further contracted to I(k) = [1, 32]). This proves that the if-branch of line 11 can never
be reached, and, since I(error0) = [0, 0] implies that I(error0)[==][0, 0] evaluates to
true, this also shows that the else-branch of line 13 is unreachable.

Example 2: Test case generation by interval constraint solution. Only after having
ruled out (some) unreachable branches, the path generator starts to select paths for the
constraint generator, leading to an activation of the solver. Suppose we need a test case for
covering the if-branches of lines 7 and 8, such that the for-loop in line 10 is skipped. This
path leads to generation of constraints

x, y, globx, globy, i ∈ [−10, 10]∧(i < 0)∧(x < 5.0)∧(y < exp(x))∧(1 ≥ x−y−globy)

the last conjunct resulting from the symbolic execution performed by the constraint gen-
erator along the suggested path: Since the if-branches have been selected in lines 7—8,
k has value 0 + 1 after loop initialisation and x evaluates according to the assignment
x = x− y − globy in line 8. The solver separates the first conjunct from the others since
they do not share any variables and assigns maximal interval solution I(i) = [−10,−1].
Inequation x < 5.0 and precondition induce I(x) ⊆ [−10, 5[, so it remains to solve

(y < exp(x)) ∧ (1 ≥ x− y − globy)

while observing I(x) ⊆ [−10, 5[∧I(y), I(globy) ⊆ [−10, 10]. Interval constraint solvers
for this purpose proceed as follows:

2Observe that for more general loops existence of a fixpoint is not guaranteed since the interval lattice is of
infinite height, so that the application of a widening operation may be required.

(1) Check that each conjunct at least evaluates to [0, 1] (undecided) with the current
interval assignment. If, for example, I(y)[<][exp](I(x)) evaluates to [0, 0] the constraint
system is unsolvable with interval vector (I(x), I(y)).

(2) If one conjunct evaluates to [1, 1] with vector V = (I(x), I(y), I(globy)) it is solved,
and monotonicity guarantees that all interval vectors which are subsets of V remain solu-
tions.

(3) If at least one conjunct is still in solution state undecided, perform bi-partitioning
of an interval I(v), v ∈ {x, y, globy} (typically, the one with largest diameter) into

I0(v) = [Inf(I(v)),
Inf(I(v)) + Sup(I(v))

2
]

and

I1(v) = [
Inf(I(v)) + Sup(I(v))

2
, Sup(I(v))]

(4) Continue with step (1), using new vectors V0 = (. . . , I0(v), . . .) and
V1 = (. . . , I1(v), . . .) instead of V .

(5) For test data generation an under approximation of the constraint solution set suffices:
As soon as an interval vector (Ii0(x), Ii1(y), Ii2(globy)) has been found such that all con-
straints evaluate to [1, 1] over these intervals, the generation process stops, and concrete
test data is selected at random or at interval boundaries for each variable v from its associ-
ated interval.

(6) For avoiding too many bi-partitioning steps (bi-partitioning obviously requires expo-
nential time and storage) forward-backward constraint propagation can be applied as con-
tractor for narrowing interval solution candidates with linear time effort; this is described
in [BFPT06].
Example 3: Using the test case generator to support static analysis. As illustrated
in the examples above, the test case generator uses under approximation of constraints
in order to create test data. This capability is very useful for distinguishing false alarms
resulting from over approximation from real UUT errors uncovered by the static analyser.
To illustrate this, consider another variant of the for-loop in lines 10—12 in the example
above, which also enforces loop termination:

1 int kOld = k;
2 for (k += 1; k < x and error0 == 0; k *= 2) {
3 if (kOld > k) error0 = 1; else kOld = k;
4 }

During abstract interval interpretation, I(kOld) is initialised with [0, 10] in line 1, since
this is the current interval valuation of k as shown above. As a consequence, I(kOld)[>
]I(k) evaluates to [0, 1], so that the fixpoint of the loop will evaluate I(error0) = [0, 1].
As a consequence, the abstract interval interpretation indicates a false alarm with respect
to reachability of the if-branch in line 3. Conventional static analysis tools might stop at
this point. With the path selector, constraint generator and solver at hand, however, it is
possible to prove that this if-branch is really not reachable for the precondition P1 defined
for f() above. To this end, the path selector can suggest n-fold unwindings of the for-loop

(n = 0, 1, 2, . . .), and for each unwinding the constraint solver proves that no solution of
the if condition in line 3 exists if P1 holds on entry. Moreover, path selector, constraint
generator and solver cooperate to prove that given P1, the maximal number of unwindings
is bounded by 6. As a consequence, the if-branch of line 6 remains unreachable. Observe
that this method requires far more computing power than the simple interval interpretation
that was successful for the first variant of the for-loop. As a consequence, the quick checks
by interval interpretation are always the first choice before the investigation of feasible
paths and constraint solutions. Finally, path selector, constraint generator and solver can
construct explicit test data proving the reachability of the if-branch of line 6 if the bound
for x in P1 is dropped: It is then shown (suppose 32-bit word length for type int) that
with initial assignments x ∈ [231,∞], i = 230 the if-branch will be reached and the error
flag set. To achieve this, the tool uses typed intervals and associated operations taking
overflows of concrete C/C++ datatypes into account.

3 Conclusion and Ongoing Work

We have described the building blocks and basic concepts for an integrated test automation
and static analysis system suitable for model based testing (not described in this article) of
C/C++ software, structural/specification-based module testing and abstract interpretation
by interval analysis. The main development and research tasks currently performed for
improving the tool and its underlying methods focus on (a) optimisation of the memory
model, so that constraints for complex expressions over pointers, unions and cast opera-
tions can be handled, (b) the extension of static analysis functions by integration of ad-
ditional abstractions and (c) the addition of more specialised solver components to speed
up linear arithmetic problems, bit vectors and their operations and string handling with
associated pattern matching constraints. For the latter task we follow the framework of
satisfiability modulo theory which currently is of considerable interest in the SAT solving
and theorem proving communities [RT06]. The techniques described have been integrated
in the RT-Tester tool [Ver07] and are applied in an industrial context since 2007. The tool
capabilities applied to “real-world” embedded software (C++ code from railway control
systems and C code from avionics control systems) will be shown during the tool demon-
stration session.

References

[BFPT06] Bahareh Badban, Martin Fränzle, Jan Peleska, and Tino Teige. Test Automation for
Hybrid Systems. In Proceedings of the Third International Workshop on SOFTWARE
QUALITY ASSURANCE (SOQUA 2006), Portland Oregon, USA, November 2006.

[CCF+06] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Combination of Abstractions in the ASTRÉE Static Analyzer. In M. Okada and I. Satoh,
editors, Eleventh Annual Asian Computing Science Conference (ASIAN’06), pages 1–
24, Tokyo, Japan, LNCS, December 6–8 2006. Springer, Berlin. (to appear).

[JKDW01] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied Interval Analysis.

Springer-Verlag, London, 2001.

[Lig02] Peter Liggesmeyer. Software-Qualität. Spektrum Akademischer Verlag, Heidelberg,
Berlin, 2002.

[Löd] Helge Löding. Behandlung komplexer Datentypen in der automatischen Testdaten-
generierung. Master’s thesis, University of Bremen. To appear in May 2007.

[RHC76] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen. On the Automated Generation of Pro-
gram Test Data. IEEE Transaction on Software Engineering, SE-2(4):293–300, 1976.

[RT06] S. Ranise and C. Tinelli. Satisfiability Modulo Theories. TRENDS and
CONTROVERSIES–IEEE Magazine on Intelligent Systems, 21(6):71–81, 2006.

[SC-92] SC-167. Software Considerations in Airborne Systems and Equipment Certification.
RTCA, 1992.

[Ver07] Verified Systems International GmbH, Bremen. RT-Tester 6.2 – User Manual, 2007.

