# Course 16 <br> Geometric Data Structures for Computer Graphics 

## Quadtrees

Dr. Elmar Langetepe<br>Institut für Informatik I<br>Universität Bonn

## Quadtree of a point set



- Set of points, initial sqaure $Q$ and root $R$ of the tree
- Subdivision into quadrants in counterclockwise orderl
- Recursively, until sqaure has $\leq 1$ objects
- Node $v$ represents square $Q(v) \|$
- Recursive construction of the tree: given points/initial squarel


## Definition Quadtree



- Rooted tree
- Internal nodes have 4 childrenI
- Every node represents a squarel
- Children represent subsquares of the squarel
- Geometric data of squares (leaves): Points, Lines, Rectangles, Ellipses
- Octreel $\Rightarrow 8$ children, Boxes, higher Dimensions


## Properties

- Quadtree of depth $d$ with $n$ points
- Number of nodes: $O(d n)$ II
- Number of leaves: $3 \times$ \# Internal nodes $+1 \|$
- At every depth only $n$ internal nodes
- Construction: $\mathbf{O}(d n)$ time II
- Every depth in the recursive construction II
- Distribution of points: Linear in the number of points
- Depth of the quadtree depends on distances of objects:
- Let $c$ be the distance of the closest pairl
- Let $s$ be the side length of the initial $Q$
- Depth $d \leq \log (s / c)+\frac{3}{2}$
- Balancing depend on objects


## Application Nearest Neighbors

- Compute List of Nearest Neighbors of a query point $q$ l
- Idea: Observe Neighboring quadrants recursivelyl
- Find quadrant of query point $q$ in $O(d)$ timel
- Build Priority-Queue $P$ : Visited squares sorted by distance in $O(d \log d)$ timel
- Iteration
* Take first (closest) square/object $O$ of $P$
* Object: $\Rightarrow$ report
* Square: $\Rightarrow$ insert subsquares or single object into $P$ I
* Delete $O$ out of $P$
* Repeat until $P$ is empty
- Time: $O(n \log n)$ I

Nearest Neighbor Applet by F. Brabec and H. SametI

