
Geometric Data Structures for Computer Graphics ∗

Gabriel Zachmann & Elmar Langetepe
Informatik II/I

University of Bonn, Germany
email: {zach,langetep}@cs.uni-bonn.de
http://web.cs.uni-bonn.de/~zach

http://web.cs.uni-bonn.de/I/staff/langetepe.html

13th August 2003

Course Description

In recent years, methods from computational geometry have been widely adopted by the computer
graphics community yielding elegant and efficient algorithms. This course aims at familiarizing practi-
tioners in the computer graphics field with a wide range of data structures from computational geometry.
It will enable attendees to recognize geometrical problems and select the most suitable data structure
when developing computer graphics algorithms.

The course will focus on algorithms and data structures that have proven to be versatile, efficient,
fundamental and easy to implement. Thus practitioners and researchers will benefit immediately from
this course for their everyday work.

Course Home Page

You can find the slides, the multimedia material, and notes for this tutorial at
http://cg.cs.uni-bonn.de/course/.

http://web.cs.uni-bonn.de/~zach
http://web.cs.uni-bonn.de/I/staff/langetepe.html
http://cg.cs.uni-bonn.de/course/

2 Zachmann/Langetepe: Geometric Data Structures for CG

Prerequisites

Participants of this course should be familiar with the basic principles of computer graphics and the type
of problems in the area. Familiarity with computer programming is not required.

The intended audience are practitioners working in 3D computer graphics (VR, CAD/CAM, entertain-
ment, animation, etc.) and students from both computer graphics and computational geometry, possibly
working on a master or PhD thesis.

Syllabus

Our goal is to familiarize practitioners and researchers in computer graphics with some very versatile and
ubiquitous geometric data structures, enable them to readily recognize geometric problems during their
work, modify the algorithms to their needs, and hopefully make them curious about further powerful
treasures to be discovered in the area of computational geometry.

In order to achieve these goals in an engaging yet sound manner, the general concept throughout the
course is to present each geometric data structure in the following way: first, the data strucure will be
defined and described in detail; then, some of its fundamental properties will be highlighted; after that,
one or more computational geometry algorithms based on the data structure will be presented; and finally,
a number of recent, representative and practically relevant algorithms from computer graphics will be
described in detail, showing the utilization of the data structure in a creative and enlightening way.

We have arranged the topics in roughly increasing degree of difficulty. The hierarchical data structures
are ordered by increasing flexibility, while the non-hierarchical topics build on each other. Finally, the last
topic presents a generic technique for dynamizing geometric data structures.

Detailed informations about the topics discussed and the corresponding presenters are given in the
schedule below.

Component 1. Introduction
Introduction – Zachmann/Langetepe.

Component 2. Quadtree/Octree
Construction, complexity, balancing, navigation – Langetepe.
Terrain visualization, iso-surface generation – Zachmann.

Component 3. Bounding volume hierarchies
Definition, construction, hierarchical collision detection – Zachmann.

Component 4. Voronoi diagrams / Delaunay triangulations
Definition, construction, generalizations, applications – Langetepe.
NURBS tesselation, texture synthesis – Zachmann.

Component 5. Distance fields
Definition, modelling, morphing – Zachmann.

Component 6. Dynamization of geometric data structures
Definition, amortized Insert and Delete – Langetepe.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 3

Contents

1 Introduction 5

2 Quadtrees and Kd-Trees 5
2.1 Quadtrees and Octrees . 5

2.1.1 Definition . 5
2.1.2 Complexity and Construction . 6
2.1.3 Neighbor Finding . 6

2.2 Kd-trees . 6
2.3 Height Field Visualization . 7
2.4 Isosurface Generation . 10
2.5 Ray Shooting . 11

2.5.1 3D Octree . 12
2.5.2 5D Octree . 13

3 BSP Trees 15
3.1 Rendering Without a Z-Buffer . 16
3.2 Representing Objects with BSPs . 17
3.3 Boolean Operations . 17
3.4 Construction Heuristics . 19

3.4.1 Convex objects . 20
3.4.2 Cost driven heuristic . 20
3.4.3 Non-uniform queries . 20
3.4.4 Deferred, self-organizing BSPs . 21

4 Bounding Volume Hierarchies 22
4.1 Construction of BV Hierarchies . 24

4.1.1 Bottom-up . 24
4.1.2 Insertion . 25
4.1.3 Top-down . 25
4.1.4 Construction criteria . 25
4.1.5 The criterion for collision detection . 26

4.2 Collision Detection . 28

5 Voronoi Diagrams 29
5.1 Definitions and Elementary Properties . 29

5.1.1 Voronoi Diagram . 29
5.1.2 Delaunay Triangulation . 30

5.2 Computation . 31
5.3 Generalization of the Voronoi Diagram . 32

5.3.1 Voronoi Diagram and Delaunay Triangulation in 3D 32
5.3.2 Constrained Voronoi diagrams . 34
5.3.3 Other Types of Generalizations . 34

5.4 Applications of the Voronoi Diagram . 34
5.4.1 Nearest Neighbor or Post Office Problem . 34
5.4.2 Motion planning . 35
5.4.3 Other Applications of the Voronoi Diagram in 2D 36

5.5 Texture Synthesis . 37
5.6 Shape Matching . 38

Siggraph 2003 Tutorial 16

4 Zachmann/Langetepe: Geometric Data Structures for CG

6 Distance Fields 39
6.1 Computation and representation of DFs . 40

6.1.1 Propagation method . 41
6.1.2 Projection of distance functions . 42

6.2 Applications of DFs . 43
6.2.1 Morphing . 43
6.2.2 Modeling . 43

7 Dynamization of Geometric Data Structures 44
7.1 Model of the Dynamization . 45
7.2 Amortized Insert and Delete . 46

7.2.1 Amortized Insert: Binary Structure . 46
7.2.2 Amortized Delete: Occasional Reconstruction . 48
7.2.3 Amortized Insert and Amortized Delete . 48

7.3 Worst-Case sensitive Insert and Delete . 49
7.4 A Simple Example . 49

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 5

1 Introduction

In recent years, methods from computational ge-
ometry have been widely adopted by the computer
graphics community. Many solutions draw their
elegance and efficiency from the mutually enrich-
ing combination of such geometrical data structures
with computer graphics algorithms.

This course imparts a working knowledge of a
number of essential geometric data structures and
explains their elegant use in several representative,
diverse, and current areas of research in computer
graphics such as terrain visualization, texture syn-
thesis, modelling, and tesselation. Our selection
of data structures and algorithms consists of well-
known concepts, which are both powerful and easy
to implement, ranging from quadtrees to BSP trees
and bounding volume trees. We do not try to pro-
vide an exhaustive survey of the topics touched
upon here — this would be far beyond the scope
of this course. Neither do we try to present leading
edge algorithms because we feel that for practical
purposes a good trade-off between simplicity and
efficiency is important.

Participants will learn to recognize geometric prob-
lems and develop a thorough understanding of suit-
able algorithms. As a prerequisite, they should al-
ready be familiar with the basic principles of com-
puter graphics and the type of problems in the area.

The general concept throughout the course is to
present each geometric data structure in the follow-
ing way: first, the data strucure will be defined and
described in detail; then, some of its fundamen-
tal properties will be highlighted; after that, one
or more computational geometry algorithms based
on the data structure will be presented; and finally,
a number of recent, representative and practically
relevant algorithms from computer graphics will be
described in detail, showing the utilization of the
data structure in a creative and enlightening way.

2 Quadtrees and Kd-Trees

Within this section we will present some funda-
mental geometric data structures.

In Section 2.1, we introduce the quadtree struc-
ture. Its definition and complexity, the recursive
construction scheme and a standard application are
presented. Quadtrees and octrees have applications
in mesh generation as shown in Section 2.3, 2.4, 2.5.

A natural generalization of the one-dimenional
search tree to k dimensions is shown in Section 2.2.
The kd-tree is efficient for axis-parallel rectangular
range queries.

The quadtree description was adapted from de Berg
et al. [23] and the kd-tree introduction was taken
from Klein [54].

2.1 Quadtrees and Octrees

2.1.1 Definition

A quadtree is a rooted tree so that every internal
node has four children. Every node in the tree cor-
responds to a square. If a node v has children, their
corresponding squares are the four quadrants, as
shown in Figure 1.

SESWNWNE

Figure 1: An example of a quadtree.

Quadtrees can store many kinds of data. We will
describe the variant that stores a set of points and
suggest a recursive definition. A simple recursive
splitting of squares is continued until there is only
one point in a square. Let P be a set of points.

The definition of a quadtree for a set of points
in a square Q = [x1Q : x2Q] × [y1Q : y2Q] is as
follows:

• If |P| ≤ 1 then the quadtree is a single leaf
where Q and P are stored.

• Otherwise let QNE, QNW , QSW and QSE denote
the four quadrants. Let xmid := (x1Q + x2Q)/2
and ymid := (y1Q + y2Q)/2, and define

PNE := {p ∈ P : px > xmid ∧ py > ymid},
PNW := {p ∈ P : px ≤ xmid ∧ py > ymid},
PSW := {p ∈ P : px ≤ xmid ∧ py ≤ ymid},
PSE := {p ∈ P : px > xmid ∧ py ≤ ymid}.

The quadtree consists of a root node v, Q is
stored at v. In the following, let Q(v) denote
the square stored at v. Furthermore v has four
children: The X-child is the root of the quadtree
of the set PX , where X is an element of the set
{NE, NW, SW, SE}.

Siggraph 2003 Tutorial 16

6 Zachmann/Langetepe: Geometric Data Structures for CG

2.1.2 Complexity and Construction

The recursive definition implies a recursive con-
struction algorithm. Only the starting square has
to be chosen adequately. If the split operation can-
not be performed well, the quadtree is unbalanced.
Despite this effect, the depth of the tree is related
to the distance between the points.

Theorem 1 The depth of a quadtree for a set P of
points in the plane is at most log(s/c) + 3

2 , where c
is the smallest distance between any two points in
P and s is the side length of the initial square.

The cost of the recursive construction and the
complexity of the quadtree depends on the depth
of the tree.

Theorem 2 A quadtree of depth d, which stores a
set of n points, has O((d + 1)n) nodes and can be
constructed in O((d + 1)n) time.

Due to the degree 4 of internal nodes, the total
number of leaves is one plus three times the num-
ber of internal nodes. Hence it suffices to bound the
number of internal nodes.

Any internal node v has one or more points in-
side Q(v). The squares of the node of a single depth
cover the initial square. Therefore, at every depth
we have at most n internal nodes that gives the
node bound.

The most time-consuming task in one step of the
recursive approach is the distribution of the points.
The amount of time spent is only linear in the
number of points and the O((d + 1)n) time bound
holds.

The 3D equivalent of quadtrees are octrees. The
quadtree construction can be easily extended to oc-
trees in 3D. The internal nodes of octrees have eight
sons and the sons correspond to boxes instead of
squares.

2.1.3 Neighbor Finding

A simple application of the quadtree of a point set
is neighbor finding, that is, given a node v and a
direction, north, east, south or west, find a node v′
so that Q(v) is adjacent to Q(v′). Normally, v is
a leaf and v′ should be a leaf as well. The task is
equivalent to finding an adjacent square of a given
square in the quadtree subdivision.

Obviously, one square may have many such neigh-
bors, as shown in Figure 2.

q

Figure 2: The square q has many west neighbors.

For convenience, we extend the neighbor search.
The given node can also be internal, that is, v and
v′ should be adjacent corresponding to the given
direction and should also have the same depth. If
there is no such node, we want to find the deepest
node whose square is adjacent.

The algorithm works as follows. Suppose we
want to find the north neighbor of v. If v happens
to be the SE- or SW-child of its parent, then its
north neighbor is easy to find, it is the NE- or NW-
child of its parent, respectively. If v itself is the NE-
or NW-child of its parent, then we proceed as fol-
lows. Recursively find the north neighbor of µ of
the parent of v. If µ is an internal node, then the
north neighbor of v is a child of µ; if µ is a leaf, the
north neighbor we seek for is µ itself.

This simple procedure runs in time O(d + 1).

Theorem 3 Let T be quadtree of depth d. The
neighbor of a given node v in T a given direction,
as defined above, can be found in O(d + 1) time.

Furthermore, there is also a simple procedure
that constructs a balanced quadtree out of a given
quadtree T. This can be done in time O(d + 1)m
and O(m) space if T has m nodes. For details
see Berg et al [23].

Similar results hold for octrees as well.

2.2 Kd-trees

The kd-tree is a natural generalization of the one-
dimenional search tree.

Let D be a set of n points in Rk. For conve-
nience let k = 2 and let us assume that all X- and
Y-coordinates are different. First, we search for a

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 7

Y

X
105

5

a

b

c

d

i

j

h

f

e

k

g

x=5

y=5y=4

5<xx<5

x=7x=8

5<yy<5

y<3

x=3x=2

4<y

y=3

3<y

y<4

x<2 2<x

x<3

3<x

x<8 8<x
x<7

y<6

y=6

7<x

6<yy<2

y=2

2<y

a

e c

b d

h f

j g

k i

Figure 3: A kd-tree for k = 2 and a rectangular
range query. The nodes correspond to split lines.

split-value s of the X-coordinates. Then we split D
by the split-line X = s into subsets:

D<s = {(x, y) ∈ D; x < s} = D ∩ {X < s}
D>s = {(x, y) ∈ D; x > s} = D ∩ {X > s}.

For both sets we proceed with the Y-coordinate
and split-lines Y = t1 and Y = t2. We repeat
the process recursively with the constructed sub-
sets. Thus, we obtain a binary tree, namely the 2-
dimensional kd-tree of the point set D, as shown
in Figure 3. Each internal node of the tree corre-
sponds to a split-line. For every node v of the 2-
dim. kd-tree we define the rectangle R(v), which is
the intersection of halfplanes corresponding to the
path from the root to v. For the root r, R(r) is the
plane itself; for the sons of r, say le f t and right, we
produce to halfplanes R(le f t) and R(right) and so
on. The set of rectangles {R(l) : l is a leaf} gives
a partition of the plane into rectangles. Every R(l)
has exactly one point of D inside.

This structure supports range queries of axis-
parallel rectangles. For example, if Q is an axis-
parallel rectangle, the set of sites v ∈ D with v ∈ Q

can be computed efficiently. We simply have to
compute all nodes v with:

R(v) ∩Q 6= ∅.

Additionally we have to test whether the points
inside the subtree of v are inside Q.

The efficiency of the kd-tree with respect to range
queries depends on the depth of the tree. A bal-
anced kd-tree can be easily constructed. We sort
the X- and Y-coordinates. With this order we re-
cursively split the set into subsets of equal size
in time O(log n). The construction runs in time
O(n log n). Altogether the following theorem holds:

Theorem 4 A balanced kd-tree for n points in the
plane can be constructed in O(n log n) and needs
O(n) space. A range query with an axis-parallel
rectangle can be answered in time O(

√
n + a), where

a denotes the size of the answer.

2.3 Height Field Visualization

A special area in 3D visualization is the rendering
of large terrains, or, more generally, of height fields.
A height field is usually given as a uniformly-
gridded square array h : [0, N − 1]2 → R, N ∈ I,
of height values, where N is typically in the order
of 16,384 or more (see Figure 4). In practice, such
a raw height field is often stored in some image file
format, such as GIF. A regular grid is, for instance,
one of the standard forms in which the US Geo-
logical Survey publishes their data, known as the
Digital Elevation Model (DEM) [32].

Alternatively, height fields can be stored as tri-
angular irregular networks (TINs) (see Figure 5).
They can adapt much better to the detail and fea-
tures (or lack thereof) in the height field, so they
can approximate any surface at any desired level of
accuracy with fewer polygons than any other rep-
resentation [63]. However, due to their much more
complex structure, TINs do not lend themselves as
well as more regular representations to interactive
visualization.

The problem in terrain visualization is a low view-
point directed at the horizon: then, there are a few
parts of the terrain that are very close, while the
majority of the visible terrain is at a larger distance.
Close parts of the terrain should be rendered with
high detail, while distant parts should be rendered
with very little detail in order to maintain a high
frame rate.

Siggraph 2003 Tutorial 16

8 Zachmann/Langetepe: Geometric Data Structures for CG

Figure 4: A height field approximated by a grid
[15].

Figure 5: The same height field approximated by
a TIN.

T-vertices!

4 8

Figure 6: In order to use quadtrees for defining a
height field mesh, it should be balanced.

Figure 7: A quadtree defines a recursive subdivi-
sion scheme yielding a 4-8 mesh. The dots denote
the newly added vertices. Some vertices have de-
gree 4, some 8 (hence the name).

In order to solve this problem, a data structure is
needed that allows to quickly determine the desired
level of detail in each part of the terrain. Quadtrees
are such a data structure, in particular, since they
seem to be a good compromise between the sim-
plicity of non-hierarchical grids and the good adap-
tivity of TINs. The general idea is to construct
a quadtree over the grid, and then traverse this
quadtree top-down in order to render it. At each
node, we decide whether the detail offered by ren-
dering it is enough, or if we have to go down fur-
ther.

One problem with quadtrees (and quadrangle-
based data structures in general) is that nodes are
not quite independent of each other. Assume we
have constructed a quadtree over some terrain as
depicted in Figure 6. If we render that as-is, then
there will be a gap (a.k.a. crack) between the top

left square and the fine detail squares inside the top
right square. The vertices causing this problem are
called T-vertices. Triangulating them would help in
theory, but in practice this leads to long and thin
triangles which have problems on their own. The
solution is, of course, to triangulate each node.

Thus, a quadtree offers a recursive subdivision
scheme to define a triangulated regular grid (see
Figure 7): start with a square subdivided into two
right-angle triangles; with each recursion step, sub-
divide the longest side of all triangles (the hy-
pothenuse) yielding two new right-angle triangles
each (hence this scheme is sometimes referred to as
“longest edge bisection”) [64]. This yields a mesh
where all vertices have degree 4 or 8 (except the
border vertices), which is why such a mesh is often
called a 4-8 mesh.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 9

0 1 2 3 4

blue

level

red

red
blue

Figure 8: The 4-8 subdivision can be generated
by two interleaved quadtrees. The solid lines con-
nect siblings that share a common father.

Figure 9: The red quadtree can be stored in the
unused “ghost” nodes of the blue quadtree.

This subdivision scheme induces a directed acyclic
graph (DAG) on the set of vertices: vertex j is a
child of i if it is created by a split of a right angle
at vertex i. This will be denoted by an edge (i, j).
Note that almost all vertices are created twice (see
Figure 7), so all nodes in the graph have 4 children
and 2 parents (except the border vertices).

During rendering, we will choose cells of the sub-
division at different levels. Let M0 be the fully
subdivided mesh (which corresponds to the origi-
nal grid) and M be the current, incompletely subdi-
vided mesh. M corresponds to a subset of the DAG
of M0. The condition of being crack-free can be re-
formulated in terms of the DAGs associated with
M0 and M:

M is crack-free ⇔
M does not have any T-vertices ⇔
∀(i, j) ∈ M : (i′, j) ∈ M, where parent(j) = {i, i′}

(1)

In other words: you cannot subdivide one trian-
gle alone, you also have to subdivide the one on
the other side. During rendering, this means that if
you render a vertex, then you also have to render
all its ancestors (remember: a vertex has 2 parents).

Rendering such a mesh generates (conceptually)
a single, long list of vertices that are then fed into
the graphics pipeline as a single triangle strip. The
pseudo-code for the algorithm looks like this (sim-
plified):

submesh(i,j)
if error(i) < τ then

return

end if
if Bi outside viewing frustum then

return
end if
submesh(j, cl)
V += pi
submesh(j, cr)

where error(i) is some error measure for vertex i,
and Bi is the sphere around vertex i that completely
encloses all descendant triangles.

Note that this algorithm can produce the same
vertex multiple times consecutively; this is easy
to check, of course. In order to produce one strip,
the algorithm has to copy older vertices to the cur-
rent front of the list at places where it makes a
“turn”; again, this is easy to detect, and the inter-
ested reader is referred to [64].

One can speed up the culling a bit by noticing
that if Bi is completely inside the frustum, then we
do not need to test the child vertices any more.

We still need to think about the way we store our
terrain subdivision mesh. Eventually, we will want
to store it as a single linear array for two reasons:

1. The tree is complete, so it really would not make
sense to store it using pointers.

2. We want to map the file that holds the tree into
memory as-is (for instance, with Unix’ mmap
function), so pointers would not work at all.

We should keep in mind, however, that with cur-
rent architectures, every memory access that can
not be satisfied by the cache is extremely expensive
(this is even more so with disk accesses, of course).

Siggraph 2003 Tutorial 16

10 Zachmann/Langetepe: Geometric Data Structures for CG

physical
space

space

cellnode

computational

ª

⊕

⊕

ª

ª

⊕

⊕

ª

ª ⊕

ª

⊕ ⊕

⊕ª ⊕
?

Figure 10: A scalar field is often given in the form
of a curvilinear grid. By doing all calculations in
computational space, we can usually save a lot of
computational effort.

Figure 11: Cells straddling the isosurface are tri-
angulated according to a lookup table. In some
cases, several triangulations are possible, which
must be resolved by heuristics.

The simplest way to organize the terrain vertices
is a matrix layout. The disadvantage is that there
is no cache locality at all across the major index. In
order to improve this, people often introduce some
kind of blocking, where each block is stored in ma-
trix and all blocks are arranged in matrix order, too.
Unfortunately, Lindstrom and Pascucci [64] report
that this is, at least for terrain visualization, worse
than the simple matrix layout by a factor 10!

Enter quadtrees. They offer the advantage that
vertices on the same level are stored fairly close
in memory. The 4-8 subdivision scheme can be
viewed as two quadtrees which are interleaved (see
Figure 8): we start with the first level of the “red”
quadtree that contains just the one vertex in the
middle of the grid, which is the one that is gen-
erated by the 4-8 subdivision with the first step.
Next comes the first level of the “blue” quadtree
that contains 4 vertices, which are the vertices gen-
erated by the second step of the 4-8 subdivision
scheme. This process repeats logically. Note that
the blue quadtree is exactly like the red one, except
it is rotated by 45°. When you overlay the red and
the blue quadtree you get exactly the 4-8 mesh.

Notice that the blue quadtree contains nodes that
are outside the terrain grid; we will call these nodes
“ghost nodes”. The nice thing about them is that
we can store the red quadtree in place of these ghost
nodes (see Figure 9). This reduces the number
of unused elements in the final linear array down
to 33%.

During rendering we need to calculate the indices
of the child vertices, given the three vertices of a

triangle. It turns out that by cleverly choosing the
indices of the top-level vertices this can be done as
efficiently as with a matrix layout.

The interested reader can find more about this
topic in Lindstrom et al. [63], Lindstrom and Pas-
cucci [64], Balmelli et al. [8], Balmelli et al. [7], and
many others.

2.4 Isosurface Generation

One technique (among many others) of visualizing
a 3-dimenional volume is to extract isosurfaces and
render those as a regular polygonal surface. It can
be used to extract the surfaces of bones or organs in
medical scans, such as MRI or CT.

Assume for the moment that we are given a
scalar field f : R3 → R. Then the task of finding
an isosurface would “just” be to find all solutions
(i.e., all roots) of the equation f (~x) = t.

Since we live in a discrete world (at least in com-
puter graphics), the scalar field is usually given in
the form of a curvilinear grid : the vertices of the
cells are called nodes, and we have one scalar and a
3D point stored at each node (see Figure 10). Such
a curvilinear grid is usually stored as a 3D array,
which can be conceived as a regular 3D grid (here,
the cells are often called voxels).

The task of finding an isosurface for a given value
t in a curvilinear grid amounts to finding all cells of
which at least one node (i.e., corner) has a value
less than t and one node has a value greater than
t. Such cells are then triangulated according to a
lookup table (see Figure 11). So, a simple algo-

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 11

x

y
x=0 m 0 m 0

y=0 1

Figure 12: Octrees offer a simple way to compute
isosurfaces efficiently.

Figure 13: Volume data layout should match the
order of traversal of the octree.

rithm works as follows [65]: compute the sign for
all nodes (⊕ ,> t , ª ,< t); then consider each
cell in turn, use the eight signs as an index into the
lookup table, and triangulate it (if at all).

Notice that in this algorithm we have only used
the 3D array — we have not made use at all of the
information exactly where in space the nodes are
(except when actually producing the triangles). We
have, in fact, made a transition from computational
space (i.e., the curvilinear grid) to computational
space (i.e., the 3D array). So in the following, we
can, without loss of generality, restrict ourselves to
consider only regular grids, that is, 3D arrays.

The question is, how can we improve the exhaus-
tive algorithm. One problem is that we must not
miss any little part of the isosurface. So we need a
data structure that allows us to discard large parts
of the volume where the isosurface is guaranteed to
not be. This calls for octrees.

The idea is to construct a complete octree over
the cells of the grid [95] (for the sake of simplic-
ity, we will assume that the grid’s size is a power
of two). The leaves point to the lower left node
of their associated cell (see Figure 12). Each leaf ν
stores the minimum νmin and the maximum νmax
of the 8 nodes of the cell. Similarly, each inner node
of the octree stores the min/max of its 8 children.

Observe that an isosurface intersects the volume
associated with a node ν (inner or leaf node) if and
only if νmin ≤ t ≤ νmax. This already suggests
how the algorithm works: start with the root and
visit recursively all the children where the condi-
tion holds. At the leaves, construct the triangles as
usual.

This can be accelerated further by noticing that
if the isosurface crosses an edge of a cell, then that
edge will be visited exactly four times during the
complete procedure. Therefore, when we visit an

edge for the first time, we compute the vertex of the
isosurface on that edge, and store the edge together
with the vertex in a hash table. So whenever we
need a vertex on an edge, we first try to look up
that edge in the hash table. Our observation also
allows us to keep the size of the hash table fairly
low: when an edge has been visited for the fourth
time, then we know that it cannot be visited any
more; therefore, we remove it from the hash table.

2.5 Ray Shooting

Ray shooting is an elementary task that frequently
arises in ray tracing, volume visualization, and in
games for collision detection or terrain following.
The task is, basically, to find the earliest hit of a
given ray when following that ray through a scene
composed of polygons or other objects.

A simple idea to avoid checking the ray against
all objects is to partition the universe into a regular
grid (see Figure 14). With each cell we store a list
of objects that occupy that cell (at least partially).
Then, we just walk along the ray from cell to cell,
and check the ray against all those objects that are
stored with that cell.

In this scheme (and others), we need a technique
called mailboxes that prevents us from checking the
ray twice against the same object [38]: every ray
gets a unique ID (we just increment a global vari-
able holding that ID whenever we start with a new
ray); during traversal, we store the ray’s ID with
the object whenever we have performed an inter-
section test with it. But before doing an intersec-
tion test with an object, we look into its mailbox
whether or not the current ray’s ID is already there;
if so, then we know that we have already performed
the intersection test in an earlier cell.

Siggraph 2003 Tutorial 16

12 Zachmann/Langetepe: Geometric Data Structures for CG

Figure 14: Ray shooting can be implemented ef-
ficiently with an octree.

Figure 15: The same scenario utilizing an octree.

In the following, we will present two methods
that both utilize octrees to further reduce the num-
ber of objects considered.

2.5.1 3D Octree

A canonical way to improve any grid-based method
is to construct an octree (see Figure 15). Here, the
octree leaves store lists of objects (or, rather, point-
ers to objects). Since we are dealing now with poly-
gons and other graphical objects, the leaf rule for
the octree construction process must be changed
slightly:

1. maximum depth reached; or,
2. only one polygon/object occupies the cell.

We can try to better approximate the geometry of
the scene by changing the rule to stop only when
there are no objects in the cell (or the maximum
depth is reached).

How do we traverse an octree along a given ray?
Like in the case of a grid, we have to make “hori-
zontal” steps, which actually advance along the ray.
With octrees, though, we also need to make “verti-
cal” steps, which traverse the octree up or down.

All algorithms for ray shooting with octrees can
be classified into two classes:

• Bottom-up: this method starts at that leaf in the
octree that contains the origin of the ray; from
there it tries to find that neighbor cell that is
stabbed next by the ray, etc.

• Top-down: this method starts at the root of the
octree, and tries to recurse down into exactly
those nodes and leaves that are stabbed by the
ray.

Here, we will describe a top-down method [78].
The idea is to work only with the ray parameter in
order to decide which children of a node must be
visited.

Let the ray be given by

~x = ~p + t~d

and a voxel v by

[xl , xh]× [yl , yh]× [zl , zh]

In the following, we will describe the algorithm as-
suming that all di > 0; later, we will show that the
algorithm works also for all other cases.

First of all, observe that if we already have the
line parameters of the intersection of the ray with
the borders of a cell, then it is trivial to compute the
line intervals half-way in between (see Figure 16):

tm
α =

1
2

(tl
α + th

α) , α ∈ {x, y, z} (2)

So, for 8 children of a cell, we need to compute only
three new line parameters. Clearly, the line inter-
sects a cell if and only if max{tl

i} < min{th
j }.

The algorithm can be outlined as follows:

traverse(v, tl , th)
compute tm

determine order in which sub-cells are hit by the ray
for all sub-cells vi that are hit do

traverse(vi, tl |tm, tm|th)
end for

where tl |tm means that we construct the lower bound-
ary for the respective cell by passing the appropri-
ate components from tl and tm.

In order to determine the order in which sub-
cells should be traversed, we first need to determine

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 13

th
x

tl
x

tl
y

tm
x

tm
y

th
y

tm
y > tl

x

tm
y < tl

x

Figure 16: Line parameters are trivial to compute
for children of a node.

Figure 17: The sub-cell that must be traversed first
can be found by simple comparisons. Here, only
the case tl

x > tl
y is depicted.

which sub-cell is being hit first by the ray. In 2D,
this is accomplished by two comparisons (see Fig-
ure 17). Then, the comparison of tm

x with tm
y tells

us which cell is next.
In 3D, this takes a little bit more work, but is es-

sentially the same. First, we determine on which
side the ray has been entering the current cell by
Table 1.

Next, we determine the first sub-cell to be vis-
ited by Table 2 (see Figure 18 for the numbering
scheme). The first column is the entering side de-
termined in the first step. The third column yields
the index of the first sub-cell to be visited: start
with an index of zero; if one or both of the con-
ditions of the second column hold, then the corre-
sponding bit in the index as indicated by the third
column should be set.

Finally, we can traverse all sub-cells according to
Table 3, where “ex.” means the exit side of the ray
for the current sub-cell.

If the ray direction contains a negative compo-
nent(s), then we just have to mirror all tables along
the respective axis (axes) conceptually. This can be
implemented efficiently by an XOR operation.

2.5.2 5D Octree

In the previous, simple algorithm, we still walk
along a ray every time we shoot it into the scene.
However, rays are essentially static objects, just like
the geometry of the scene! This is the basic obser-
vation behind the following algorithm [3,6]. Again,
it makes use of octrees to adaptively decompose the
problem.

0 4

6

3 7

5

2

x

y

z

Figure 18: Sub-cells are numbered according to
this scheme.

The underlying technique is a discretization of
rays, which are 5-dimenional objects. Consider a
cube enclosing the unit sphere of all directions. We
can identify any ray’s direction with a point on
that cube, hence it is called direction cube (see Fig-
ure 19). The nice thing about it is that we can now
perform any hierarchical partitioning scheme that
works in the plane, such as an octree: we just apply
the scheme individually on each side.

Using the direction cube, we can establish a one-
to-one mapping between direction vectors and points
on all 6 sides of the cube, i.e.,

S2 ↔ [−1, +1]2 × {+x,−x, +y,−y, +z,−z}

We will denote the coordinates on the cube’s side
by u and v.

Within a given universe B = [0, 1]3 (we assume
it is a box), we can represent all possibly occurring
rays by points in

R = B× [−1, +1]2

× {+x,−x, +y,−y, +z,−z} (3)

Siggraph 2003 Tutorial 16

14 Zachmann/Langetepe: Geometric Data Structures for CG

max{tl
i} Side

tl
x YZ

tl
y XZ

tl
z XY

Side condition index bits

XY
tm
z < tl

x 0
tm
y < tl

x 1

XZ
tm
x < tl

y 0
tm
z < tl

y 2

YZ
tm
y < tl

x 1
tm
z < tl

x 2

current exit side
sub-cell YZ XZ XY

0 4 2 1
1 5 3 ex
2 6 ex 3
3 7 ex ex
4 ex 6 5
5 ex 7 ex
6 ex ex 7
7 ex ex ex

Table 1: Determines the enter-
ing side.

Table 2: Determines the first
sub-cell.

Table 3: Determines the traver-
sal order of the sub-cells.

u
v

u

v

~d

=+

Figure 19: With the direction cube, we can dis-
cretize directions, and organize them with any hi-
erarchical partitioning scheme.

Figure 20: A uv interval on the direction cube
plus a xyz interval in 3-space yield a beam.

which can be implemented conveniently by 6 copies
of 5-dimenional boxes.

Returning to our goal, we now build six 5-dimen-
sional octrees as follows. Associate (conceptually)
all objects with the root. Partition a node in the
octree, if

1. there are too many objects associated with it;
and

2. the node’s cell is too large.

If a node is partitioned, we must also partition its
set of objects and assign each subset to one of the
children.

Observe that each node in the 5D octree defines a
beam in 3-space: the xyz-interval of the first three
coordinates of the cell define a box in 3-space, and
the remaining two uv-intervals define a cone in 3-
space. Together (more precisely, their Minkowski
sum) they define a beam in 3-space that starts at
the cell’s box and extends in the general direction
of the cone (see Figure 20).

Since we have now defined what a 5D cell of
the octree represents, it is almost trivial to define

how objects are assigned to sub-cells: we just com-
pare the bounding volume of each object against the
sub-cells 3D beam. Note that an object can be as-
signed to several sub-cells (just like in regular 3D
octrees). The test whether or not an object inter-
sects a beam could be simplified further by enclos-
ing a beam with a cone, and then checking the ob-
jects bounding sphere against that cone. This just
increases the number of false positives a little bit.

Having computed the six 5D octrees for a given
scene, ray tracing through that octree is almost
trivial: map the ray onto a 5D point via the direc-
tion cube; start with the root of that octree which
is associated to the side of the direction cube onto
which the ray was mapped; find the leaf in that oc-
tree that contains the 5D point (i.e., the ray); check
the ray against all objects associated with that leaf.

By locating a leaf in one of the six 5D octrees,
we have discarded all objects that do not lie in the
general direction of the ray. But we can optimize
the algorithm even further.

First of all, we sort all objects associated with a
leaf along the dominant axis of the beam by their

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 15

1 2 3 4

Figure 21: By sorting objects with in each 5D leaf,
we can often stop checking ray intersection quite
early.

Figure 22: By truncating the beam (or rather, the
list of objects) we can save a lot of memory usage
of a 5D octree, while reducing performance only
insignificantly.

minimum (see Figure 21). If the minimum coordi-
nate of an object along the dominant axis is greater
than the current intersection point, then we can
stop — all other possible intersection points are far-
ther away.

Second, we can utilize ray coherence as follows.
We maintain a cache for each level in the ray tree
that stores the leaves of the 5D octrees that were
visited last time. When following a new ray, we
first look into the octree leaf in the cache whether
it is contained therein, before we start searching for
it from the root.

Another trick (that works with other ray acceler-
ation schemes as well) is to exploit the fact that we
do not need to know the first occluder between a
point on a surface and a light source. Any occluder
suffices to assert that the point is in shadow. So
we also keep a cache with each light source which
stores that object (or a small set) which has been an
occluder last time.

Finally, we would like to mention a memory op-
timization technique for 5D octrees, because they
can occupy a lot of memory. It is based on the ob-
servation that within a beam defined by a leaf of the
octree the objects at the back (almost) never inter-
sect with a ray emanating from that cell (see Fig-
ure 22). So we store objects with a cell only if they
are within a certain distance. Should a ray not hit
any object, then we start a new intersection query
with another ray that has the same direction and a

starting point just behind that maximum distance.
Obviously, we have to make a trade-off between
space and speed here, but when chosen properly,
the cut-off distance should not reduce performance
too much while still saving a significant amount of
memory.

3 BSP Trees

BSP trees (short for binary space partitioning trees)
can be viewed as a generalization of k-d trees. like
k-d trees, BSP trees are binary trees, but now the
orientation and position of a splitting plane can be
chosen arbitrarily. To get a feeling for a BSP tree,
Figure 23 shows an example for a set of objects.

The definition of a BSP (short for BSP tree) is
fairly straight-forward. Here, we will present a re-
cursive definition. Let h denote a plane in Rd, h+

and h− denote the positive and negative half-space,
resp.

Definition 1 (BSP tree)
Let S be a set of objects (points, polygons, groups
of polygons, or other spatial objects), and let S(ν)
denote the set of objects associated with a node ν.
Then the BSP T(S) is defined by

1. If |S| ≤ 1, then T is a leaf ν which stores S(ν) :=
S.

Siggraph 2003 Tutorial 16

16 Zachmann/Langetepe: Geometric Data Structures for CG

h3

h4

h2

h1

h4

h2

h1

h3

Figure 23: An example BSP tree for a set of ob-
jects.

Figure 24: Left: an auto-partition. Right: an ex-
ample configuration of which any auto-partition
must have quadratic size.

2. If |S| > 1, then the root of T is a node ν; ν stores
a plane hν and a set S(ν) := {x ∈ S|x ⊆ hν}
(this is the set of objects that lie completely
inside hν; in 3D, these can only be polygons,
edges, or points). ν also has two children T−
and T+; T− is the BSP for the set of objects
S− := {x ∩ h−ν |x ∈ S}, and T+ is the BSP for
the set of objects S+ := {x ∩ h+

ν |x ∈ S}.
This can readily be turned into a general algorithm
for constructing BSPs. Note that a splitting step
(i.e., the construction of an inner node) requires us
to split each object into two disjoint fragments if it
straddles the splitting plane of that node. In some
applications though (such as ray shooting), this is
not really necessary; instead, we can just put those
objects into both subsets.

Note that with each node of the BSP a convex
cell is associated (which is possibly unbounded): the
“cell” associated with the root is the whole space,
which is convex; splitting a convex region into two
parts yields two convex regions. In Figure 23, the
convex region of one of the leaves has been high-
lighted as an example.

With BSPs, we have much more freedom to place
the splitting planes than with k-d trees. However,
this also makes that decision much harder (as al-
most always in life). If our input is a set of poly-
gons, then a very common approach is to choose
one of the polygons from the input set and use
this as the splitting plane. This is called an auto-
partition (see Figure 24).

near
polygons

far
polygons

Figure 25: BSP trees are an efficient data structure
encoding visibility order of a set of polygons.

While an auto-partition can have Ω(n2) frag-
ments, it is possible to show the following in 2D
[23,74].

Lemma 1
Given a set S of n line segments in the plane, the
expected number of fragments in an auto-partition
T(S) is in O(n log n); it can be constructed in time
O(n2 log n).

In higher dimensions, it is not possible to show
a similar result. In fact, one can construct sets of
polygons such that any BSP (not just auto-partitions)
must have Ω(n2) many fragments (see Figure 24
for a “bad” example for auto-partitions).

However, all of these examples producing quadratic
BSPs violate the principle of locality: polygons are
small compared to the extent of the whole set. In
practice, no BSPs have been observed that exhibit
the worst-case quadratic behavior [68].

3.1 Rendering Without a Z-Buffer

BSP trees were introduced to computer graphics by
Fuchs et al [36]. At the time, hidden-surface re-
moval was still a major obstacle towards interactive
computer graphics, because a z-buffer was just too
costly in terms of memory.

In this section, we will describe how to solve this
problem, not so much because the application itself
is relevant today, but because it nicely exhibits one
of the fundamental “features” of BSP trees: they
enable efficient enumeration of all polygons in vis-
ibility order from any point in any direction.1

1 Actually, the first version of Doom used exactly this algorithm
to achieve its fantastic frame rate (at the time) on PCs even with-
out any graphics accelerator.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 17

A simple algorithm to render a set of polygons
with correct hidden-surface removal, and without
a z-buffer, is the painter’s algorithm: render the
scene from back to front as seen from the current
viewpoint. Front polygons will just overwrite the
contents of the frame buffer, thus effectively hid-
ing the polygons in the back. There are polygon
configurations where this kind of sorting is not al-
ways possible, but we will deal with that later.

How can we efficiently obtain such a visibility or-
der of all polygons? Using BSP trees, this is al-
most trivial: starting from the root, first traverse
the branch that does not contain the viewpoint,
then render the polygon stored with the node, then
traverse the other branch containing the viewpoint
(see Figure 25).

For sake of completeness, we would like to men-
tion a few strategies to optimize this algorithm.
First of all, we should make use of the viewing
direction by skipping BSP branches that lie com-
pletely behind the viewpoint.

Furthermore, we can perform back-face culling
as usual (which does not cause any extra costs). We
can also perform view-frustum culling by testing
all vertices of the frustum against the plane of a
BSP node.

Another problem with the simple algorithm is
that a pixel is potentially written to many times
(this is exactly the pixel complexity), although only
the last write “survives”. To remedy this, we must
traverse the BSP from front to back. But in order to
actually save work, we also need to maintain a 2D
BSP for the screen that allows us to quickly discard
those parts of a polygon that fall onto a screen area
that is already occupied. In that 2D screen BSP, we
mark all cells either “free” or “occupied”. Initially,
it consists only of a “free” root node. When a new
polygon is to be rendered, it is first run through
the screen BSP, splitting it into smaller and smaller
convex parts until it reaches the leaves. If a part
reaches a leaf that is already occupied, nothing hap-
pens; if it reaches a free leaf, then it is inserted be-
neath that leaf, and this part is drawn on the screen.

3.2 Representing Objects with BSPs

BSPs offer a nice way to represent volumetric polyg-
onal objects, which are objects consisting of poly-
gons that are closed, i.e., they have an “inside” and
an “outside”. Such a BSP representation of an ob-
ject is just like an ordinary BSP for the set of poly-

3

out

out

out

out

out

in
in

6

7

4
2

1in

5

2 3

1

6

in out

out
5 4

7in out out

in out

Figure 26: Each leaf cell of BSP representation
of an object is completely inside or completely
outside.

A B

∩∪ \ ª

Figure 27: Using BSPs, we can efficiently com-
pute these boolean operations on solids.

gons (we can, for instance, build an auto-partition),
except that here we stop the construction process
(see Definition 1) only when the set is empty. These
leaves represent homogeneous convex cells of the
space partition, i.e., they are completely “in” our
“out”.

Figure 26 shows an example for such a BSP rep-
resentation. In this section, we will follow the con-
vention that normals point to the “outside”, and
that the right child of a BSP node lies in the positive
half-space and the left child in the negative half-
space. So, in a real implementation that adheres to
these conventions, we can still stop the construction
when only one polygon is left, because we know
that the left child of such a pseudo-leaf will be “in”
and the right one will be “out”.

Given such a representation, it is very easy and
efficient, for instance, to determine whether or not
a given a point is inside an object. In the next sec-
tion, we will describe an algorithm for solving a
slightly more difficult problem.

3.3 Boolean Operations

In solid modeling, a very frequent task is to com-
pute the intersection or union of a pair of objects.
More generally, given two objects A and B, we want
to compute C := A op B, where op ∈ {∪,∩, \,ª}
(see Figure 27). This can be computed efficiently

Siggraph 2003 Tutorial 16

18 Zachmann/Langetepe: Geometric Data Structures for CG

T
H

Figure 28: The fundamental step of the construc-
tion is this simple operation, which merges a BSP
and a plane.

R(T)

"leaf"

HT

pT

"anti-parallel on"

pT

"pos./pos."

HTP HT

"mixed"

HH
H

Figure 29: The main building block of the algo-
rithm consists of these four cases (plus analogous
ones).

+ →→

Figure 30: Computation of boolean operations is
based on a general merge operation.

using the BSP representation of objects [67,68].
Furthermore, the algorithm is almost the same for
all of these operations: only the elementary step
that processes two leaves of the BSPs is different.

We will present the algorithm for boolean oper-
ations bottom-up in three steps. The first step is
a sub-procedure for computing the following sim-
ple operation: given a BSP T and a plane H, con-
struct a new BSP T̂ whose root is H, such that
T̂− , T ∩ H− , T̂+ , T ∩ H+ (see Figure 28).
This basically splits a BSP tree by a plane and then
puts that plane at the root of the two halves. Since
we will not need the new tree T̂ explicitly, we will
describe only the splitting procedure (which is the
bulk of the work anyway).
First, we need to define some nomenclature:

T−, T+ = left and right child of T, resp.

R(T) = region of the cell of node T (which is convex)

T⊕, Tª =portion of T on the posi-
tive/negative side of H, resp.

Finally, we would like to define a node T by the
tuple (HT , pT , T−, T+), where H is the splitting

plane, p is the polygon associated with T (with
p ⊂ H).

The pseudo-code below is organized into 8 cases,
of which the code details 4 (see Figure 29):

split-tree(T, H, P)→ (Tª , T⊕)
{P = H ∩ R(T)}
case T is a leaf :

return (Tª , T⊕) ← (T, T)
case “anti-parallel” and “on” :

return (Tª , T⊕) ← (T+ , T−)
case “pos./pos.” :

(T+ª , T+⊕) ← split-tree(T+ , H)

Tª ← (HT , pT , T− , T+ª)

T⊕ ← T+⊕
case “mixed” :

(T+ª , T+⊕) ← split-tree(T+ , H, P ∩ R(T+))

(T−ª , T−⊕) ← split-tree(T− , H, P ∩ R(T−))

Tª ← (HT , pT ∩ H− , T−ª , T+ª)

T⊕ ← (HT , pT ∩ H+ , T−⊕ , T+⊕)

return (Tª , T⊕)
end case

This might look a little bit confusing at first sight,
but it is really pretty simple. A few notes might be
in order.

The polygon P is only needed in order to find
the case applying at each recursion. Computing
P ∩ R(T+) might seem very expensive. However,
it can be computed quite efficiently by computing
P∩H+

T , which basically amounts to finding the two
edges that intersect with HT . Please see Chin [18]
for more details on how to detect the correct case.

It seems surprising at first sight that function
split-tree does almost no work — it just tra-
verses the BSP tree, classifies the case found at each
recursion, and computes p ∩ H+ and p ∩ H−.

The previous algorithm is already the main build-
ing block of the overall boolean operation algo-
rithm. The next step towards that end is an al-
gorithm that performs a so-called merge operation
on two BSP trees T1 and T2. Let Ci denote the set
of elementary cells of a BSP, i.e., all regions R(Lj)
of tree Ti where Lj are all the leaves. Then the
merge of T1, T2 yields a new BSP tree T3 such that
C3 = {c1 ∩ c2|c1 ∈ C1, c2 ∈ C2, c1 ∩ c2 6= ∅} (see
Figure 30).

The merge operation consists of two cases. The
first, almost trivial, case occurs when one of the two
operands is a leaf: then at least one of the two re-
gions is homogenous, i.e., completely inside or out-
side. In the other case, both trees are inhomoge-

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 19

split merge merge

combine

Figure 31: A graphical depiction of the merge step in the algorithm for boolean operations on objects
represented by BSP trees.

nous over the same region of space: then, we just
split one of the two with the splitting plane from
the root of the other, and we obtain two pairs of
BPSs, that are smaller, and still cover the same re-
gions in space; those two pairs can be merged recur-
sively (see Figure 31). The following pseudo-code
describes this recursive procedure more formally:

merge(T1, T2)→ T3
if T1 or T2 is a leaf then

perform the cell-op as required by the boolean op-
eration to be constructed (see below)

else
(Tª2 , T⊕2) ← split-tree(T2 , H1 , . . .)

T−3 ← merge(T−1 , Tª2)

T+
3 ← merge(T+

1 , T⊕2)

T3 ← (H1 , T−3 , T+
3)

end if

The function cell-op is the only place where the
semantic of the general merge operation is special-
ized. When we have reached that point, then we
know that one of the two cells is homogeneous, so
we can just replace it by the other node’s sub-tree
suitably modified according to the boolean opera-
tion. The following table lists the details of this
function (assuming that T1 is the leaf):

Operation T1 Result

∪ in T1
out T2

∩ in T2
out T1

\ in Tc
2

out T1

ª in Tc
2

out T2

Furthermore, we would like to point out that the
merge function is symmetric: it does not matter
whether we partition T2 with H1 or, the other way
round, T1 with H2 — the result will be the same.

3.4 Construction Heuristics

One can prove that in general, auto-partitions have
the same complexity as other partitionings [74,23].
In addition, it has been proven that “fat” objects
(i.e., objects with bounded aspect ration) and “un-
cluttered” scenes admit a BSP with linear size [21,
22].

However, for practical applications, the “hidden”
constants do matter. So, the construction strategy
should produce “good” BSPs. Depending on the ap-
plication itself, however, the definition of exactly
what a “good” BSP tree is can be quite different.
Basically, there are two kinds of applications:

• Classification: These are applications where the
BSP is used to determine the inside/outside sta-
tus of a point, or whether or not a line intersects
with an object.

Siggraph 2003 Tutorial 16

20 Zachmann/Langetepe: Geometric Data Structures for CG

In this case, we try to optimize the balancedness
of the BSP.

• Visibility: These are applications where the BSP
is used to sort the polygons in “visibility order”
such as rendering without z-buffer.

Consequently, we try to minimize the number
of splits, i.e., the size of the BSP.

3.4.1 Convex objects

As an example, consider an convex object. In that
caese, an auto-partition has size O(n), takes time
O(n2) to construct, and is a linear tree. This does
not seem to be a very smart BSP (although it is per-
fectly suitable for visibility ordering).

If we allow arbitrary splitting planes, then we
can balance the BSP much better. The construction
time will be

T(n) = n + 2T(n
2 + αn) ∈ O(n1+δ) , 0 < α < n

2

where α is the fraction of polygons that are split
at each node. The following table shows the actual
complexities for some values of α:

α 0.05 0.2 0.4

n1.15 n2 n7

As mentioned above, the question now is how to
choose the splitting planes. We propose the fol-
lowing simple heuristic:2 Compute a representative
vertex for each polygon (barycenter, bbox center,
etc.). Determine a plane, such that on both sides
are about the same number of points, and such that
all points are far away from the plane (obviously,
this is an optimization).

3.4.2 Cost driven heuristic

In order to derive construction criteria, obviously,
one needs to define the quality of a BSP. An abstract
measure is the cost of a BSP T

C(T) = 1 + P(T−)C(T−) + P(T+)C(T+) (4)

where P(T−) is the probability that the left subtree
T− will be visited under the condition that the tree

2 For the case of convex objects, a heuristic has already been pro-
posed by [86]. However, we believe that their heuristic has some
flaws.

T has been visited (dito for P(T+)). This probabil-
ity depends, of course, on the application the BSP
is going to be used for. For instance, in the case of
inside/outside queries

P(T−) =
Vol(T−)
Vol(T)

Obviously, trying to optimize Equation 4 globally
is prohibitively expensive. Therefore, a local heuris-
tic must be employed to guide the splitting process.
A simple heuristic is the following [68]: estimate
the cost of the subtrees by the number of polygons,
and add a penalty for polygons that are split by the
current node, so that

C(T) = 1 + |S−|α + |S+|α + βs (5)

where S is the set of polygons associated with a
node, s the set of polygons split by a node, and α, β
are two parameters that can be used to make the
BSP more balanced or smaller. ([68] reports that
α = 0.8, . . . , 0.95 and β = 1

4 , . . . , 3
4 are usually

good values to start from.) Again, this is yields an
optimization process, but now it only a local pro-
cess.

If the BSP is to be an auto-partition, then a very
quick approximization of the local optimum yields
very good results: just sort the polygons according
to their size and evaluate Equation 5 for the first k
polygons. Then, choose the one that produces the
least costly BSP (subtree), the rationale being that
the probability that a polygon gets split is propor-
tional to its size, so we try to get rid of them as
early as possible.

An even simpler heuristic was proposed by [36].
Randomly choose k polygons from S and select the
one that produces the least number of splits. They
report that k = 5 yielded near-optimal BSPs (for
visibility ordering).

3.4.3 Non-uniform queries

In the previous section, we assumed that all queries
are uniformly distributed over a certain domain.
This is a valid assumption if nothing is known
about the distribution. On the other hand, if we
know more about it, then we should make use
of this and construct the BSP such that frequent
queries can be answered most quickly.3

3 The same principle is underlying the Huffman encoding scheme.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 21

Indeed, quite often we know more about the queries.
For instance, in ray tracing, the starting points are
usually not uniformly distributed in space; for in-
stance, they usually do not emanate from the inte-
rior of objects. Also, the prominent polygons of an
object are hit more frequently than those that are
within cavities or completely inside.

According to [1], we can estimate the costs of a
query by

C(query) = # nodes visited

≤ depth(BSP) · # stabbed leaf cells

So, according to this, we should minimize the num-
ber of stabbed leaf cells before a polygon hit occurs.
The factors influencing the probability that a ray
hits a polygon are

1. If the angle between a ray and a polygon is large,
then the probability is large.

2. If the polygon is large (relative to the total size
of the object/universe), then the probability is
large.

3. . . .

Let ω(l) denote the density of all rays l over some
domain D; this could be measured, or it could be
derived from the geometry. Let S be the set of poly-
gons over which the BSP is to be built. Assign to
each polygon p a score

score(p) =
∫

D
w(S, p, l)ω(l)dl

where the weight w is defined as

w(S, p, l) = sin2(np, rl)
Area(p)
Area(S)

and np is the normal of p and rl is the direction of
l.

So the algorithm for constructing a BSP adapted
to a given distribution is the following random-
ized greedy strategy: sort all polygons according to
score(p); choose randomly one out of the “top k“
and split the set S. Thus, polygons with a higher
probability of getting hit by the ray tend to end up
higher in the tree.

The BSP thus constructed has been named cus-
tomized BSP by [1]. The authors report that it usu-
ally has about 2× as many polygons as its “obliv-
ious” version, but the queries have to visit only
2−−10× less polygons.

3.4.4 Deferred, self-organizing BSPs

Now, what should we do if we just don’t know the
query distribution, or if it is too expensive to mea-
sure it by experiments? The answer is, of course,
to defer the complete construction of the BSP, in
other words, we only build as much of the BSP that
is absolutely necessary. In addition, we keep a his-
tory (in some form) of all the queries we have seen
so far, so whenever we have to build a new part of
the BSP we base the construction on that history
(as a best guess of the probability distribution of all
queries to come) [2].

As an example, let us consider the problem of de-
tecting intersections between a 3-dim. line segment
and a set of polygons.4

Since a BSP is now no longer completely con-
structed before we use it, the nodes must store ad-
ditional information:

1. the polygon P defining the splitting plane; or, if
it is a preliminary leaf,

2. a list L ⊆ S of polygons associated with it, for
which the subtree has not been built yet.

The algorithm for answering queries with a ray R
now also triggers the construction of the BSP:

testray(R,ν)
if ν is a leaf then

for all P ∈ Lν do
if R intersects P then

return hit
end if

end for
else

ν1 ← child of ν that contains startpoint of R
ν2 ← other child
testray(R,ν1)
if no hit in ν1 then

testray(R,ν2)
end if

end if

Since the line segment is finite (in particular, if it is
short), this algorithm can usually stop much earlier,
but the details have been omitted here.

The initial BPS is just one node (the root) with
L = S, i.e., all polygons of the object or scene.

Now we need to fill in the open issues, namely:

4 Sometimes, this is also called “collision detection”, in particular
in the game programming industry, because we are only inter-
ested in a yes/no answer, while in ray tracing we want to deter-
mine the earliest intersection.

Siggraph 2003 Tutorial 16

22 Zachmann/Langetepe: Geometric Data Structures for CG

1. when do we split a preliminary leaf? (and which
one?)

2. how do we split?

For the “when” question: we keep an access counter
per node, which gets incremented every time that
node is traversed during a query. Whenever one
of the counters is over a certain threshold, then we
split that node (leaf). The threshold can be an abso-
lute value or relative to the sum of all counters.

For the “how” question: we keep a counter per
polygon P ∈ Lν, which is incremented every time
an intersection with P is found. We sort Lν accord-
ing to this counter; this can be done incrementally
whenever one of the counters changes. If a split is
to be performed for ν, then we use the first polygon
from Lν as the splitting plane.

It turns out that many polygons are never hit by
a line segment. Therefore, with this algorithm, a
BSP subtree will never be “wasted” on these poly-
gons, and they will be stored at the end of the lists
at the leaves.

There are other ways to organize the polygon
lists at the leaves: move the polygon currently be-
ing hit to the front of the list; or, swap it with the
one in front of it. However, according to Ar et al.
[2], the strategy that sorts the list seemed to work
best.

According to the same authors, the performance
gain in their experiments was a factor of about 2–
20.

4 Bounding Volume
Hierarchies

Like the previous hierarchical data structures, bound-
ing volume hierarchies (BVHs) are mostly used to
prevent performing an operation exhaustively on
all objects. Like with previously discussed hier-
archical data structures, one can improve a huge
range of applications and queries using BVHs, such
as ray shooting, point location queries, nearest-
neighbor search, view frustum and occlusion culling,
geographical data bases, and collision detection (the
latter will be discussed in more detail below).

Often times, bounding volume (BV) hierarchies
are described as the opposite of spatial partitioning
schemes, such as quadtrees or BSP trees: instead of
partitioning space, the idea is to partition the set
of objects recursively until some leaf criterion is

convex hull

AABB sphere DOP OBB spherical shell

prism cylinder intersection
of other BVs

Figure 32: Some of the most commonly used BVs,
and some less often used ones.

met.5 Here, objects can be anything from points
to complete graphical objects. With BV hierarchies,
almost all queries, which can be implemented with
space partitioning schemes, can also be answered,
too. Example queries and operations are ray shoot-
ing, frustum culling, occlusion culling, point loca-
tion, nearest neighbor, collision detection.

Definition 2 (BV hierarchy)
Let O = {o1, . . . , on} be a set of elementary objects.
A bounding volume hierarchy for O, BVH(O), is
defined by

1. If |O| = e, then BVH(O) := a leaf node that
stores O and a BV of O;

2. If |O| > e, then BVH(O) := a node ν with
n(ν) children ν1, . . . , νn, where each child νi is a
BV hierarchy BVH(Oi) over a subset Oi ⊂ O,
such that

⋃
Oi = O. In addition, ν stores a BV

of O.

The definition mentions two parameters. The
threshold e is often set to 1, but depending on the
application, the optimal e can be much larger. Just
like sorting, when the set of objects is small, it is
often cheaper to perform the operation on all of
them, because recursive algorithms always incur
some overhead.

Another parameter in the definition is the arity.
Mostly, BV hierarchies are constructed as binary
trees, but again, the optimum can be larger. And
what is more, as the definition suggests, the out-
degree of nodes in a BV hierarchy does not neces-
sarily have to be constant, although this often sim-
plifies implementations considerably.

Effectively, these two parameters, e and n(ν),
control the balance between linear search/operation

5 However, we will argue at the end that BV hierarchies are just at
the other end of a whole spectrum of hierarchical data structures.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 23

(which is exhaustive), and a maximally recursive
algorithm.

There are more design choices possible according
to the definition. For inner nodes, it only requires
that

⋃
Oi = O; this means, that the same object

o ∈ O could be associated with several children.
Depending on the application, the type of BVs, and
the construction process, this may not always be
avoidable. But if possible, you should always split
the set of objects into disjoint subsets.

Finally, there is, at least, one more design choice:
the type of BV used at each node. Again, this does
not necessarily mean that each node uses the same
type of BV. Figure 32 shows a number of the most
commonly used BVs. The difference between OBBs
[6] and AABBs is that OBBs can be oriented arbi-
trarily (hence “oriented bounding boxes”).
DOPs [98,56,52] are a generalization of AABBs:
basically, they are the intersection of k slabs. Prisms
and cylinders have been proposed by Barequet et
al. [9] and Weghorst et al. [93], but they seem to
be too expensive computationally. A spherical shell
is the intersection of a shell and a cone (the cone’s
apex coincides with the sphere’s center), and a shell
is the space between two concentric spheres. Fi-
nally, one can always take the intersection of two
or more different types of BVs [51].
There are three characteristic properties of BVs:

• tightness,
• memory usage,
• number of operations needed to test the query

object against a BV.

Often, one has to make a trade-off between these
properties: generally, the type of BV that offers
better tightness also requires more operations per
query and more memory.

Regarding the tightness, one can establish a the-
oretical advantage of OBBs. But first, we need to
define tightness [40].

Definition 3 (Tightness by Hausdorff distance)
Let B be a BV, G some geometry bounded by B, i.e.,
g ⊂ B. Let

h(B, G) = max
b∈B

min
g∈G

d(b, g)

be the directed Hausdorff distance, i.e., the maxi-
mum distance of B to the nearest point in G. (Here,

d is any metric, very often just the Euclidean dis-
tance.) Let

diam(G) = max
g, f∈G

d(g, f)

be the diameter of G.
Then we can define tightness

τ :=
h(B, G)

diam(G)
.

See Figure 33 for an illustration.

Since the Hausdorff distance is very sensitive to
outliers, one could also think of other definitions
such as the following one:

Definition 4 (Tightness by volume)
Let C(ν) b the set of children of a node ν of the
BV hierarchy. Let Vol(ν) be the volume of the BV
stored with ν.
Then, we can define the tightness as

τ :=
Vol(ν)

∑ν′∈C(ν) Vol(ν′)
.

Alternatively, we can define it as

τ :=
Vol(ν)

∑ν′∈L(ν) Vol(ν′)
,

where L(ν) is the set of leaves beneath ν.

Getting back to the tightness definition based on
the Hausdorff distance, we observe a fundamental
difference between AABBs and OBBs [40]:

• The tightness of AABBs depends on the orien-
tation of the enclosed geometry. What is worse
is that the tightness of the children of an AABB
enclosing a surface of small curvature is almost
the same as that of the father.

The worst case is depicted in Figure 34. The
tightness of the father is τ = h/d, while the
tightness of a child is τ′ = h′

d/2 = h/2
d/2 = τ.

• The tightness of OBBs does not depend on the
orientation of the enclosed geometry. Instead,
it depends on its curvature, and it decreases ap-
proximately linearly with the depth in the hier-
archy.

Figure 35 depicts the situation for a sphere. The
Hausdorff distance from an OBB to an enclosed

Siggraph 2003 Tutorial 16

24 Zachmann/Langetepe: Geometric Data Structures for CG

diam(G)

B

G

h(B, G)

d

h

h′

φ Œ/2

h
d

Figure 33: One way to de-
fine tightness is via the directed
Hausdorff distance.

Figure 34: The tightness of
an AABB remains more or less
constant throughout the levels
of a AABB hierarchy for surfaces
of small curvature.

Figure 35: The tightness of an
OBB decreases for deeper lev-
els in a OBB hierarchy for small
curvature surfaces.

spherical arc is h = r(1 − cos φ), while the di-
ameter of the arc is d = 2r sin φ. Thus, the
tightness for an OBB bounding a spherical arc
of degree φ is τ = 1−cos φ

2 sin φ , which approaches 0
linearly as φ → 0.

This makes OBBs seem much more attractive
than AABBs. The price of the much improved
tightness is, of course, the higher computational ef-
fort needed for most queries per node when travers-
ing an OBB tree with a query.

4.1 Construction of BV Hierarchies

Essentially, there are 3 strategies to build BV trees:

• bottom-up,
• top-down,
• insertion

From a theoretical point of view, one could pursue
a simple top-down strategy, which just splits the
set of objects into two equally sized parts, where
the objects are assigned randomly to either subset.
Asymptotically, this usually yields the same query
time as any other strategy. However, in practice,
the query times offered by such a BV hierarchy are
by a large factor worse.

During construction of a BV hierarchy, it is con-
venient to forget about the graphical objects or
primitives, and instead deal with their BVs and
consider those as the atoms. Sometimes, another

simplification is to just approximate each object by
its center (baryenter or bounding box center), and
then deal only with sets of points during the con-
struction. Of course, when the BVs are finally com-
puted for the nodes, then the true extents of the
objects must be considered.

In the following we will describe algorithms for
each construction strategy.

4.1.1 Bottom-up

In this class, we will actually describe two algo-
rithms.

Let B be the set of BVs on the top-most level of
the BV hierarchy that has been constructed so far
[79]. For each bi ∈ B find the nearest neighbor
b′i ∈ B; let di be the distance between bi and b′i .
Sort B with respect to di. Then, combine the first
k nodes in B under a common father; do the same
with the next k elements from B, etc. This yields a
new set B′, and the process is repeated.

Note that this strategy does not necessarily pro-
duce BVs with a small “dead space”: in Figure 36,
the strategy would choose to combine the left pair
(distance = 0), while choosing the right pair would
result in much less dead space.

The second strategy is less greedy in that it com-
putes a tiling for each level. We will describe it first
in 2D [61]. Again, let B be the set of BVs on the
top-most level so far constructed, with |B| = n.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 25

Figure 36: A simple greedy strategy can produce
much “dead space”.

Figure 37: A less greedy strategy combines BVs
by computing a “tiling”.

The algorithm first computes the center ci for each
bi ∈ B. Then, it sorts B along the x-axis with re-
spect to ci

x. Now, the set B is split into
√

n/k vertical
“slices” (again with respect to ci

x). Now, each slice
is sorted according to ci

y and subsequently split into√
n/k “tiles”, so that we end up with k tiles (see

Figure 37). Finally, all nodes in a tile are combined
under one common father, its BV is combined, and
the process repeats with a new set B′.

In Rd it works quite similarly: we just split each
slice repeatedly by d√n/k along all coordinate axes.

4.1.2 Insertion

This construction scheme starts with an empty tree.
Let B be the set of elementary BVs. The following
pseudo-code describes the general procedure:

1: while |B| > 0 do
2: choose next b ∈ B
3: ν := root
4: while ν 6= leaf do
5: choose child ν′,

so that insertion of b into ν′ causes minimal
increase in the costs of the total tree

6: ν := ν′
7: end while
8: end while

All insertion algorithms only vary step 2 and/or 5.
Step 2 is important because a “bad” choice in the
beginning can probably never be made right after-
wards. Step 5 depends on the type of query that is

to be performed on the BV tree. See below for a few
criteria.

Usually, algorithms in this class have complexity
O(n log n).

4.1.3 Top-down

This scheme is the most popular one. It seems to
produce very good hierarchies while still being very
efficient, and usually it can be implemented easily.

The general idea is to start with the complete set
of elementary BVs, split that into k parts, and cre-
ate a BV tree for each part recursively. The splitting
is guided by some heuristic or criterion that (hope-
fully) produces good hierarchies.

4.1.4 Construction criteria

In the literature, there is a vast number of crite-
ria for guiding the splitting, insertion, or merging,
during BV tree construction. (Often, the authors
endow the thus constructed BV hierarchy with a
new name, even though the BVs utilized are well
known.) Obviously, the criterion depends on the
application for which the BV tree is to be used. In
the following, we will present a few of these crite-
ria.

For ray tracing, if we can estimate the probabil-
ity that a ray will hit a child box when it has hit the
father box, then we know how likely it is, that we
need to visit the child node when we have visited
the father node. Let us assume that all rays em-
anate from the same origin (see Figure 38). Then,

Siggraph 2003 Tutorial 16

26 Zachmann/Langetepe: Geometric Data Structures for CG

ν

ν′

θν′

θν

Figure 38: The probability of a ray hitting a child
box can be extimated by the surface area.

we can observe that the probability that a ray s hits
a child box ν′ under the condition that it has hit the
father box ν is

P(s hits ν′|s hits ν) =
θν′

θν
≈ Area(ν′)

Area(ν)
(6)

where Area denotes the surface area of the BV, and
θ denotes the solid angle subtended by the BV. This
is because for a convex object, the solid angle sub-
tended by it, when seen from large distances, is ap-
proximately proportional to its surface area [39].
So, a simple strategy is to just minimize the surface
area of the BVs of the children that are produced by
a split.6

A more elaborate criterion tries to establish a cost
function for a split and minimize that. For ray trac-
ing, this cost function can be approximated by

C(ν1, ν2) =
Area(ν1)
Area(ν)

C(ν1) +
Area(ν2)
Area(ν)

C(ν2)

(7)
where ν1, ν2 are the children of ν. The optimal split
B = B1 ∪ B2 minimizes this cost function:

C(B1, B2) = min
B′∈P(B)

C(B′, B \ B′)

where B1, B2 are the subsets of elementary BVs (or
objects) assigned to the children. Here, we have as-
sumed a binary tree, but this can be extended to
other arities analogously.

Of course, such a minimization is too expensive
in practice, in particular, because of the recursive
definition of the cost function. So, Fussell and
Subramanian [37], Müller et al. [66], and Beck-
mann et al. [10] have proposed the following ap-
proximation algorithm:

6 For the insertion scheme, the strategy is to choose that child
node whose area is increased least [39].

for α = x, y, z do
sort B along axis α with respect to the BV centers

find

kα = min
j=0...n

{Area(b1 , . . . , bj)
Area(B)

j +

Area(bj+1 , . . . , bn)
Area(B)

(n− j)
}

end for
choose the best kα

where Area(b1, . . . , bj) denotes the surface area of
the BV enclosing b1, . . . , bj.

If the query is a point location query (e.g., is a
given point inside or outside the object), then the
volume instead of the surface area should be used.
This is because the probability that a point is con-
tained in a child BV, under the condition that it is
contained in the father BV, is proportional to the
ratio of the two volumes.

For range queries, and for collision detection, the
volume seems to be a good probability estimation,
too.

A quite different splitting algorithm does not
(explicitely) try to estimate any probabilities. It
just approximates each elementary BV/object by
its center point. It then proceeds as follows. For
a given set B of such points, compute its princi-
pal components (the Eigenvectors of the covariance
matrix); choose the largest of them (i.e., the one ex-
hibiting the largest variance); place a plane orthog-
onal to that principal axis and through the barycen-
ter of all points in B; finally, split B into two sub-
sets according to the side on which the point lies.
(This description is a slightly modified version of
Gottschalk et al [40].) Alternatively, one can place
the splitting plane through the median of all points,
instead of the barycenter. This would lead to bal-
anced trees, but not necessarily better ones.

4.1.5 The criterion for collision detection

In the following, we will describe a general cri-
terion that can guide the splitting process of top-
down BV hierarchy construction algorithms, such
that the hierarchy produced is good in the sense of
fast collision detection [99] (see Section 4.2).

Let C(A, B) be the expected costs of a node pair
(A, B) under the condition that we have already de-
termined during collision detection that we need to
traverse the hierarchies further down. Assuming

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 27

B1

d

B

A1

A

possible
locus of

anchor points

d

Figure 39: By estimating the volume of the
Minkowski sum of two BVs, we can derive an es-
timate for the cost of the split of a set of polygons
associated with a node.

binary trees and unit costs for an overlap test, this
can be expressed by

C(A, B) = 4 + ∑
i,j=1,2

P(Ai , Bj) · C(Ai , Bj) (8)

where Ai , Bj are the children of A and B, resp., and
P(Ai , Bj) is the probability that this pair must be
visited (under the condition that the pair (A, B) has
been visited).

An optimal construction algorithm would need
to expand (8) down to the leaves:

C(A, B) =P(A1, B1) + P(A1, B1)P(A11, B11)
+ P(A1, B1)P(A12, B11) + . . . +

P(A1, B2) + P(A1, B2)P(A11, B21)
+ . . .

(9)

and then find the minimum. Since we are inter-
ested in finding a local criterion, we approximate
the cost function by discarding the terms corre-
sponding to lower levels in the hierarchy, which
gives

C(A, B) ≈ 4
(
1 + P(A1, B1) + . . .

+ P(A2, B2)
) (10)

Now we will derive an estimate of the probability
P(A1, B1). For sake of simplicity, we will assume in

the following that AABBs are used as BVs. How-
ever, similar arguments should hold for all other
kinds of convex BVs.

The event of box A intersecting box B is equiva-
lent to the condition that B’s “anchor point” is con-
tained in the Minkowski sum A ⊕ B. This situa-
tion is depicted in Figure 39.7 Because B1 is a child
of B, we know that the anchor point of B1 must
lie somewhere in the Minkowski sum A ⊕ B ⊕ d,
where d = anchor(B1)− anchor(B). Since A1 is
inside A and B1 inside B, we know that A1 ⊕ B1 ⊂
A⊕ B⊕ d. So, for arbitrary convex BVs the prob-
ability of overlap is

P(A1, B1) =
Vol(A1 ⊕ B1)

Vol(A⊕ B⊕ d)

=
Vol(A1 ⊕ B1)
Vol(A⊕ B)

(11)

In the case of AABBs, it is safe to assume that
the aspect ratio of all BVs is bounded by α. Conse-
quently, we can bound the volume of the Minkowski
sum by

Vol(A) + Vol(B) +
2
α

√
Vol(A) Vol(B) ≤

Vol(A⊕ B) ≤
Vol(A) + Vol(B) + 2α

√
Vol(A) Vol(B) (12)

So we can estimate the volume of the Minkowski
sum of two boxes by

Vol(A⊕ B) ≈ 2(Vol(A) + Vol(B))

yielding

P(A1, B1) ≈ Vol(A1) + Vol(B1)
Vol(A) + Vol(B)

(13)

Since Vol(A) + Vol(B) has already been com-
mitted by an earlier step in the recursive construc-
tion, Equation 10 can be minimized only by min-
imizing Vol(A1) + Vol(B1). This is our criterion
for constructing restricted boxtrees.
Construction algorithm. According to the cri-
terion derived above, each recursion step will try
to split the set of polygons so that the cost func-
tion (10) is minimized. This is done by trying to
find a good splitting for each of the three coordinate

7 In the figure, we have chosen the lower left corner of B as
its anchor point, but this is arbitrary, of course, because the
Minkowski sum is invariant under translation.

Siggraph 2003 Tutorial 16

28 Zachmann/Langetepe: Geometric Data Structures for CG

axes, and then selecting the best one. Along each
axis, we consider three cases: both subsets form
lower boxes with respect to its parent, both are up-
per boxes, or one upper and one lower box.

In each case, we first try to find a good “seed”
polygon for each of the two subsets, which is as
close as possible to the outer border that is perpen-
dicular to the splitting axis. Then, in a second pass,
we consider each polygon in turn, and assign it to
that subset whose volume is increased least. In or-
der to prevent “creeping greediness”,8 we run alter-
natingly through the array of polygons. After good
splitting candidates have been obtained for all three
axes, we just pick the one with least total volume of
the subsets.

The algorithm and criterion we propose here could
also be applied to construct hierarchies utilizing
other kinds of BVs, such as OBBs, DOPs, and even
convex hulls. We suspect that the volume of AABBs
would work fairly well as an estimate of the volume
of the respective BVs.

This algorithm has proven to be geometrically
robust, since there is no error propagation. There-
fore, a simple epsilon guard for all comparisons suf-
fices.

It can be shown that this algorithm is, under cer-
tain assumptions,9 in O(n), where n is the number
of polygons [99].

4.2 Collision Detection

Fast and exact collision detection of polygonal ob-
jects undergoing rigid motions is at the core of
many simulation algorithms in computer graphics.
In particular, all kinds of highly interactive appli-
cations such as virtual prototyping need exact col-
lision detection at interactive speed for very com-
plex, arbitrary “polygon soups”. It is a fundamen-
tal problem of dynamic simulation of rigid bodies,
simulation of natural interaction with objects, and
haptic rendering.

Bounding volume trees seem to be a very effi-
cient data structure to tackle the problem of colli-
sion detection for rigid bodies. All kinds of differ-
ent types of BVs have been explored in the past:

8 This happens, for instance, when the sequence of polygons hap-
pens to be ordered such that each polygon increases one subset’s
volume just a little bit, so that the other subset never gets a
polygon assigned to.

9 These assumption have been valid in all practical cases we have
encountered so far.

sphere [45,73], OBBs [40], DOPs [56,98], AABBs
[97,87,57], and convex hulls [31], to name but a
few.

Given two hierarchical BV volume data struc-
tures for two objects A and B, almost all hierar-
chical collision detection algorithms implement the
following general algorithm scheme:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children A[i] and B[j] do

traverse(A[i],B[j])
end for

end if

This algorithm quickly “zooms in” on pairs of close
polygons. The characteristics of different hierarchi-
cal collision detection algorithms lie in the type of
BV used, the overlap test for a pair of nodes, and
the algorithm for construction of the BV trees.

The algorithm outlined above is essentially a si-
multaneous traversal of two hierarchies, which in-
duces a so-called recursion tree (see Figure 40).
Each node in this tree denotes a BV overlap test.
Leaves in the recursion tree denote an intersection
test of the enclosed primitives (polygons); whether
or not a BV test is done at the leaves depends on
how expensive it is, compared to the intersection
test of primitives.

During collision detection, the simultaneous traver-
sal will stop at some nodes in the recursion tree. Let
us call the set of nodes, of which some children are
not visited (because their BVs do not overlap), the
“bottom slice” through the recursion tree (see the
dashed lines in Figure 40).

One idea is to save this set for a given pair of
objects [62]. When this pair is to be checked next
time, we can start from this set, going either up or
down. Hopefully, if the objects have moved only
a little relative to each other, the number of nodes
that need to be added or removed from the bottom
slice is small. This scheme is called incremental hi-
erarchical collision detection.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 29

F7 G6 G7F6E4D4 D5 E5E F GD

CB

A

5 6 74

2 3

1

D7D6 G4 G5

A1

B2 B3 C2 C3

F4 F5E6 E7

Figure 40: The recursion tree is induced by the simultaneous traversal of two BV trees.

B2

B1

B

A

A1

A2

Figure 41: Hierarchical collision detection can
discard many pairs of polygons with one BV
check. Here, all pairs of polygons in A1 and B2
can be discarded.

5 Voronoi Diagrams

For a given set of sites inside an area the Voronoi
diagram is a partition of the area into regions of
the same neighborship. The Voronoi diagram and
its dual have been used for solving numerous prob-
lems in many fields of science.

We will concentrate on its application to geomet-
ric problems in 2D and 3D. For an overview of the
Voronoi diagram and its dual in computational ge-
ometry one may consult the surveys by Auren-
hammer [4], Bernal [11], Fortune [34] and Auren-
hammer and Klein [5]. Additionally, chapters 5 and
6 of Preparata and Shamos [76] and chapter 13 of
Edelsbrunner [29] could be consulted.

We start in Section 5.1 with the simple case of
the Voronoi diagram and the Delaunay triangula-
tion of n points in the plane, under the Euclidean
distance. Additionally we mention some of the ele-

mentary structural properties that follow from the
definitions.

In Section 5.2 different algorithmic schemes for
computing the structures are mentioned. We present
a simple incremental construction approach which
can be easily generalized to 3D (see Section 5.3.1).

We present generalizations of the Voronoi dia-
gram and the Delaunay Triangulation in Section 5.3.
In Section 5.3.1 transformations to three dimen-
sions are given and in Section 5.3.2 the concept of
constrained Voronoi diagrams is introduced. A col-
lection of other interesting generalizations is pre-
sented in Section 5.3.3.

In Section 5.4 applications of the Voronoi dia-
gram and the Delaunay triangulation in 2D and 3D
are shown. First, in Section 5.4.1 we discuss the
famous post office problem. Then a simple appli-
cation of the Voronoi diagram of line segments for
motion planning is presented in Section 5.4.2. Fi-
nally, in Section 5.4.3 a collection of 2D-applications
is shown.

Note, that we can only sketch many of the sub-
jects here. For further details and further literature
see one of the surveys mentioned above. The fig-
ures are taken from Aurenhammer and Klein [5].

5.1 Definitions and Elementary
Properties

5.1.1 Voronoi Diagram

Let S a set of n ≥ 3 point sites p, q, r, . . . in the
plane. In the following we assume that the points
are in general position, i.e., no four of them lie on
the same circle and no three of them on the same
line.

Siggraph 2003 Tutorial 16

30 Zachmann/Langetepe: Geometric Data Structures for CG

For points p = (p1, p2) and x = (x1, x2) let
d(p, x) denote their Euclidean distance. By pq we
denote the line segment from p to q. The closure of
a set A will be denoted by A.

Definition 5 For p, q ∈ S let

B(p, q) = {x | d(p, x) = d(q, x)}
be the bisector of p and q. B(p, q) is the perpendic-
ular line through the center of the line segment pq.
It separates the halfplane

D(p, q) = {x | d(p, x) < d(q, x)}
containing p from the halfplane D(q, p) contain-
ing q. We call

VR(p, S) =
⋂

q∈S,q 6=p

D(p, q)

the Voronoi region of p with respect to S. Finally,
the Voronoi diagram of S is defined by

V(S) =
⋃

p,q∈S,p 6=q

VR(p, S) ∩ VR(q, S).

An illustration is given in Figure 42. It shows
how the plane is decomposed by V(S) into Voronoi
regions. Note that it is convenient to imagine a
simple closed curve Γ around the “interesting” part
of the Voronoi diagram.

Γ

Figure 42: A Voronoi diagram of points in the Eu-
clidean plane.

The common boundary of two Voronoi regions
belongs to V(S) and is called a Voronoi edge, if it

contains more than one point. If the Voronoi edge
e borders the regions of p and q then e ⊂ B(p, q)
holds. Endpoints of Voronoi edges are called Voronoi
vertices; they belong to the common boundary of
three or more Voronoi regions.

There is an intuitive way of looking at the Voronoi
diagram. For any point x in the plane we can ex-
pand the circle C(r) with center x and radius r by
increasing r continuously. We detect three cases de-
pending on which event occurs first:

• If C(r) hits one of the n sites, say p, then x ∈
VR(p, S).

• If C(r) hits two sites p and q simultaneously x
belongs to the Voronoi edge of p and q.

• If C(r) hits three sites p, q and r simultaneously
x is the Voronoi vertex of p, q and r.

We will enumerate some of the significant prop-
erties of Voronoi diagrams.

1. Each Voronoi region VR(p, S) is the intersec-
tion of at most n− 1 open halfplanes containing
the site p. Every VR(p, S) is open and convex.
Different Voronoi regions are disjoint.

2. A point p of S lies on the convex hull of S iff its
Voronoi region VR(p, S) is unbounded.

3. The Voronoi diagram V(S) has O(n) many edges
and vertices. The average number of edges in
the boundary of a Voronoi region is less than 6.

The Voronoi diagram is a simple linear structure
and provides for a partition of the plane into cells
of the same neighborship. We omit the proofs and
refer to the surveys mentioned in the beginning.

Note, that the Voronoi edges and vertices build
a graph. Therefore the diagram normally is repre-
sented by a graph of linear size. For example the
diagram can be represented by a doubly connected
edge list DCEL, see de Berg et al. [23], or with the
help of an adjacency matrix.

5.1.2 Delaunay Triangulation

We consider the dual graph of the Voronoi diagram,
the so called Delaunay triangulation. In general, a
triangulation of S is a planar graph with vertex set
S and straight line edges, which is maximal in the
sense that no further straight line edge can be added
without crossing other edges. The triangulation of
a point set S has not more than O(|S|) triangles.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 31

Definition 6 The Delaunay triangulation DT(S) is
the dual Graph of the Voronoi diagram. The edges
of DT(S) are called Delaunay edges.

Obviously, the Delaunay triangulation DT(S) is
a triangulation of S, an example is shown in Fig-
ure 43.

We present two equivalent definitions of the De-
launay triangulation. They are applied for the com-
putation of the diagram and give also rise to gener-
alization, for example if the dual of a Voronoi dia-
gram is no longer well-defined.

1. Two points p, q of S give rise to a Delaunay edge
iff a circle C exists that passes through p and q
and does not contain any other site of S in its
interior or boundary.

2. Three points of S give rise to a Delaunay trian-
gle iff their circumcircle does not contain a point
of S in its interior.

DT(S)

V(S)
w

p

s

v
r

q

Figure 43: Voronoi diagram and Delaunay trian-
gulation.

5.2 Computation

The construction of the Voronoi diagram has time
complexity Θ(n log n). The lower bound Ω(n log n)
can be achieved by the following reductions.

• A reduction to the convex hull problem is given
by Shamos [84].

• A reduction to the ε-closeness problem is given
by Djidjev and Lingas [26] and by Zhu and Mirza-
ian [100].

The well-known computation paradigms

• Incremental construction,
• Divide-and-Conquer and

• Sweep

are convenient for the construction of the Voronoi
diagram or the Delaunay triangulation, respectively.
They can also be generalized to other metrics and
sites other than points, for example line segments
or polygonal chains. The result of the algorithms is
stored in a graph of linear size, see above.

All these approaches run in deterministic time
O(n log n). We explain a simple Incremental con-
struction technique which runs in O(n log n) ex-
pected time and computes the Delaunay triangula-
tion. The presentation is adapted from Klein and
Aurenhammer [5]. The technique can easily be
generalized to the three dimensional case as we will
see in Section 5.3.1.

Simple incremental construction: The inser-
tion process is described as follows: We construct
DTi = DT({p1, . . . , pi−1, pi}) by inserting the site
pi into DTi−1. We follow Guibas and Stolfi [41]
and construct DTi by exchanging edges, using Law-
son’s [59] original edge flipping procedure, until all
edges invalidated by pi have been removed.

It is helpful to extend the notion of triangle to
the unbounded face of the Delaunay triangulation.
If pq is an edge of the convex hull of S we call the
supporting outer halfplane H not containing S an
infinite triangle with edge pq. Its circumcircle is H
itself, the limit of all circles through p and q whose
center tend to infinity within H. As a consequence,
each edge of a Delaunay triangulation is now adja-
cent to two triangles.

Those triangles of DTi−1 whose circumcircles con-
tain the new site, pi, are said to be in conflict with
pi. According to the (equivalent) definition of the
DTi, they will no longer be Delaunay triangles.

Let qr be an edge of DTi−1, and let T(q, r, t) be
the triangle adjacent to qr that lies on the other
side of qr than pi; see Figure 44. If its circumcir-
cle C(q, r, t) contains pi then each circle through
q, r contains at least one of pi , t. Consequently, qr
cannot belong to DTi, due to the (equivalent) def-
inition. Instead, pit will be a new Delaunay edge,
because there exists a circle contained in C(q, r, t)
that contains only pi and t in its interior or bound-
ary. This process of replacing edge qr by pit is called
an edge flip.

The necessary edge flips can be carried out effi-
ciently if we know the triangle T(q, s, r) of DTi−1
that contains pi, see fig. Figure 45. The line seg-
ments connecting pi to q, r, and s will be new De-
launay edges, by the same argument from above.

Siggraph 2003 Tutorial 16

32 Zachmann/Langetepe: Geometric Data Structures for CG

pi

q

t

r

C(pi,t)

C(q,r,t)

Figure 44: If triangle T(q, r, t) is in conflict with pi
then former Delaunay edge qr must be replaced
by pit.

Next, we check if e. g. edge qr must be flipped. If
so, the edges qt and tr are tested, and so on. We
continue until no further edge currently forming
a triangle with, but not containing pi, needs to be
flipped, and obtain DTi.

Two task have to be considered:

1. Find the triangle of DTi−1 that is in conflict
with pi.

2. Perform all flips starting from this triangle.

It can be shown that the second task is bounded
by the degree of pi in the new triangulation. If the
triangle of DTi−1 containing pi is known, the struc-
tural work needed for computing DTi from DTi−1
is proportional to the degree d of pi in DTi.

So we yield an obvious O(n2) time algorithm
for constructing the Delaunay triangulation of n
points: we can determine the triangle of DTi−1
containing pi within linear time, by inspecting all
candidates. Moreover, the degree of pi is trivially
bounded by n.

The last argument is too crude. There can be sin-
gle vertices in DTi that do have a high degree, but
their average degree is bounded by 6.

With a special implementation using a directed
acyclic graph (DAG), also called Delaunay tree due
to Boissonnat and Teillaud [12], we can detect the
triangles of DTi−1 which are in conflict with pi in
O(log i) expected time.

Altogether we get the following result:

Theorem 7 The Delaunay triangulation of a set
of n points in the plane can be easily incremen-
tally constructed incrementally in expected time
O(n log n), using expected linear space. The av-
erage is taken over the different orders of inserting
the n sites.

5.3 Generalization of the Voronoi
Diagram

5.3.1 Voronoi Diagram and Delaunay
Triangulation in 3D

We will see that incremental construction is also
appropriate for the 3D case. The following descrip-
tion was adapted from Aurenhammer and Klein [5].

Let S be a set of n point sites in 3D. The bisec-
tor of two sites p, q ∈ S is the perpendicular plane
through the midpoint of the line segment pq. The
region VR(p, S) of a site p ∈ S is the intersec-
tion of halfspaces bounded by bisectors, and thus
is a 3-dimenional convex polyhedron. The bound-
ary of VR(p, S) consists of facets (maximal subsets
within the same bisector), of edges (maximal line
segments in the boundary of facets), and of vertices
(endpoints of edges). The regions, facets, edges, and
vertices of V(S) define a cell complex in 3D.

This cell complex is face-to-face: if two regions
have a non-empty intersection f , then f is a face
(facet, edge, or vertex) of both regions. As an ap-
propriate data structure for storing a 3-dimenional
cell complex we mention the facet-edge structure in
Dobkin and Laszlo [27].

Complexity: The number of facets of VR(p, S)
is at most n − 1, at most one for each site q ∈
S \ {p}. Hence, by the Eulerian polyhedron for-
mula, the number of edges and vertices of VR(p, S)
is O(n), too. This shows that the total number of
components of the diagram V(S) in 3D is O(n2). In
fact, there are configurations S that force each pair
of regions of V(S) to share a facet, thus achieving
their maximum possible number of

(n
2
)
; see, e.g.,

Dewdney and Vranch [25]. This fact sometimes
makes Voronoi diagrams in 3D less useful com-
pared to 2-space. On the other hand, Dwyer [28]
showed that the expected size of V(S) in d-space is
only O(n), provided S is drawn uniformly at ran-
dom in the unit ball. This result indicates that high-
dimenional Voronoi diagrams will be small in many
practical situations.

In analogy to the 2-dimenional case, the Delau-
nay triangulation DT(S) in 3D is defined as the ge-
ometric dual of V(S). It contains a tetrahedron for
each vertex, a triangle for each edge, and an edge
for each facet, of V(S). Equivalently, DT(S) may
be defined using the empty sphere property, by in-
cluding a tetrahedron spanned by S as Delaunay iff
its circumsphere is empty of sites in S. The circum-
centers of these empty spheres are just the vertices

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 33

(i) (ii) (iii)

SF
s

q

t

r

pi

F

SF
s

q

t

r

pi

s

q

t

r

pi

T

Figure 45: Updating DTi−1 after inserting the new site pi. In (ii) the new
Delaunay edges connecting pi to q, r, s have been added, and
edge qr has already been flipped. Two more flips are neces-
sary before the final state shown in (iii) is reached.

p

q
p

q

Figure 46: The Voronoi diagram of a point set in
L1 and L2. Note, that there are structural differ-
ences.

Figure 47: An Euclidean Voronoi diagram of line
segments.

of V(S). DT(S) is a partition of the convex hull
of S into tetrahedra, provided S is in general posi-
tion. Note that the edges of DT(S) may form the
complete graph on S.

Simple incremental construction: Among the
various proposed methods for constructing V(S)
in 3D, incremental insertion of sites (compare Sec-
tion 5.2) is most intuitive and easy to implement.
Basically, two different techniques for integrating a
new site p into V(S) have been applied. The more
obvious method first determines all facets of the re-
gion of p in the new diagram, V(S∪ {p}), and then
deletes the parts of V(S) interior to this region;
see e.g. Watson [92], Field [33], and Tanemura et
al [85]. Inagaki et al. [46] describe a robust imple-
mentation of this method.

In the dual environment, this amounts to detect-
ing and removing all tetrahedra of DT(S) whose
circumspheres contain p, and then filling the ’hole’
with empty-sphere tetrahedra with p as apex, to
obtain DT(S ∪ {p}). An example of an edge flip
in 3D is shown in Figure 48. Joe [48], Rajan [77],
and Edelsbrunner and Shah [30] follow a different
and numerically more stable approach. Like in the
planar case, after having added a site to the current
Delaunay triangulation, certain flips changing the
local tetrahedral structure are performed in order
to achieve local “Delaunayhood”. The existence of
such a sequence of flips is less trivial, however. Joe
[47] demonstrated that no flipping sequence might
exist that turns an arbitrary tetrahedral triangula-
tion for S into DT(S).

A complete algorithm with run time O(n2) can
be found in Shah [30].

Siggraph 2003 Tutorial 16

34 Zachmann/Langetepe: Geometric Data Structures for CG

Figure 48: Two–into–three tetrahedra flip for five sites.

5.3.2 Constrained Voronoi diagrams

For many applications it is not useful to consider
neighborship relations without any constraints. For
example, a small distance between two cities may
become unimportant if there is a (natural or artifi-
cial) border line between them and the border line
itself should not serve as a new site. To overcome
such problems the concept of constrained Voronoi
diagrams was introduced [60].

Let S be a set of n points in the plane, and let
L be a set of non-crossing line segments spanned
by S, thus we have |L| ≤ 3n − 6. The segments
in L may be considered as obstacles. The bounded
distance between two points x and y in the plane is
defined as follows:

b(x, y) =
{

d(x, y) if xy ∩ L = ∅
∞ otherwise

where d stands for the Euclidean distance. In the
resulting constrained Voronoi diagram VD(S, L),
regions of sites that are close but not visible from
each other are separated by segments in L, an ex-
ample is shown in Figure 49.

The exact dual of VD(S, L) may be no longer a
full triangulation of S (even if S is included) but
we can modify VD(S, L) in order to dualize it into
a "near to Delaunay" triangulation DT(S, L) that
also includes L.

For every line segment l we proceed as follows:
All sites of the clipped regions to the left of a seg-
ment l build a special Voronoi diagram to the right
and vice versa. The neighborship within these spe-
cial diagrams lead to additional edges inserted into
the dual of VD(S, L). Note that the endpoints of
the line segments are always neighbors in the new
diagrams and therefore the line segments itself are
inserted (see Figure 49).

Algorithms for computing the constrained Voro-
noi diagram VD(S, L) and the constrained Delau-

nay triangulation DT(S, L) have been proposed in
Lee and Lin [60], Chew [16], Wang and Schu-
bert [91] and Wang [90]. In Seidel [80] and Kao
and Mount [50] one will find good implementation
schemes. An application of DT(S, L) to quality
mesh generation can be found in Chew [17].

5.3.3 Other Types of Generalizations

We simply list some of the generalization schemes
and show examples of some intuitive ones.

• Different metrics

– L1, a comparison of L1 and L2 is shown in
Figure 46

– L ∞
– Convex distance functions

• Different space

– On trees and graphs
– Higher dimensions

• Weights
• More general sites

– Line segments (see Figure 47).
– Polygonal chains

• Farthest point Voronoi diagram
• K-th order Voronoi digram
• Colored objects

5.4 Applications of the Voronoi
Diagram

5.4.1 Nearest Neighbor or Post Office Problem

We consider the well-known post office problem.
For a set S of sites in the plane and an arbitrary
query point x we want to compute the point of S
closest to x efficiently.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 35

Figure 49: The constrained Voronoi diagram VD(S, L) and its dual.

In the field of computational geometry there is a
general technique for solving such query problems.
One tries to decompose the query set into classes
so that every class has the same answer. Now for a
single answer we only have to determine its class.
This technique is called locus approach.

The Voronoi diagram represents the locus ap-
proach for the post office problem. The classes cor-
respond to the regions of the sites. For a query
point x we want to determine its class/region and
return its owner.

To solve this task a simple technique can be ap-
plied. We draw a horizontal line through every ver-
tex of the diagram and sort the lines in O(n log n)
time, see Figure 50. The lines decompose the di-
agram into slabs. For every slab we sort the set
of crossing edges of the Voronoi diagram in linear
time. Altogether we need O(n2) time for the sim-
ple construction.

x

Figure 50: After constructing the slabs, a query
point x can be located quickly.

For a query point x we locate its slab in O(log n)
time and afterwards its region in O(log n) time by
binary search.

Theorem 8 Given a set S of n point sites in the
plane, one can, within O(n2) time and storage,
construct a data structure that supports nearest
neighbor queries: for an arbitrary query point x,
its nearest neighbor in S can be found in time
O(log n).

The simple technique can be easily extended to
3D. There are also more efficient approaches, i.e.,
Edelsbrunner [29] constructs a O(log n) search struc-
ture for the Voronoi diagram in linear time and
with linear space.

5.4.2 Motion planning

We present a simple application of Voronoi dia-
grams for computing collision-free paths in polyg-
onal environments. Let us assume that a two di-
mensional environment with polygonal obstacles
is given. For simplicity we assume that a circle-
shaped robot is given and a collision-free path from
s to t should be computed (see Figure 51).

We can solve this problem by computing the
Voronoi diagram VD(S) of the corresponding line
segments. This gives rise to a reasonable solu-
tion. Let us assume that the robot moves between
to obstacle line segments l1 and l2, for safetyness
it should maximize its distance to both segments.
That is, for every position x we want to maximize

|xli| = min
y∈li
|xy|, i = 1, 2 .

This goal is reached if the robot moves along the
biscetor of l1 and l2. Altogether the robot should
try to move along the Voronoi diagram of the line
segments of the polygonal scene. For every seg-
ment of VD(S) we can easily compute whether the
robot fits between the corresponding obstacles.

Siggraph 2003 Tutorial 16

36 Zachmann/Langetepe: Geometric Data Structures for CG

yt

ys
l

t' t

ss'

Figure 51: Computing a collision-free path from s to t for a circle-shaped robot in
the presence of polygonal obstacles.

Now we can solve our problem as follows:

• Compute the Voronoi diagram VD(S) of the set
of line segments S.

• Consider the Voronoi regions of s and t in VD(S).

• Consider the closest point s′ ∈ VD(S) to s, re-
spectively t′ ∈ VD(S) to s.

• Delete the segments of VD(S) where the robot
does not fit between the obstacles.

• Consider the graph G of the remaining diagram
together with s′ and t′.

• Compute a path from s′ to t′ in G by standard
graph algorithms.

Altogether we have the following result:

Theorem 9 There is a collision-free path of a circle-
shaped robot with radius r in a polygonal environ-
ment of a set line segments S if and only if the ra-
dius r is smaller than |ss′| und |tt′| and a collision-
free movement from s′ to along the segments of
VD(S) exists.

5.4.3 Other Applications of the Voronoi
Diagram in 2D

There are many different geometrical applications
of the Voronoi diagram and its dual. Here we sim-
ply list some of them, together with some perfor-
mance results, provided that the diagram is given:

• Closest Pair of sites, O(n)

• Nearest Neighbor Search

– O(n) for all nearest neighbors of the sites

– O(k log2 n) expected time for k-th nearest
neighbors of query point x

• Minimum Spanning Tree and
TSP-Heuristic, O(n log n)

• Largest empty circle, O(n)

• Smallest enclosing circle (square with fixed ori-
entation), O(n)

• Smallest color spanning circle (square with fixed
orientation), O(nk), where k is the number of
colors

• Localization problems, see Hamacher [42]

• Clustering of objects, see Dehne and Noltemeier
[24]

All these results stem more or less from the lin-
ear complexity of the diagram. As we have already
mentioned the complexity of the diagrams in three
dimension is also linear in many practical situa-
tions. Thus many of the presented problems can be
solved in three dimensions with almost the same
time bound. We will present some special applica-
tions for 3D.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 37

random border

T

p

N(p)

|| · ||

|| · ||

I

p

T0

|| · ||

Td

I0

Id

N(p) N(pi)

pi

Figure 52: The texture synthesis algorithm pro-
ceeds in scan line order through the texture and
considers only the neighborhood around the cur-
rent pixel as shown.

Figure 53: Using an image pyramid, the texture
synthesis process becomes fairly robust against
different scales of detail in the sample images.

Figure 54: Some results of the texture synthesis algorithm [94]. In each pair, the image on the left is
the original one, the one on the right is the (partly) synthesized one.

5.5 Texture Synthesis

Textures are visual detail of the rendered geometry,
which have become very important in the past few
years, because the cost of rendering with texture is
the same as the cost without texture. Virtually all
real-world objects have texture, so it is extremely
important to render them in synthetic worlds, too.

Texture synthesis generally tries to synthesize
new textures, either from given images, from a
mathematical description, or from a physical model.
Mathematical descriptions can be as simple as a
number of sine waves to generate water ripples,
while physical models try to describe the physi-
cal or biological effects and phenomena that lead to
some texture (such as patina or fur). In all of these
“model-based” methods, the knowledge about the
texture is in the model and the algorithm. The
other class of methods starts with one or more
images; then they try to find some statistical or
stochastic description (explicitely or implicitely) of
these, and finally it generates a new texture from
the statistic.

Basically, textures are images with the following
properties:

1. Stationary: if a window with the proper size is
moved about the image, the portion inside the
window always appears the same.

2. Local: each pixel’s color in the image depends
only on a relatively small neighborhood.

Of course, images not satisfying these criteria can
be used as textures as well (such as façades), but if
you want to synthesize such images, then a statis-
tical or stochastic approach is probably not feasible.

In the following, we will describe a stochastic
algorithm that is very simple, very efficient, and
works remarkably well [94]. Given a sample image,
it does not, like most other methods, try to compute
explicitly the stochastic model. Instead, it uses the
sample image itself, which implicitly contains that
model already.
We will use the following terminology:

I = Original (sample) image

T = New texture image

pi = Pixel from I
p = Pixel from T to be generated next

N(p) = Neighborhood of p (see Figure 52)

Siggraph 2003 Tutorial 16

38 Zachmann/Langetepe: Geometric Data Structures for CG

Initially, T is cleared to black. The algorithm
starts by adding a suitably sized border at the left
and the top, filled with random pixels (this will be
thrown away again at the end). Then, it performs
the following simple loop in scan line order (see
Figure 52):

1: for all p ∈ T do
2: find the pi ∈ I that minimizes |N(p)− N(pi)|2
3: p := pi
4: end for

Well, the search in line 2 is exactly a nearest-neighbor
search! This can be performed efficiently with the
algorithm presented in Section 5.4.1: if N(p) con-
tains k pixels, then the points are just 3k-dimen-
ional vectors of RGB values, and the distance is just
the Euclidean distance.

Obviously, all pixels of the new texture are deter-
ministically defined, once the random border has
been filled. The shape of the neighborhood N(p)
can be chosen arbitrarily, it must just be chosen
such that all but the current pixel are already com-
puted. Likewise, other “scans” of the texture are
possible and sensible (for instance a spiral scan or-
der), they must just match the shape of N(p).

The quality of the texture depends on the size of
the neighborhood N(p). However, the optimal size
itself depends on the “granularity” in the sample
image. In order to make the algorithm indepen-
dent, we can synthesize an image pyramid (see Fig-
ure 53). First, we generate a pyramid I0, I1, . . . , Id

for the sample image I0. Then, we synthesize the
texture pyramid T0, T1, . . . , Td level by level with
the above algorithm, starting at the coarsest level.
The only difference is that we extend the neigh-
borhood N(p) of a pixel p over k levels as depicted
by Figure 53. Consequently, we have to build a
nearest-neighbor search structure for each level,
because as we proceed downwards in the texture
pyramid, the size of the neighborhood grows.

Of course, now we have replaced the parameter of
the best size of the neighborhood by the parameter
of the best size per level and the best number of
levels to consider for the neighborhood. However,
as Wei and Levoy [94] report, a neighborhood of
9× 9 (at the finest level) across 2 levels seems to be
sufficient in almost all cases.

Figure 54 shows two examples of the results that
can be achieved with this method.

5.6 Shape Matching

As the availability of 3D models on the net and in
databases increases, searching for such models be-
comes an interesting problem. Such a functionality
is needed, for instance, in medical image databases,
or CAD databases. One question is how to specify a
query. Usually, most researchers pursue the “query
by content” approach, where a query is specified by
providing a (possibly crude) shape, for which the
database is to return best matches.10 The funda-
mental step here is the matching of shapes, i.e., the
calculation of a similarity measure.
Almost all approaches perform the following steps:

1. Define a transformation function that takes a
shape and computes a so-called feature vector
in some high dimensional space, which (hope-
fully) captures the shape in its essence. Nat-
urally, those transformation functions are pre-
ferred that are invariant under rotation and/or
translation and tessellation.

2. Define a similarity measure d on the feature
vectors, such that if d(f1, f2) is large, then the
associated shapes s1, s2 do not look similar. Ob-
viously, this is (partly) a human factors issue. In
almost all algorithms, d is just the Euclidean dis-
tance.

3. Compute a feature vector for each shape in the
database and store them in a data structure that
allows for fast nearest-neighbor search.

4. Given a query, i.e., a shape, compute its feature
vector, and retrieve the nearest neighbor from
the database. Usually, the system also retrieves
all k nearest neighbors. Often times, you are
not interested in the exact k nearest neighbors
but only in approximate nearest neighbors (be-
cause the feature vector is an approximation of
the shape anyway).

The main difference among most shape matching
algorithms is, therefore, the transformation from
shape to feature vector.

So, fast shape retrieval essentially requires a fast
(approximate) nearest neighbor search. We could
stop our discussion of shape matching here, but for
sake of completeness, we will describe a very simple

10This idea seems to originate from image database retrieval,
where it was called QBIC = “query by image content”.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 39

torus
sphere
pillow

cylinder
cube

distance

de
ns

ity

76543210

10000

8000

6000

4000

2000

0

Figure 55: The shape distribution of a number of
different simple objects.

algorithm (from the plethora of others) to compute
a feature vector [70].

The general idea is to define some shape func-
tion f (P1, . . . , Pn) → R, which computes some ge-
ometrical property of a number of points, and then
evaluate this function for a large number of ran-
dom points that lie on the surface of the shape. The
resulting distribution of f is called a shape distri-
bution.

For the shape function, there are a lot of possi-
bilities (your imagination is the limit). Examples
are:

• f (P1, P2) = |P1 − P2|;
• f (P1) = |P1 − P0|, where P0 is a fixed point,

such as the bounding box center;
• f (P1, P2, P3) = ∠(P1P2, P1P3);
• f (P1, P2, P3, P4) = volume of the tetrahedron

between the four points.

Figure 55 shows the shape distributions of a few
simple objects with the distance between two points
as shape function.

6 Distance Fields

Distance fields can be viewed as a way to represent
surfaces (and solids). They are a very powerful data
structure, because they contain a huge amount of
information (compared to just the surface itself).
This is why they usually take fairly long to com-
pute. Consequently, this computation can usually
be performed only as a preprocessing step. Thus,
they are difficult to adapt for deformable geometry.

Definition 5 (Distance field)
Let S be a surface in R3. Then, the distance field of
a surface S is a scalar function DS : R3 → R such
that for all p ∈ R3,

DS(p) = sgn(p) ·min
{

d(p, q)|q ∈ S
}

, (14)

where

sgn(p) =

{
−1, if p inside

+1, if p outside

In other words, DS tells for any point p the distance
to the closest point on the surface S.

We can augment the DF further to obtain a vec-
tor distance field VS by storing a vector to the
closest point p ∈ S for each point x [49]. So,
DS(x) =

∣∣VS(x)
∣∣. This is a vector field. Another

vector field that is often used in the context of DFs
is the gradient of the distance field, or just gradient
field.

Figure 56 shows a distance field for a simple poly-
gon in the plane. The distance of a point from the
surface is color-coded (the distance for points inside
the polygon is not shown). Figure 57 shows a vec-
tor distance field (for the same surface).

Apparently, distance fields (DFs) have been “in-
vented” in many different areas, such as computa-
tional physics [81,83], robotics [53], GIS (see Fig-
ures 58 and 59 for an example), and image process-
ing [72]. Not surprisingly, DFs come under many
other names, such as distance maps and potential
fields. The process of, or the algorithm for comput-
ing a DF is sometimes called distance transform.11

Distance fields have close relationships to isosur-
faces and implicit functions. When regarded as an
implicit function, the isosurface for the iso-value
0 of a DF is exactly the original surface (see Fig-
ure 56). However, the converse is not true in gen-
eral, i.e., the DF of a surface defined by an implicit
function is not necessarily identical to the original
implicit function.

There is another data structure related to distance
fields, namely Voronoi diagrams (see Section 5).
Given a vector distance field for a set of points,
edges, and polygons (not necessarily connected),
then all points in space, whose vectors point to the
same feature (point, edge, or oplygon), are in the
same Voronoi cell (see Figures 56 and 57). (We

11Sometimes, this term bears the connotation of producing inac-
curate distance fields.

Siggraph 2003 Tutorial 16

40 Zachmann/Langetepe: Geometric Data Structures for CG

Figure 56: Example of a distance field in the plane
for a simple polygon (thick black lines). The dis-
tance field inside the polygon is not shown. The
dashed lines show the Voronoi diagram for the
same polygon. The thin lines show isosurfaces
for various isovalues.

Figure 57: The vector distance field for the same
polygon as shown on the left. Only a few vectors
are shown, although (in theory) every point of the
field has a vector.

Figure 58: A network of roads described in the
plane by a set of edges.

Figure 59: The distance map of these roads. The
distance of each point in the plane from a road
is color coded. It could be used, for example,
to determine the areas where new houses can be
built.

could also regard the vector of the DF as a kind of
ID of the respective Voronoi cell.)

6.1 Computation and representation
of DFs

For special surfaces S, we may be able to compute
DS analytically. In general, however, we have to
discretize DS spatially, i.e., store them in a 3D voxel
grid, octree, or other space partitioning data struc-

ture. Voxel grids and octrees are the most com-
monly used data structures for storing DFs, and
we will describe algorithms for them in the follow-
ing. More sophisticated representations try to store
more information at each voxel in order to be able
to extract distances quickly from the field [44].

Since each cell in a discrete distance field stores
one signed distance to the surface for only one
“representative”, the distance of other points must
be interpolated from these values. One simple

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 41

Figure 60: Representing distance fields by octrees
has both memory and computational advantages.

method is to store exact distances for the nodes (i.e.,
the corners of the voxels), and generate all other
distances in the interior of voxels by trilinear in-
terpolation. Other interpolation methods could, of
course, be used as well.

The simplest discrete representation of a DF is
the 3D voxel grid. However, for most applications
this is too costly not only in memory utilization but
also in computational efforts. So, usually DFs are
represented using octrees (see Figure 60), because
they are simple to construct and offer fairly good
adaptivity and allow for easy algorithms [35]. This
representation is called an adaptively sampled dis-
tance field (ADF). Actually, the kind of hierarchical
space partitioning is a design parameter of the al-
gorithm; for instance, BSPs (see Section 3) proba-
bly offer much more efficient storage at the price of
more complex interpolation.

Constructing ADFs works much like construct-
ing regular octrees for surfaces, except that here,
we subdivide a cell if the distance field is not well
approximated by the interpolation function defined
so far by the cell corners.

The following two algorithms for computing DFs
produce only flat representations (i.e., grids), but
they can be turned into an ADF by coalescing cells
in a bottom-up manner if the resulting cell still de-
scribes the DF well enough.12

6.1.1 Propagation method

This method bears some resemblance to region grow-
ing and flood filling algorithms and is also called
chamfer method. It can produce only approxima-
tions of the exact DF.

The idea is to start with a binary DF, where all
voxels intersecting the surface are assigned a dis-

12Usually, it is faster to compute an ADF top-down, though.

√
8

√
5√
5

√
8

√
2
√

5

√
5

√
2

√
2

√
5

√
5

√
8

√
5

√
4

√
8

part of matrix
for forward scan

part of matrix
for backward scan

-2 -1

21

0

2

2 1 0 1 2

2

1

1

√
2

-2

-1

0

1

2

layer

√
6

√
6
√

5

3

3

3

3
√

6

√
10

√
10

√
6

√
6
√

5

3

3

3

3
√

6

√
10

√
10

√
3
√

2

√
6

√
6

√
3

√
6

√
6
√

5

√
10

3

√
3
√

2

√
6

√
6

√
3

√
6

√
6
√

5

√
10

3

√
2

√
2

1

√
5

√
5

√
5

√
5

2

√
8

√
8

√
2

√
2

1

√
5

√
5

√
5

√
5

2

√
8

√
8

√
3

√
3
√

2

√
6

√
6

√
6

√
6
√

5

√
10

3

√
3

√
3
√

2

√
6

√
6

√
6

√
6
√

5

√
10

3

√
6

√
6
√

5

3

3

3

3
√

6

√
10

√
10

√
6

√
6
√

5

3

3

3

3
√

6

√
10

√
10

Figure 61: By convoluting a “distance matrix”
with an initially binary distance field (0 or ∞),
one gets an approximate distance field. Here a
5× 5× 5 example of such a matrix is shown.

tance of 0, and all others are assigned a distance of
∞ . Then, we somehow “propagate” these known
values to voxels in the neighborhood, taking advan-
tage of the fact that we already know the distances
between neighboring voxels.13 Note that these dis-
tances only depend on the local neighborhood con-
stellation, no matter where the “propagation front”
currently is.

More formally speaking, since we want to com-
pute the DF only for a discrete set of points in space,
we can reformulate Equation 14 as follows

D̃S(x, y, z) = min
i,j,k∈Z3

{
D(x + i, y + j, z + k)

+dM(i, j, k)
} (15)

where dM is the distance of a node (i, j, k) from
the center node (0, 0, 0). Actually, this is already
a slight approximation of the exact DF.

We can now further approximate this by not con-
sidering the infinite “neighborhood” (i, j, k) ∈ Z3,
but instead only a local one I ⊂ Z. Since a prac-
tical computation of D̃S would compute each node
in some kind of scan order, we choose I such that
it contains only nodes that have already been com-
puted by the respective scan. Thus, dM can be pre-
computed and stored conveniently in a 3-dimen-
sional matrix (see Figure 61).

This process looks very similar to conventional
convolution, except that here we perform a mini-
mum operation over a number of sums, while the

13This idea has been proposed as early as 1984 [13], and maybe
even earlier.

Siggraph 2003 Tutorial 16

42 Zachmann/Langetepe: Geometric Data Structures for CG

Figure 62: The distance func-
tion of a point site in the plane
is a cone [43].

Figure 63: More complex sites
have a bit more complex dis-
tance functions.

Figure 64: The distance func-
tion of sites in 3D is different
for the different slices of the
volume.

conventional convolution performs a sum over a
number of products.

Obviously, a single scan will not assign meaning-
ful distance values to all nodes, no matter what or-
der the scan preforms. Therefore, we need at least
two scans: for instance, first, a 3D scanline order
from top to bottom (“forward”), and second, back-
wards from bottom to top. In each pass, only one
half of the 3D matrix dM needs to be considered
(see Figure 61). It could still happen, of course, that
there are still nodes with distance ∞ in the respec-
tive part of the chamfer matrix.

The time complexity of this method is in O(m),
m = number of voxels. However, the result is only
an approximation of the distance field; in fact, the
accuracy of the distance values can be pretty low.14

In order to further improve accuracy, one can
make a few more passes, not only from top to bot-
tom and back, but also from left to right, etc. An-
other option is to increase the size of dM.

Analogously, an approximate vector distance field
can be computed [49]. In that case, the matrix dM
contains vectors instead of scalars. In order to im-
prove the accuracy, we can proceed in two steps:
first, for each voxel in the neighborhood of the sur-
face (usually just the 33-neighborhood) we com-
pute vectors to the exact closest point on the sur-
face; then, this shell is propagated by several passes
with the vector-valued matrix dM. The time for
computing the exact distance shell can be optimized
by utilizing an octree or BV hierarchy for clos-
est point computation, and initializing each search

14Furthermore, the distance values are not even an upper bound
on the real distance.

with the distance (and vector) to the closest point of
a nieghbor voxel.

6.1.2 Projection of distance functions

The previous method can be applied to all kinds of
surfaces S. However, it can produce only very gross
approximations. In the following, we describe a
method that can produce much better approxima-
tions. However, it can be applied only to polygonal
surfaces S.

The key technique applied in this approach is to
embed the problem into more dimensions than are
inherent in the input/output itself. This is a very
general technique that often helps to get a better
and simpler view on a complex problem.

The method described in the following was pre-
sented by Hoff et al. [43], and, from a different
point of view, by Sethian [82].

Let us consider the distance field of a single point
in 2D. If we consider this a surface in 3D, then we
get a cone with the apex in that point. In other
words, the distance field of a point in a plane is just
the orthogonal projection of suitable cone onto the
plane z = 0.

Now, if there are n point sites in the plane, we
get n cones, so each point in the plane will be “hit”
by n distance values from the projection (see Fig-
ure 62). Obviously, only the smallest one wins
and gets “stored” with that point — and this is ex-
actly what the z-buffer of graphics hardware was
designed for.

These cones are called the distance function for
a point. The distance function for other features

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 43

Figure 65: By specifying correspondences, the
user can identify feature points that should transi-
tion into each other during the morph [20].

(line segments, polygons, curves) is a little bit more
complicated (see Figure 63).

So, computing a discrete DF for a set of sites in
the plane can be done by rendering all the asso-
ciated distance functions (represented as polygonal
meshes) and reading out the z-buffer (and possibly
the frame buffer if we also want the site IDs, i.e.,
discretized Voronoi regions). If we want to com-
pute a three-dimenional DF, then we proceed slice-
by-slice. One noteworthy catch, though, is that the
distance functions of the sites changes from slice to
slice. For instance, the distance function for a point
that lies not in the current slice is a hyperboloid,
with the point site being coincident with the vertex
of the hyperboloid (see Figure 64).

6.2 Applications of DFs

Due to their high information density, distance fields
have a huge number of applications. Aomng them
are motion planning in robotics [53,58], collision
detection, shape matching [69], morphing [19], vol-
umetric modeling [35,14,96], navigation in virtual
environments [89], reconstruction [55], offset sur-
face construction [75], and dynamic LODs, to name
but a few. In the following, we will highlight two
easy ones of them.

6.2.1 Morphing

One interesting application of DFs is morphing, i.e.,
the problem of finding a “smooth” transition from
a shape S ⊂ Rd to a shape T ⊂ Rd, i.e., we are
looking for a shape transformation M(t, Rd), t ∈
[0, 1], such that M(0, S) = S, M(1, S) = T.

Sometimes, there is a bit of confusion about terms:
sometimes, morphing refers to any smooth transi-
tion, sometimes it refers only to those transitions
that are bijective, continuous, and have a continu-
ous inverse. In the latter case, the term morphing
is equivalent to the notion of homeomorphism in
the area of topology, and the term metamorpho-
sis is used to refer to the broader definition. The
difference between a homeomorphism and a meta-
morphosis is that the former does not allow to cut
or glue the shape during the transition (this would
change the topology).

In the following, we will describe a simple method
for metamorphosis of two shapes given as volumet-
ric models; it was presented by Cohen-Or et al [20].
The nice thing about a volumetric representation is
that it can naturally handle genus changes (i.e., the
number of “holes” in S and T is different).

In the simplest form, we can just interpolate lin-
early between the two DFs of S and T yielding a
new DF

M(t, S) = J(t, S, T) = tDS + (1− t)DT . (16)

In order to obtain a polygonal representation, we
can compute the isosurface for the value 0.

This works quite well, if S and T are “aligned”
with each other (in an intuitive sense). However,
when morphing two sticks that are perpendicular
to each other, there will be in-between models that
almost vanish.

Therefore, in addition to the DF interpolation, we
usually want to split the morphing into two steps
(for each t): first, S is warped by some function
W(t, x) into S′, then DS′ and DT are interpolated,
i.e., M(t, S) = tDW(t,S) + (1− t)DT .

The idea of the warp is that it encodes the ex-
pertise of the user who usually wants a number of
prominent feature points from S to transition onto
other feature points on T. For instance, she wants
the corresponding tips of nose, fingers, and feet of
two different characters transition into each other.

Therefore, the user has to specify a small number
of correspondences (p0,i , p1,i), where p0,i ∈ S, and
p1,i ∈ T (see Figure 65). Then, we determine a
warp function W(t, x) such that W(1, p0,i) = p1,i.

Siggraph 2003 Tutorial 16

44 Zachmann/Langetepe: Geometric Data Structures for CG

0
-1
-2

1
2

2

1

0

-1

-2

2

1

0

-1

-2

Figure 66: Example of differ-
ence of two DFs. On the left,
the two DFs for tool and ob-
ject are shown superimposed;
on the right, the result is shown.

Figure 67: Example of a 3D
difference operation [14].

Figure 68: Close-up view
showing the adaptivity.

Since the warp function should distort S as little
as possible (just “align” them), we can assemble it
from a rotation, then a translation, and finally an
elastic part that is not a linear transformation:

W(t, x) =
(
(1− t)I + tE

)(
R(a, tθ)x + tc

)
(17)

where E is the elastic transformation, R(a, θ) is a
rotation about axis a and angle θ, and c is the trans-
lation.

The rotation and translation of the warp function
can be determined by least-squares fitting, while
the elastic transformation can be formulated as a
scattered data interpolation problem. One method
that has proven quite robust is the approach using
radial basis functions. The interested reader will
find the details in Cohen-Or et al [20].

6.2.2 Modeling

A frequently used modeling paradigm in CAD is
volumetric modeling, which means that objects are,
conceptually, defined by specifying for each point
whether or not it is a member of the object. the ad-
vantage is that it is fairly simple to define Boolean
operations on such a representation, such as union,
subtraction, and intersection. Examples of vol-
umetric modeling is constructive solid geometry
(CSG) and voxel-based modeling. The advantage
of using distance fields for volumetric modeling is
that they are much easier to implement than CSG,
but provide much better quality than simple voxel-
based approaches.

Computing the Boolean operation on two DFs
basically amounts to evaluating the appropriate op-
erator on the two fields. The following tables gives
these operators for a field DO (for the object) and a
field DT (for the tool):

Boolean op. operator on DF

Union DO∪T = min
(

DO, DT
)

Intersection DO∩T = max
(

DO, DT
)

Difference DO−T = max
(

DO,−DT
)

Figure 66 shows an example of the difference oper-
ation.

If ADFs are used for representation of the DFs,
then a recursive procedure has to be applied to
the object’s ADF in order to compute the resulting
ADF. It is similar to the generation of ADFs (see
above), except that here the subdivision is governed
by the compliance of new object ADF with the tool
ADF: a cell is further subdivided if it contains cells
from the tool ADF that are smaller, and if the tri-
linear interpolation inside the cell does not approx-
imate well enough the ADF of the tool.

7 Dynamization of Geometric
Data Structures

We present a generic approach for the dynamiza-
tion of an arbitrary static geometric data structure.
Often a simple static data structure is sufficient if
the set of represented geometric objects will have

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 45

few changes over time. Once created, the static
structure mostly has to cope with data queries due
to its geometric intention. If the set of objects
varies very much over time, there is need for more
complex dynamic structures which allow efficient
insertion and deletion of objects.

For example a one dimensional sorted array of
a fixed set M is sufficient for x is Element of M
queries. But if the set M has many changes over
time, a dynamic AVL-tree would be more likely.
The AVL-tree implementation is more complex
since rotations of the tree has to be considered for
insertion and deletion of objects. Additionally, the
AVL-tree dynamization was invented for the spe-
cial case of the one-dimenional search. We want
to show that it is possible to dynamize a simple
static data structure indirectly but also efficiently
in a general setting. Once this generic approach
is implemented it can be used for many static data
structures.

The generic approaches presented here are not
optimal against a dynamization adapted directly to
a single data structure, but they are easy to imple-
ment and efficient for many applications.

In Section 7.1 we formalize the given problem
and define some requirements. In Section 7.2 we
present methods allowing insertion and deletion in
amortized efficient time. For many applications this
is already efficient enough. Within this section
the dynamization technique is explained in detail
and the amortized cost of the new operations are
shown. Similar ideas for the worst-case sensitive
approach are sketched in Section 7.3. The effort of
the dynamization itself is amortized over time. For
details see Klein [54] or the work of Overmars [71]
and van Kreveld [88]. We present a simple example
in Section 7.4.

7.1 Model of the Dynamization

Let us assume that TStat is a static abstract (geo-
metric) data type. Since we have a geometric data
structure, we assume that the essential motivation
of TStat is a query operation on the set of stored
objects D. i.e., for a query object q the answer is
always a subset of D which might be empty.

We want to define the generic dynamization by a
module that imports the following operations from
TStat:

build(V, D): Build the structure V of type
TStat with all data objects in the
set D.

query(V, q): Gives the answer (objects of D) to
a query to V with query object q.

extract(V, D): Collects all data objects D of V in
a single set an returns a pointer to
this set.

erase(V): Delete the complete data structure
V from the storage.

The dynamization module should export a dy-
namic abstract (geometric) data type TDyn with
the following operations:

Build(W, D): Build the structure W of type
TDyn with data objects in
the set D.

Query(W, q): Gives the answer (objects of D) to
a query to W with query object q.

Extract(W, D): Collects all data objects D of W
in a single set and returns a
pointer this set.

Erase(W): Delete the complete data
structure W from the storage.

Insert(W, d): Insert object d into W.

Delete(W, d): Delete d out of W.

Note, that the new operations Delete and Insert
are necessary since we have a dynamic data type
now.

Additionally, we introduce some cost functions
for the operations of the abstract dynamic and the
abstract static data type. For example let BV(n) de-
notes the time function for the operation Build(V, D)
of TStat. The notations are fully presented in Fig-
ure 69. The cost functions depend on the imple-
mentation of TStat. Note, that the cost function of
TDyn will depend on the cost functions of TStat
together with the efficiency of the our general dy-
namization.

In order to guarantee some bounds for the corre-
sponding cost functions of TDyn the cost functions
of TStat must not increase arbitrarily. On the other
hand for the proof of some time bounds we need
some kind of monotonic behavior in the functions,
they should not oscillate. Altogether we define the
following requirements which are fulfilled in many
cases:

Siggraph 2003 Tutorial 16

46 Zachmann/Langetepe: Geometric Data Structures for CG

Modul
Dynamize

Comp.:

BW(n)
QW(n)
EW(n)
IW(n)

DW(n)

ADT TDyn

Build(W, D)
Query(W, q)
Extract(W, D)
Insert(W, d)
Delete(W, d)

ADT TStat

build(V, D)
query(V, q)
extract(V, D)

Comp.:

BV(n)
QV(n)
EV(n)

Space.: SW(n) Space: SV(n)

K
Import

®
Export

Figure 69: Dynamization in the generic sense.

1. QV(n) and EV(n) increase monotonically in n;
examples: 1, log n,

√
n, n, n log n, n2, 2n.

2. BV (n)
n and SV (n)

n increase monotonically in n; ex-
amples n, n log n, n2, 2n.

3. For all f ∈ {QV , BV , EV , SV} there is a constant
C ≥ 1, so that f (2n) ≤ C f (n); examples: 1,√

n, n, n2, and also log n with n > 1, as well as
the products of this functions, but not 2n.

4. EV(n) ≤ 2 · BV(n).

Moreover, we assume that the that the query op-
eration can be decomposed, i.e., for a decomposition
V = V1 ∪V2 ∪ · · · ∪Vj of the data set V the results
of the single operations query(Vi , d) lead to the so-
lution of query(V, d). This is true for many kinds
of range queries.

7.2 Amortized Insert and Delete

7.2.1 Amortized Insert: Binary Structure

The very first idea is to implement Insert(W, d)
and Delete(W, d) directly by

Insert(W, d) : Extract(W, D); Build(W, D ∪ {d})
Delete(W, d) : Extract(W, D); Build(W, D \ {d}).

This throw-away implementation is not very ef-
ficient. Therefore we distribute the n data objects of
the static structure V among several structures Vi.
If a new element has to be inserted we hope that
only a single structure Vi may be concerned. Let

n = al2
l + al−12l−1 + . . . + a12 + a0 mit ai ∈ {0, 1}.

Then alal−1 . . . a1a0 is the binary representation
of n. For every ai = 1 we build a structure Vi which
has 2i elements. The collection of these structures
is a representation of Wn which is called binary
structure (see Figure 70). To build up the binary
structure Wn we proceed as follows:

Build(W, D):

Compute binary representation of n = |D|.
Decompose D into sets Di with

|Di| = 2i w.r.t. the representation of n.

Compute build(Vi , Di) for every Di.

In principle, the binary structure Wn can be con-
structed as quick as the corresponding structure V.

Lemma 10

BW(n) ∈ O(BV(n)).

Computing the binary representation of n and the
decomposition into Di can be done in linear time O(n).

The operation build(Vi , Di) needs BV(2i) time.
We have i ≤ l = blog nc and therefore we con-
clude:

blog nc
∑
i=0

BV(2i) =
blog nc
∑
i=0

2i BV(2i)
2i

≤
blog nc
∑
i=0

2i BV(n)
n

≤ 2log n BV(n)
n

∈ O(BV(n)).

We used the fact that BV (n)
n increases monotoni-

cally.
Altogether we have

BW(n) ∈ O(n + BV(n)) = O(BV(n))

since BV(n) is at least linear.
Similar results hold for some other operations.

We can prove

EW(n) ≤ log n EV(n)

the results of extraxt(Vi) for at most log n struc-
tures Vi.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 47

2
4

2
3

2
2

2
1

2
0

W23 W24

V0

V1

V2

V4 V4

V3

Figure 70: The binary structure Wn contains the structure Vi if ai = 1 holds for the
binary representation of n. For examples see n = 23 (left) and n = 24
(right).

Additionally,

QW(n) ≤ log n Qv(n)

holds if we assume that the query can be decompose
as well, see the requirements.

It is also easy to see that

SW(n) ≤
blog nc
∑
i=0

SV(2i) ∈ O(SV(n)).

Therefore it remains to analyse IW(n).
As we have seen from Figure 70 sometimes the

whole structure of Wn is destroyed when Wn+1 was
build up. In this example we had to perform the
following tasks:

extract(V0, D0); extract(V1, D1); extract(V2, D2);
D := D0 ∪ D1 ∪ D2 ∪ {d};
build(V3, D);

In general we have to build up Vj and extract and
erase Vj−1, Vj−2, . . ., V0 only if ai = 1 holds for
i = 0, 1 . . . , j − 1 and aj = 0 holds (in the binary
representation of the current n).

In this special case we have

IW(n) ≤
(

j−1

∑
i=0

EV(2i)

)
+ Cj + BV(2j)

≤ EV(2j) + Cj + BV(2j)

∈ O
(

BV(2j)
)

.

For a long sequence of insertions many of them
are performed without extreme reconstructions. Thus

the effort for all Insert(W, d) is amortized over
time.

Generally, let Work be an arbitrary operation
with cost function W. For a sequence of s differ-
ent operations let Work be applied k times. If

total cost of k Work operationen
k

≤W(s)

holds for a monotonically increasing cost function
W, we say that the operation Work is performed in
amortized time W(s).

Note, that this is not an expected value and that
W is a function of s, i.e., the length of the operation
sequence. The current data set may have a number
of elements n ≤ s.

For the Insert(W, d) operation one can prove

IW(s) ∈ O
(

log s
s

BV(s)
)

.

Note, that except insertions there are only queries
in s. Queries do not change the size of the data set
and so we can also replace s by the number of in-
sertions here.

Altogether, the results are presented in the fol-
lowing theorem.

Theorem 11 A static abstract data type as pre-
sented in Figure 69 can be dynamized by means
of the binary structure in a dynamic abstract data
type TDyn so that the operation Insert(W, d) is
performed in amortized time

IW(s) ∈ O
(

log s
s

BV(s)
)

.

Siggraph 2003 Tutorial 16

48 Zachmann/Langetepe: Geometric Data Structures for CG

Let n be the size of the current data set. We have

SW(n) ∈ log n Sv(n)
BW(n) ∈ BV(n))
QW(n) ∈ log n Qv(n).

7.2.2 Amortized Delete: Occasional
Reconstruction

Assume that we did not have implemented the Insert
operation, yet.

If we have to delete an object we can not choose
its location beforehand. Therefore the deletion of
an objects is much more difficult than the insertion.
Deletion may cause fundamental reconstruction.

For many data structures it is easier to simply
mark an object as deleted. Physically the object re-
mains in the structure but does no longer belong to
the data set D. These objects have bad influence on
the running time of all operations although they
are no longer necessary. Therefore from time to
time we have to reconstruct the data structure for
the actual data set.

First of all, for TStat we introduce an addi-
tional operation weak.delete(V, d) with cost func-
tion WDV(n). We simply want to construct a
strong delete function with an acceptable amortized
time bound for TDyn.

Therefore we use weak.delete(V, d) until D has
only the half size of V. Then we erase V and build
a new structure V out of D. The cost of the oc-
casional reconstruction is amortized over the pre-
ceeding delete-operations. This gives the following
result.

Theorem 12 A static abstract data type as pre-
sented in Figure 69 with an additional operation
weak.delete(V, d) and with additional cost func-
tion WDV(n) can be dynamized by means of oc-
casional reconstruction in a dynamic abstract data
type TDyn so that

BW(r) = BV(r)
EW(r) ∈ O (EV(r))
QW(r) ∈ O (QV(r))
SW(r) ∈ O (SV(r))

DW(s) ∈ O
(

WDV(s) +
BV(s)

s

)
,

holds. The size of the current actual data set is de-
noted with r and s denotes the length of the opera-
tion sequence.

We omit the proof here.

7.2.3 Amortized Insert and Amortized Delete

In the preceeding sections we have discussed Insert
and Delete separately. Now we want to show how
to combine the two approaches.

A static abstract data type with a weak delete im-
plementation is given. As in Section 7.2.1 we use
the binary structure for the insertion. The opera-
tion weak.delete is only available for the structures
Vi and we have to extend it to W in order to apply
the result of Section 7.2.2. If Weak.Delete(W, d) is
applied, d should be marked as deleted in W. But
we do not know in which of the structures Vi the
element d lies. Therefore in addition to the binary
structure we construct a balanced searchtree T that
stores this information. For every d ∈ W there is a
pointer to the structure Vi with d ∈ Vi, an example
is shown in Figure 71.

The additional cost of the search tree T is covered
as follows. Query operations are not involved. For
Weak.Delete(W, d) there is an additional O(log n)
for searching the corresponding Vi and for marking
d as deleted in Vi.

If an object d has to be inserted we have to up-
date T. The object d gets an entry for its struc-
ture Vj in T, this is done in time O(log n) and it
will not affect the time bound for the insertion.
But furthermore if V0, . . . , Vj−1 has to be erased
the corresponding objects should point to Vj after-
wards. This can be efficiently realized by collecting
the pointers of T to Vi in a list for every Vi. We
collect the pointers and change them to "‘Vj"’. This
operation is already covered by time O(BV(2j)) for
constructing Vj.

Altogether we conclude:

Theorem 13 A static abstract data type as pre-
sented in Figure 69 with an additional operation
weak.delete(V, d) and with additional cost function
WDV(n) can be dynamized by means of binary
structure, searchtree T and occasional reconstruc-
tion in a dynamic abstract data type TDyn so that
the amortized time for insertion reads

IW(s) ∈ O
(

log s
BV(s)

s

)
,

and the amortized time for deletion reads

DW(s) ∈ O
(

log s + WDV(s) +
BV(s)

s

)
.

Siggraph 2003 Tutorial 16

Zachmann/Langetepe: Geometric Data Structures for CG 49

15

13

9

1 2 3 4 5 6 7 8

14

10 11 12

T

V
3

V
0

V
1

V
2

Figure 71: A structure W15 with a searchtree T storing pointers to Vi for every d ∈ Vi.

For the rest of the operations we have

BW(r) = BV(r)
EW(r) ∈ O (log r EV(r))
QW(r) ∈ O (log r QV(r))
SW(r) ∈ O (SV(r)) .

The size of the current actual data set is denoted
with r and s denotes the length of the operation
sequence.

7.3 Worst-Case sensitive Insert and
Delete

In the last section we have seen that it is easy to
amortize the cost of Insert and Delete analytically
over time. The main idea for the construction of
the dynamic data structure was given by the binary
structure of Wn which has fundamental changes
from time to time but the corresponding costs were
amortized. Now we are looking for the worst-
case cost of Insert and Delete. The idea is to dis-
tribute the construction of Vj itself over time, i.e.,
the structure Vj should be finished if Vj−1, Vj−2, . . .
V0 has to be erased.

We only refer to the result of this approach. The
ideas are very similar to the ideas of the preceeding
sections. Technically, a modified binary represen-
tation is used in order to distribute the effort of the
reconstruction over time. For the interested reader
we refer to Klein [54] or van Kreveld [88] and Over-
mars [71].

Theorem 14 A static abstract data type as pre-
sented in Figure 69 with an additional operation
weak.delete(V, d) and with additional cost function
WDV(n) can be dynamized in a dynamic abstract
data type TDyn so that

Build(W, D) ∈ O(BV(n))
Query(W, q) ∈ O(log n ·QV(n))
Insert(W, d) ∈ O

(
log n

n BV(n)
)

Delete(W, d) ∈ O
(

log n + WDV(n) + BV (n)
n

)

Space O(SV(n)).

Here n denotes the number of relevant, stored
data objects.

7.4 A Simple Example

For convenience, we take a simple example from
Section 2 and apply Theorem 14, thus implement-
ing worst-case sensitive insertion and deletion.

In Section 2.2, an easy implementation of the
static kd-tree was presented with Skd(n) = O(n)
and query time Qkd(n) = O(

√
n + a), where a

represents the size of the answer (see Theorem 4).
Obviously, weak.delete(kd, x) can be implemented
in O(log n) time, thus we obtain WDkd(n) =
O(log n). Additionally we have Bkd(n) = O(n log n).

Let Dyn(kd) denote the dynamic variant based
upon the statically implemented kd-tree.

Application of Theorem 14 results in:

Build(Dyn(kd), D) ∈ O(n log n)
Query(Dyn(kd), q) ∈ O(

√
n log n + a)

Insert(Dyn(kd), d) ∈ O
(

log2 n
)

Delete(Dyn(kd), d) ∈ O (log n)
Space O(n).

References

[1] S. Ar, B. Chazelle, and A. Tal, Self-
Customized BSP Trees for Collision Detection,
Computational Geometry: Theory and Applica-
tions, 15 (2000), pp. 91–102. 21

[2] S. Ar, G. Montag, and A. Tal, Deferred,
Self-Organizing BSP Trees, in Eurographics, Sept.

Siggraph 2003 Tutorial 16

50 Zachmann/Langetepe: Geometric Data Structures for CG

2002, pp. 269–278. http://www.ee.technion.

ac.il/~ayellet/papers.html. 21, 22

[3] J. Arvo and D. B. Kirk, Fast Ray Trac-
ing by Ray Classification, in Computer Graphics
(SIGGRAPH ’87 Proceedings), M. C. Stone, ed.,
vol. 21, July 1987, pp. 55–64. 13

[4] F. Aurenhammer, Voronoi diagrams: A sur-
vey of a fundamental geometric data structure,
ACM Comput. Surv., 23 (1991), pp. 345–405. 29

[5] F. Aurenhammer and R. Klein,
Voronoi Diagrams, in Handbook of Com-
putational Geometry, J.-R. Sack and J. Ur-
rutia, eds., Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000, pp. 201–
290. http://wwwpi6.fernuni-hagen.de/

Publikationen/tr198.pdf. 29, 31, 32

[6] J. Avro and D. Kirk, A survey of ray trac-
ing acceleration techniques, in An Introduction to
Ray Tracing, A. Glassner, ed., Academic Press, San
Diego, CA, 1989, pp. 201–262. ISBN 0-12-286160-
4. 13, 23

[7] L. Balmelli, J. Kovacevic, and
M. Vetterli, Quadtrees for Embedded Sur-
face Visualization: Constraints and Efficient Data
Structures, in Proc. of IEEE International Confer-
ence on Image Processing (ICIP), vol. 2, Oct. 1999,
pp. 487–491. 10

[8] L. Balmelli, T. Liebling, and M. Vet-
terli, Computational Analysis of 4-8 Meshes
with Application to Surface Simplification using
global Error, in Proc. of the 13th Canadian Confer-
ence on Computational Geometry (CCCG), Aug.
2001. 10

[9] G. Barequet, B. Chazelle, L. J.
Guibas, J. S. B. Mitchell, and A. Tal,
BOXTREE: A Hierarchical Representation for
Surfaces in 3D, Computer Graphics Forum, 15
(1996), pp. C387–C396, C484. ISSN 0167-7055.
23

[10] N. Beckmann, H.-P. Kriegel,
R. Schneider, and B. Seeger, The
R∗-tree: An efficient and robust access method
for points and rectangles, in Proc. ACM SIGMOD
Conf. on Management of Data, 1990, pp. 322–331.
26

[11] J. Bernal, Bibliographic notes on Voronoi di-
agrams, tech. rep., National Institute of Standards
and Technology, Gaithersburg, MD 20899, 1992.
29

[12] J.-D. Boissonnat and M. Teillaud,
On the randomized construction of the Delaunay
tree, Theoret. Comput. Sci., 112 (1993), pp. 339–
354. http://www.inria.fr/cgi-bin/wais_ra_
sophia?question=1140. 32

[13] G. Borgefors, Distance transformations
in arbitrary dimensions, in Computer. Vision,
Graphics, Image Processing, vol. 27, 1984,
pp. 321–345. 41

[14] P.-T. Bremer, S. D. Porumbescu,
F. Kuester, B. Hamann, K. I. Joy,
and K.-L. Ma, Virtual Clay Modeling us-
ing Adaptive Distance Fields, in Proceedings of
the 2002 International Conference on Imaging
Science, Systems, and Technology (CISST 2002),
H. R. A. et al., ed., vol. 1, Athens, Georgia, 2002.
43, 45

[15] P. J. C. Brown, Selective Mesh Refine-
ment for Rendering, PhD dissertation, Em-
manuel College, University of Cambridge, Feb.
1998. http://www.cl.cam.ac.uk/Research/

Rainbow/publications/pjcb/thesis/. 8

[16] L. P. Chew, Constrained Delaunay triangula-
tions, Algorithmica, 4 (1989), pp. 97–108. 34

[17] , Guaranteed-quality mesh generation for
curved surfaces, in Proc. 9th Annu. ACM Sympos.
Comput. Geom., 1993, pp. 274–280. 34

[18] N. Chin, Partitioning a 3D Convex Polygon
with an Arbitrary Plane, in Graphics Gems III,
D. Kirk, ed., Academic Press, 1992, chapter V.2,
pp. 219–222. 18

[19] D. Cohen-Or, A. Solomovici, and
D. Levin, Three-Dimensional Distance Field
Metamorphosis, ACM Transactions on Graphics,
17 (1998), pp. 116–141. http://visinfo.zib.

de/EVlib/Show?EVL-1998-152. 43

[20] , Three-Dimensional Distance Field Meta-
morphosis, ACM Transactions on Graphics, 17
(1998), pp. 116–141. ISSN 0730-0301. 43, 44

[21] M. de Berg, Linear Size Binary Space Parti-
tions for Fat Objects, in Proc. 3rd Annu. European
Sympos. Algorithms, vol. 979 of Lecture Notes
Comput. Sci., 1995, pp. 252–263. 19

[22] , Linear size binary space partitions for un-
cluttered scenes, Algorithmica, 28 (2000), pp. 353–
366. 19

[23] M. de Berg, M. van Kreveld,
M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Ap-
plications, Springer-Verlag, Berlin, Germany,
2nd ed., 2000. 5, 6, 16, 19, 30

[24] F. Dehne and H. Noltemeier, A com-
putational geometry approach to clustering prob-
lems, in Proc. 1st Annu. ACM Sympos. Comput.
Geom., 1985, pp. 245–250. 36

[25] A. K. Dewdney and J. K. Vranch, A
convex partition of R3 with applications to Crum’s

Siggraph 2003 Tutorial 16

http://www.ee.technion.ac.il/~ayellet/papers.html
http://www.ee.technion.ac.il/~ayellet/papers.html
http://wwwpi6.fernuni-hagen.de/Publikationen/tr198.pdf
http://wwwpi6.fernuni-hagen.de/Publikationen/tr198.pdf
http://www.inria.fr/cgi-bin/wais_ra_sophia?question=1140
http://www.inria.fr/cgi-bin/wais_ra_sophia?question=1140
http://www.cl.cam.ac.uk/Research/Rainbow/publications/pjcb/thesis/
http://www.cl.cam.ac.uk/Research/Rainbow/publications/pjcb/thesis/
http://visinfo.zib.de/EVlib/Show?EVL-1998-152
http://visinfo.zib.de/EVlib/Show?EVL-1998-152

Zachmann/Langetepe: Geometric Data Structures for CG 51

problem and Knuth’s post-office problem, Utilitas
Math., 12 (1977), pp. 193–199. 32

[26] H. Djidjev and A. Lingas, On computing
the Voronoi diagram for restricted planar figures,
in Proc. 2nd Workshop Algorithms Data Struct.,
vol. 519 of Lecture Notes Comput. Sci., 1991,
pp. 54–64. 31

[27] D. P. Dobkin and M. J. Laszlo, Prim-
itives for the manipulation of three-dimensional
subdivisions, Algorithmica, 4 (1989), pp. 3–32. 32

[28] R. A. Dwyer, Higher-dimensional Voronoi di-
agrams in linear expected time, Discrete Comput.
Geom., 6 (1991), pp. 343–367. 32

[29] H. Edelsbrunner, Algorithms in Combina-
torial Geometry, vol. 10 of EATCS Monographs
on Theoretical Computer Science, Springer-
Verlag, Heidelberg, West Germany, 1987. 29, 35

[30] H. Edelsbrunner and N. R. Shah, In-
cremental topological flipping works for regular
triangulations, Algorithmica, 15 (1996), pp. 223–
241. 33

[31] S. A. Ehmann and M. C. Lin, Accurate
and Fast Proximity Queries Between Polyhedra
Using Convex Surface Decomposition, in Com-
puter Graphics Forum, vol. 20, 2001, pp. 500–510.
ISSN 1067-7055. 28

[32] A. A. Elassal and V. M. Caruso, USGS
digital cartographic data standards - Digital Ele-
vation Models, Technical Report Geological Sur-
vey Circular 895-B, US Geological Survey, 1984.
7

[33] D. A. Field, Implementing Watson’s algo-
rithm in three dimensions, in Proc. 2nd Annu.
ACM Sympos. Comput. Geom., 1986, pp. 246–
259. 33

[34] S. Fortune, Voronoi diagrams and Delaunay
triangulations, in Computing in Euclidean Geom-
etry, D.-Z. Du and F. K. Hwang, eds., vol. 1 of Lec-
ture Notes Series on Computing, World Scientific,
Singapore, 1st ed., 1992, pp. 193–233. 29

[35] S. F. Frisken, R. N. Perry, A. P.
Rockwood, and T. R. Jones, Adap-
tively Sampled Distance Fields: A General Rep-
resentation of Shape for Computer Graphics, in
Siggraph 2000, Computer Graphics Proceedings,
K. Akeley, ed., Annual Conference Series, 2000,
pp. 249–254. http://visinfo.zib.de/EVlib/

Show?EVL-2000-61. 41, 43

[36] H. Fuchs, Z. M. Kedem, and B. F.
Naylor, On Visible Surface Generation by
a Priori Tree Structures, in Computer Graphics
(SIGGRAPH ’80 Proceedings), vol. 14, July 1980,
pp. 124–133. 16, 20

[37] D. Fussell and K. R. Subramanian,
Fast Ray Tracing Using K-D Trees, Technical Re-
port TR-88-07, U. of Texas, Austin, Dept. Of Com-
puter Science, Mar. 1988. 26

[38] A. S. Glassner, ed., An Introduction to Ray
Tracing, Academic Press, 1989. 11

[39] J. Goldsmith and J. Salmon, Automatic
Creation of Object Hierarchies for Ray Trac-
ing, IEEE Computer Graphics and Applications, 7
(1987), pp. 14–20. 26

[40] S. Gottschalk, M. Lin, and
D. Manocha, OBB-Tree: A Hierarchical
Structure for Rapid Interference Detection,
in SIGGRAPH 96 Conference Proceedings,
H. Rushmeier, ed., ACM SIGGRAPH, Aug. 1996,
pp. 171–180. held in New Orleans, Louisiana,
04-09 August 1996. 23, 26, 28

[41] L. J. Guibas and J. Stolfi, Primitives for
the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans.
Graph., 4 (1985), pp. 74–123. 31

[42] H. W. Hamacher, Mathematische Lö-
sungsverfahren für planare Standortprobleme,
Verlag Vieweg, Wiesbaden, 1995. 36

[43] K. E. Hoff III, T. Culver, J. Keyser,
M. Lin, and D. Manocha, Fast Com-
putation of Generalized Voronoi Diagrams Us-
ing Graphics Hardware, LA, California, Aug.8–
13 1999, pp. 277–286. http://www.cs.unc.edu/
~geom/voronoi/. 42

[44] J. Huang, Y. Li, R. Crawfis, S. C. Lu,
and S. Y. Liou, A complete distance field rep-
resentation, in Proceedings of the conference on
Visualization 2001, 2001, pp. 247–254. ISBN 0-
7803-7200-X. 40

[45] P. M. Hubbard, Real-Time Collision Detec-
tion and Time-Critical Computing, in SIVE 95,
The First Worjshop on Simulation and Interaction
in Virtual Environments, no. 1, Iowa City, Iowa,
July 1995, University of Iowa, pp. 92–96. 28

[46] H. Inagaki, K. Sugihara, and
N. Sugie, Numerically robust incremental
algorithm for constructing three-dimensional
Voronoi diagrams, in Proc. 4th Canad. Conf.
Comput. Geom., 1992, pp. 334–339. 33

[47] B. Joe, 3-Dimensional Triangulations from Lo-
cal Transformations, SIAM J. Sci. Statist. Com-
put., 10 (1989), pp. 718–741. 33

[48] , Construction of Three-Dimensional De-
launay Triangulations Using Local Transforma-
tions, Comput. Aided Geom. Design, 8 (1991),
pp. 123–142. 33

Siggraph 2003 Tutorial 16

http://visinfo.zib.de/EVlib/Show?EVL-2000-61
http://visinfo.zib.de/EVlib/Show?EVL-2000-61
http://www.cs.unc.edu/~geom/voronoi/
http://www.cs.unc.edu/~geom/voronoi/

52 Zachmann/Langetepe: Geometric Data Structures for CG

[49] M. W. Jones and R. A. Satherley,
Shape representation using space filled sub-voxel
distance fields, pp. 316–325. 39, 42

[50] T. C. Kao and D. M. Mount, Incre-
mental construction and dynamic maintenance of
constrained Delaunay triangulations, in Proc. 4th
Canad. Conf. Comput. Geom., 1992, pp. 170–175.
34

[51] N. Katayama and S. Satoh, The SR-tree:
An Index Structure for High-Dimensional Near-
est Neighbor Queries, in Proc. ACM SIGMOD
Conf. on Management of Data, 1997, pp. 369–380.
23

[52] T. L. Kay and J. T. Kajiya, Ray Trac-
ing Complex Scenes, in Computer Graphics (SIG-
GRAPH ’86 Proceedings), D. C. Evans and R. J.
Athay, eds., vol. 20, Aug. 1986, pp. 269–278. 23

[53] R. Kimmel, N. Kiryati, and A. M.
Bruckstein, Multi-Valued Distance Maps for
Motion Planning on Surfaces with Moving Obsta-
cles, IEEE Transactions on Robotics and Automa-
tion, 14 (1998), pp. 427–436. 39, 43

[54] R. Klein, Algorithmische Geometrie, Addison-
Wesley, Bonn, 1997. http://www.oldenbourg.

de/cgi-bin/rotitel?T=24382. 5, 44, 49

[55] R. Klein, A. Schilling, and
W. Straer, Reconstruction and simplification
of surfaces from contours, in Pacific Graphics,
1999, pp. 198–207. http://cg.cs.uni-bonn.

de/publications/publication.asp?id=31.
43

[56] J. T. Klosowski, M. Held, J. S. B.
Mitchell, H. Sowrizal, and K. Zikan,
Efficient Collision Detection Using Bounding Vol-
ume Hierarchies of k-DOPs, IEEE Transactions on
Visualization and Computer Graphics, 4 (1998),
pp. 21–36. 23, 28

[57] T. Larsson and T. Akenine-Mller,
Collision Detection for Continuously Deforming
Bodies, in Eurographics, 2001, pp. 325–333. short
presentation. 28

[58] J.-C. Latombe, Robot Motion Planning,
Kluwer Academic Publishers, Boston, 1991. 43

[59] C. L. Lawson, Software for C1 surface inter-
polation, in Math. Software III, J. R. Rice, ed., Aca-
demic Press, New York, NY, 1977, pp. 161–194. 31

[60] D. T. Lee and A. K. Lin, Generalized De-
launay Triangulation for Planar Graphs, Discrete
Comput. Geom., 1 (1986), pp. 201–217. 34

[61] S. Leutenegger, J. Edgington, and
M. Lopez, STR : A Simple and Efficient Algo-
rithm for R-Tree Packing, in Proceedings of the

13th International Conference on Data Engineer-
ing (ICDE’97), Washington - Brussels - Tokyo,
Apr. 1997, pp. 497–507. ISBN 0-8186-7807-0. 24

[62] T.-Y. Li and J.-S. Chen, Incremental 3D
Collision Detection with Hierarchical Data Struc-
tures, in Proc. VRST ’98, Taipei, Taiwan, Nov.
1998, ACM, pp. 139–144. 28

[63] P. Lindstrom, D. Koller, W. Rib-
arsky, L. F. Hughes, N. Faust, and
G. Turner, Real-Time, Continuous Level of
Detail Rendering of Height Fields, in SIGGRAPH
96 Conference Proceedings, H. Rushmeier, ed.,
ACM SIGGRAPH, Aug. 1996, pp. 109–118. held
in New Orleans, Louisiana, 04-09 August 1996. 7,
10

[64] P. Lindstrom and V. Pascucci, Visual-
ization of Large Terrains Made Easy, in Proc. IEEE
Visualization, San Diego, 2001. 8, 9, 10

[65] W. E. Lorensen and H. E. Cline,
Marching Cubes: A High Resolution 3D Surface
Construction Algorithm, in Computer Graphics
(SIGGRAPH ’87 Proceedings), M. C. Stone, ed.,
vol. 21, July 1987, pp. 163–169. 11

[66] G. Mller, S. Schfer, and W. D. Fell-
ner, Automatic Creation of Object Hierarchies
for Radiosity Clustering, Computer Graphics Fo-
rum, 19 (2000). ISSN 0167-7055. 26

[67] B. Naylor, J. Amanatides, and
W. Thibault, Merging BSP Trees Yields Poly-
hedral Set Operations, in Computer Graphics
(SIGGRAPH ’90 Proceedings), F. Baskett, ed.,
vol. 24, Aug. 1990, pp. 115–124. 18

[68] B. F. Naylor, A Tutorial on Binary Space
Partitioning Trees, ACM SIGGRAPH ’96 Course
Notes 29, (1996). 16, 18, 20

[69] M. Novotni and R. Klein, A Geometric
Approach to 3D Object Comparison, in Interna-
tional Conference on Shape Modeling and Appli-
cations, May 2001, pp. 167–175. 43

[70] R. Osada, T. Funkhouser,
B. Chazelle, and D. Dobkin, Matching
3D models with shape distributions, in Pro-
ceedings of the International Conference on
Shape Modeling and Applications (SMI-01),
B. Werner, ed., Los Alamitos, CA, May 7–11 2001,
pp. 154–166. 39

[71] M. H. Overmars, The Design of Dynamic
Data Structures, vol. 156 of Lecture Notes Com-
put. Sci., Springer-Verlag, Heidelberg, West Ger-
many, 1983. 44, 49

[72] D. W. Paglieroni, Distance Transforms:
Properties and Machine Vision Applications,

Siggraph 2003 Tutorial 16

http://www.oldenbourg.de/cgi-bin/rotitel?T=24382
http://www.oldenbourg.de/cgi-bin/rotitel?T=24382
http://cg.cs.uni-bonn.de/publications/publication.asp?id=31
http://cg.cs.uni-bonn.de/publications/publication.asp?id=31

Zachmann/Langetepe: Geometric Data Structures for CG 53

CVGIP: Graphical Models and Image Processing,
54 (1992), pp. 56–74. 39

[73] I. J. Palmer and R. L. Grimsdale, Colli-
sion Detection for Animation using Sphere-Trees,
Computer Graphics Forum, 14 (1995), pp. 105–
116. ISSN 0167-7055. 28

[74] M. S. Paterson and F. F. Yao, Effi-
cient binary space partitions for hidden-surface
removal and solid modeling, Discrete Comput.
Geom., 5 (1990), pp. 485–503. 16, 19

[75] B. A. Payne and A. W. Toga, Dis-
tance field manipulation of surface models, IEEE
Computer Graphics and Applications, 12 (1992),
pp. 65–71. 43

[76] F. P. Preparata and M. I. Shamos,
Computational Geometry: An Introduction,
Springer-Verlag, New York, NY, 1985. 29

[77] V. T. Rajan, Optimality of the Delaunay tri-
angulation in Rd, in Proc. 7th Annu. ACM Sym-
pos. Comput. Geom., 1991, pp. 357–363. 33

[78] J. Revelles, C. Urena, and M. Las-
tra, An Efficient Parametric Algorithm for Oc-
tree Traversal, in WSCG 2000 Conference Pro-
ceedings, University of West Bohemia, Plzen,
Czech Republic, 2000. http://visinfo.zib.de/
EVlib/Show?EVL-2000-307. 12

[79] N. Roussopoulos and D. Leifker,
Direct spatial search on pictorial databases using
packed R-trees, in Proceedings of ACM-SIGMOD
1985 International Conference on Management of
Data, May 28–31, 1985, LaMansion Hotel, Austin,
Texas, S. Navathe, ed., New York, NY 10036, USA,
1985, pp. 17–31. ISBN 0-89791-160-1. http://

www.acm.org/pubs/articles/proceedings/

mod/318898/p17-roussopoulos/

p17-roussopoulos.pdf;http://www.acm.

org/pubs/citations/proceedings/mod/

318898/p17-roussopoulos/. 24

[80] R. Seidel, Constrained Delaunay triangula-
tions and Voronoi diagrams with obstacles, Tech-
nical Report 260, IIG-TU Graz, Austria, 1988. 34

[81] J. A. Sethian, An Analysis of Flame Propaga-
tion, PhD thesis, Dept. of Mathematics, University
of California, Berkeley, 1982. http://visinfo.

zib.de/EVlib/Show?EVL-1982-2. 39

[82] , Level Set Methods, Cambridge University
Press, 1996. http://visinfo.zib.de/EVlib/

Show?EVL-1996-149. 42

[83] , Level set methods and fast marching
methods, Cambridge University Press, 1999. 39

[84] M. I. Shamos, Computational Geometry,
ph.D. thesis, Dept. Comput. Sci., Yale Univ., New
Haven, CT, 1978. 31

[85] M. Tanemura, T. Ogawa, and
W. Ogita, A New Algorithm for Three-
Dimensional Voronoi Tesselation, J. Comput.
Phys., 51 (1983), pp. 191–207. 33

[86] E. Torres, Optimization of the Binary Space
Partition Algorithm (BSP) for the Visualization of
Dynamic Scenes, in Eurographics ’90, C. E. Van-
doni and D. A. Duce, eds., Sept. 1990, pp. 507–518.
20

[87] G. van den Bergen, Efficient Collision
Detection of Complex Deformable Models using
AABB Trees, Journal of Graphics Tools, 2 (1997),
pp. 1–14. 28

[88] M. J. van Kreveld, New Results on Data
Structures in Computational Geometry, ph.D.
dissertation, Dept. Comput. Sci., Utrecht Univ.,
Utrecht, Netherlands, 1992. 44, 49

[89] M. Wan, F. Dachille, and A. Kauf-
man, Distance-field based skeletons for virtual
navigation, in Proceedings of the conference on
Visualization 2001, 2001, pp. 239–246. ISBN 0-
7803-7200-X. 43

[90] C. A. Wang, Efficiently updating the con-
strained Delaunay triangulations, BIT, 33 (1993),
pp. 238–252. 34

[91] C. A. Wang and L. Schubert, An optimal
algorithm for constructing the Delaunay triangu-
lation of a set of line segments, in Proc. 3rd Annu.
ACM Sympos. Comput. Geom., 1987, pp. 223–
232. 34

[92] D. F. Watson, Computing the n-Dimensional
Delaunay Tesselation with Applications to
Voronoi Polytopes, Comput. J., 24 (1981),
pp. 167–172. 33

[93] H. Weghorst, G. Hooper, and D. P.
Greenberg, Improved Computational Meth-
ods for Ray Tracing, ACM Transactions on Graph-
ics, 3 (1984), pp. 52–69. 23

[94] L.-Y. Wei and M. Levoy, Fast Texture
Synthesis Using Tree-Structured Vector Quanti-
zation, in Siggraph 2000, Computer Graphics Pro-
ceedings, K. Akeley, ed., Annual Conference Se-
ries, 2000, pp. 479–488. http://visinfo.zib.

de/EVlib/Show?EVL-2000-87. 37, 38

[95] J. Wilhelms and A. V. Gelder, Octrees
for Faster Isosurface Generation Extended Ab-
stract, in Computer Graphics (San Diego Work-
shop on Volume Visualization), vol. 24, Nov. 1990,
pp. 57–62. 11

[96] C. Youngblut, R. E. Johnson,
S. H. Nash, R. A. Wienclaw, and
C. A. Will, Different Applications of

Siggraph 2003 Tutorial 16

http://visinfo.zib.de/EVlib/Show?EVL-2000-307
http://visinfo.zib.de/EVlib/Show?EVL-2000-307
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://www.acm.org/pubs/articles/proceedings/mod/318898/p17-roussopoulos/p17-roussopoulos.pdf; http://www.acm.org/pubs/citations/proceedings/mod/318898/p17-roussopoulos/
http://visinfo.zib.de/EVlib/Show?EVL-1982-2
http://visinfo.zib.de/EVlib/Show?EVL-1982-2
http://visinfo.zib.de/EVlib/Show?EVL-1996-149
http://visinfo.zib.de/EVlib/Show?EVL-1996-149
http://visinfo.zib.de/EVlib/Show?EVL-2000-87
http://visinfo.zib.de/EVlib/Show?EVL-2000-87

54 Zachmann/Langetepe: Geometric Data Structures for CG

Two-Dimensional Potential Fields for Vol-
ume Modeling, Tech. Rep. UCAM-CL-TR-
541, University of Cambridge, Computer
Laboratory, 15 JJ Thomson Avenue, Cam-
bridge CB3 0FD, United Kingdom, Aug. 2002.
http://www.cl.cam.ac.uk/users/nad/pubs/.
43

[97] G. Zachmann, Real-time and Exact Collision
Detection for Interactive Virtual Prototyping, in
Proc. of the 1997 ASME Design Engineering Tech-
nical Conferences, Sacramento, California, Sept.
1997. Paper no. CIE-4306. 28

[98] , Rapid Collision Detection by Dynamically
Aligned DOP-Trees, in Proc. of IEEE Virtual Real-

ity Annual International Symposium; VRAIS ’98,
Atlanta, Georgia, Mar. 1998, pp. 90–97. 23, 28

[99] , Minimal Hierarchical Collision Detection,
in Proc. ACM Symposium on Virtual Reality
Software and Technology (VRST), Hong Kong,
China, Nov.11–13 2002, pp. 121–128. http://

www.gabrielzachmann.org/. 26, 28

[100] B. Zhu and A. Mirzaian, Sorting does not
always help in computational geometry, in Proc.
3rd Canad. Conf. Comput. Geom., Aug. 1991,
pp. 239–242. 31

Siggraph 2003 Tutorial 16

http://www.cl.cam.ac.uk/users/nad/pubs/
http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/

	Introduction
	Quadtrees and Kd-Trees
	Quadtrees and Octrees
	Definition
	Complexity and Construction
	Neighbor Finding

	Kd-trees
	Height Field Visualization
	Isosurface Generation
	Ray Shooting
	3D Octree
	5D Octree

	BSP Trees
	Rendering Without a Z-Buffer
	Representing Objects with BSPs
	Boolean Operations
	Construction Heuristics
	Convex objects
	Cost driven heuristic
	Non-uniform queries
	Deferred, self-organizing BSPs

	Bounding Volume Hierarchies
	Construction of BV Hierarchies
	Bottom-up
	Insertion
	Top-down
	Construction criteria
	The criterion for collision detection

	Collision Detection

	Voronoi Diagrams
	Definitions and Elementary Properties
	Voronoi Diagram
	Delaunay Triangulation

	Computation
	Generalization of the Voronoi Diagram
	Voronoi Diagram and Delaunay Triangulation in 3D
	Constrained Voronoi diagrams
	Other Types of Generalizations

	Applications of the Voronoi Diagram
	Nearest Neighbor or Post Office Problem
	Motion planning
	Other Applications of the Voronoi Diagram in 2D

	Texture Synthesis
	Shape Matching

	Distance Fields
	Computation and representation of DFs
	Propagation method
	Projection of distance functions

	Applications of DFs
	Morphing
	Modeling

	Dynamization of Geometric Data Structures
	Model of the Dynamization
	Amortized Insert and Delete
	Amortized Insert: Binary Structure
	Amortized Delete: Occasional Reconstruction
	Amortized Insert and Amortized Delete

	Worst-Case sensitive Insert and Delete
	A Simple Example

