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Figure 1: Some objects of our test suite: body of
a car, lock of a car door, and a set of pipes. (Data
courtesy of VW and BMW)

Abstract
We present a novel framework for hierarchical col-
lision detection that can be applied to virtually all
bounding volume (BV) hierarchies. It allows an ap-
plication to trade quality for speed. Our algorithm
yields an estimation of the quality, so that appli-
cations can specify the desired quality. In a time-
critical system, applications can specify the maxi-
mum time budget instead, and quantitatively assess
the quality of the results returned by the collision
detection afterwards.

Our framework stores various characteristics
about the average distribution of the set of poly-
gons with each node in a BV hierarchy, taking only
minimal additional memory footprint and construc-
tion time. We call such augmented BV hierarchies
average-distribution treesor ADB-trees.

We have implemented our new approach by aug-
menting AABB trees and present performance mea-
surements and comparisons with a very fast previ-
ous algorithm, namely the DOP-tree. The results
show a speedup of about a factor 3 to 6 with only
approximately 4% error.

1 Introduction
Fast collision detection of polygonal objects is
needed in many highly interactive applications such
as virtual prototyping and 3D games. Most of these
applications simulate some kind of more or less re-
alistic object behavior.

It has often been noted previously, that theper-
ceived qualityof a virtual environment and, in fact,
most interactive 3D applications, crucially depends
on the real-time response to collisions [18]. At

the same time, humans cannot distinguish between
physically correct andphysically plausiblebehav-
ior of objects (at least up to some degree) [4]. Since
collision detection is still the major bottleneck of
many of these simulations, it is obvious that this is
where we can achieve the best speedup.

Therefore, we introduce the novel framework of
collision detection using an average-case approach,
thus extending the set of techniques for plausible
simulation. To our knowledge, this is the first time
that thequality of collision detection can be de-
creased in a controlled way (while increasing the
speed), such that a numericmeasureof the quality
of the results is obtained.

Conceptually, the main idea of the new algorithm
is to considersets of polygonsat inner nodes of
the BV hierarchy, and then, during traversal, check
pairs of sets of polygons. However, we neither
check pairs of polygons derived from such a pair
of polygon sets, nor store any polygons with the
nodes. Instead, based on a small number of param-
eters describing thedistributionwithin the polygon
sets, we will derive an estimation of the probability
that thereexistsa pair of intersecting polygons.

2 Related Work
Bounding volume hierarchies have proven to be a
very efficient data structure for rigid collision detec-
tion, and, to some extent, for deformable objects.

One of the design choices with BV trees is the
type of BV. In the past, a wealth of BV types has
been explored, such as spheres [8, 16], OBBs [7],
DOPs [12, 21], Boxtrees [1, 22], AABBs [13, 19],
and convex hulls [6].

Alternatives to BV hierarchies are approaches
that utilize the graphics hardware [14,15,17]. How-
ever, all of them compete with the rendering mod-
ule for the graphics resources (unless one spends
another board just for the collision detection).

BV hierarchies lend themselves well to time-
critical collision detection, i.e., the scheduler in-
terrupts the traversal when the time budget is ex-
hausted. This has been observed by several re-

VMV 2003 Munich, Germany, November 19–21, 2003



searchers [5, 8]. Hubbard presented the idea of
interruptible collision detection using sphere trees
[8]. Dingliana and O’Sullivan [5] are concerned
with modelling contacts based on interrupted sphere
tree traversals. The method described there can
be applied in our framework too. However, they
do not provide any theoretical foundations con-
cerning the error incurred by an incomplete traver-
sal. In addition, their methods do not support
application-driven “levels-of-detail” of collision de-
tection, where the application can specify an allow-
able error rate beforehand.

A different approach to reducing query times is
to try to learn and model the query probability dis-
tribution either before the hierarchy construction [2]
or at runtime [3] (i.e., the construction is done on-
demand). However, our framework can be com-
bined with theirs very well and easily.

Probabilistic methods have been applied to other
problems of computer graphics, such as out-of-core
walkthroughs [9] and the randomized z-buffer [20].
To our knowledge, however, there is neither lit-
erature about probabilistic collision detection nor
about algorithms using a probabilistic analysis or
an average-case approach to control the quality and
speed of collision detection.

3 Controlling the Error
Virtually all hierarchical collision detection ap-
proaches traverse the hierarchies simultaneously by
an algorithm, which allows to quickly zoom into ar-
eas of close proximity. As mentioned in the previ-
ous section, it is, of course, possible to just cut off
this traversal any time the application or scheduler
deems suitable. The problem with this approach is
that it gives no hint as to the confidence in the result.

In contrast, our novel approach enables an appli-
cation to trade accuracy for speed in a controlled
fashion, so that it always has a “measure of confi-
dence” into the result reported by the algorithm.

BV A

BV B

polygon in BV A

polygon in BV B

Figure 2: We partition the
intersection volume by a
grid. Then, we determine
the probability that there
are collision cells where
polygons of different ob-
jects can intersect (high-
lighted in grey).

3.1 Overview of our Approach
Our idea is to guide and to abort the traversal by the
probability that a pair of BVs contains intersecting
polygons.

Conceptually, the intersection volume ofA and
B,A∩B, is partitioned into a regular grid (see Fig-
ure 2). If a cell containsenoughpolygons of one
BV, we call it apossible collision celland if a cell
is a possible collision cell with respect toA and also
with respect toB, we call it acollision cell (a more
precise definition is given in Section 3.2). Given
the number of possible collision cells fromA and
B, resp., we can compute the probability that there
are at leastx collision cells inA ∩ B. This prob-
ability can be used to estimate the probability that
the polygons fromA andB intersect. For the com-
putations, we assume that the probability of being
a possible collision cell is evenly distributed among
all cells of the partitioning because we are looking
for an algorithm that works well in the average case
where the polygons are uniformly distributed in the
BVs.

An outline of our traversal algorithm is shown
in Figure 3. Function computeProb estimates the
probability of an intersection between the polygon
sets of two BVs. By descending first into those sub-
trees that have highest probability, we can quickly
increase the confidence in the result and determine
the end of the traversal. Basically, we are now deal-
ing with priorities of pairs of nodes, which we main-
tain in a priority queue.

The quality and speed of the collision detection
strongly depends on the accuracy of the probabil-
ity computation. Several factors contribute to that,
such as the kind of partitioning and the size of the
polygons relative to the size of the cells.

There are two other important parameters in our
traversal algorithm,pmin andkmin, that affect the
quality and the speed of the collision detection.
Both can be specified by the application every time
it performs a collision detection. Apair of colli-
sion nodesis found if the probability of an inter-
section between their associated polygons is larger
thanpmin. A collision is reported if at leastkmin
such pairs have been found. The smallerpmin or
kmin, the shorter is the runtime and, in most cases,
the more errors are made.

The remainder of this section explains this frame-
work more precisely in a top-down manner.

3.2 Terms and Definitions

For the sake of accuracy and conciseness, we intro-
duce the following terms and definitions. We treat
the termsbounding volume(BV) andnodeof a hi-
erarchy synonymous.A andB will always denote
BVs of two different hierarchies.
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traverse(A,B)
priorityQueueq; k:=0;
q.insert(A,B, 1);
while q is not empty do
A,B := q.pop;
for all childrenA[i] andB[j] do
p := computeProb(A[i], B[j]);
if p ≥ pmin

k:=k+1;
if k ≥ kmin return”collision” ;

if p > 0 q.insert(A[i], B[j], p);
return”no collision” ;

Figure 3: Our algorithm traverses two BV hierar-
chies by maintaining a priority queue of BV pairs
sorted by the probability of an intersection.

Definition 1 All polygons of the object contained
in BV A or intersectingA are denoted asP (A).

Let c be a cell of the partitioning ofA ∩ B. The
total area of all polygons inP (A) clipped against
cell c is denoted asAreac(A).

MaxArea(c) denotes the area of the largest poly-
gon that can be contained completely in cellc.

Definition 2 (possible collision cell)Given a BV
A and a cellc. c is a possible collision cell, if
Areac(A) ≥ MaxArea(c).

Definition 3 (collision cell) Given two intersecting
BVs A andB as well as a partitioning ofA ∩ B.
Then,A andB have a (common)collision cell iff
∃c : Areac(A) ≥ MaxArea(c) ∧ Areac(B) ≥
MaxArea(c) (with suitably chosenMaxArea(c)).

Definitions 2 and 3 are actually the first steps
towards computing the probability of an intersec-
tion among the polygons of a pair of BVs. In
particular, definition 3 is motivated by the follow-
ing observation. Consider a cubic cellc with side
length a, containing exactly one polygon from A
and B, resp. AssumingAreac(A) = Areac(B) =
MaxArea(c), then we must have exactly the con-
figuration shown in Figure 4, i.e., an intersection,
if we chooseMaxArea(c) = a2

√
2. Obviously, a

set of polygons is not planar (usually), so even if
Areac(A) > MaxArea(c) there might still not be
an intersection. But since almost all practical ob-
jects have bounded curvature in most vertices, the
approximation by a planar polygon fits better and
better as the polygon set covers smaller and smaller
a surface of the object.

Definition 4 (LB(cA∩B)) Given an arbitrary colli-
sion cellc from the partitioning ofA ∩B. A lower

quadrangles Figure 4: A cubic collision cell
c with side length a. Areac(A)
and Areac(B) must be at least
MaxArea(c) = a2

√
2, which is ex-

actly the area of the two quadrangles.

bound for the probability that a collision occurs inc
is denoted asLB(cA∩B).

Let us conclude this subsection by the following
important definition.

Definition 5 (Pr[c(A ∩B) ≥ x ]) The probabil-
ity that at leastx collision cells exist inA ∩ B is
denoted asPr[c(A ∩B) ≥ x].

Overall, given the probabilityPr[c(A∩B) ≥ 1],
a lower bound for the probability that the polygons
fromA andB intersect is given by

Pr[P (A) ∩ P (B) 6= ?] ≥
Pr[c(A ∩B) ≥ 1] · LB(cA∩B). (1)

A better lower bound is given in Section 3.6.2,
wherex > 1 is used forPr[c(A ∩ B) ≥ x]. Sec-
tion 3.6.1 will derivePr[c(A ∩ B) ≥ x], while
Section 3.6.3 will deriveLB(cA∩B).

3.3 ADB-Trees
As mentioned before, our approach is applicable
to virtually all BV hierarchies by augmenting them
with a simple description of the distribution of the
set of polygons. The resulting hierarchies are called
ADB trees. In the following, we explicitly mention
the type of BV only if necessary.

Our function computeProb(A,B) needs to esti-
mate the probabilityPr[c(A ∩ B) ≥ x] that is de-
fined in the previous section. However, partitioning
A ∩B during runtime is too expensive.

Therefore, we partition each BV during the con-
struction of the hierarchy into a fixed number of
cuboidal cells, and then we count the number of
possible collision cellaccording to Definition 2 and
store it with the node. Note that, thanks to our
average-case approach making the assumption that
each cell of the partitioning has the same probability
to be a possible collision cell, we are not interested
in exactly which cells are possible collision cells,
but only in their number. As a consequence, this ad-
ditional parameter per node incurs only a very small
increase in the memory footprint of the BV hierar-
chy. It is computed during preprocessing after the
construction of the BV hierarchy. We explain this
computation more precisely in Section 3.4.

Note that we do not need to store any polygons
or pointers to polygons in leaf nodes. A possible
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intersection is determined solely based on the prob-
abilities described so far.

In addition to the ADB-trees, we will need
a number of lookup tables in order to compute
Pr[c(A ∩ B) ≥ x] efficiently (see Section 3.6).
Fortunately, they do not depend on the objects nor
on the type of BV, so we need to precompute the
lookup tables only once.

3.4 Counting Possible Collision Cells

We propose two algorithms for computing the num-
ber of possible collision cells. It is convenient to do
this after the BV hierarchy has already been built.

The first one is very simple and computes an ex-
act value of the number. It partitions each node
into a grid, clips the polygons associated with the
node, inserts the fragments into the grid, and counts
the number of possible collision cells. Assuming a
complete binary BV hierarchy, the runtime of this
algorithm can be estimated as

T1 = c1n logm+ c′1m

wheren is the number of polygons andm is the
number of nodes in the hierarchy.c1 is the cost of
clipping and inserting one polygon, whilec′1 is the
(average) cost of counting the number of possible
collision cells of one node.

posColCells(A,A′)
pc := 0;
if Vol(A′) ≤ Vol(cA) then

if Area(A′) ≥ MaxArea(cA) then
return 1;

else
if A′ is a leaf then

if Area(A′) ≥ MaxArea(A′) then

return1 · Vol(A′)
Vol(cA)

· 1

3
r

Vol(A′)
Vol(cA)

;

else
for all childrenA′[i] do
pc := pc+ posColCells(A,A′[i]);

returnpc;

Figure 5: The number of possible collision cells
in BV A can be approximated efficiently by
propagating polygon areas up through the tree.
cA denotes an arbitrary cell ofA, pc(A) :=
posColCells(A,A).

The second algorithm approximates the number
of possible collision cells,pc(A), for a nodeA by
the algorithm shown in Figure 5. Its main idea is to
use the sub-tree ofA for the computation ofpc(A).
The algorithm looks for child nodesA′ of A with

Vol(A′) ≤ Vol(cA), which is the size of one cell
of A. If such a child node containsenoughpoly-
gons (in some sense), then we increasepc(A) by
1. Therefore, we do not need to partitionA into
a grid and test each cell. Of course, the recursive
search for such cells could end at a leaf nodeA′.
Then, if this node containsenoughpolygons, we ap-
proximate the number of possible collision cells by

pc(A′) := 1 · Vol(A′)
Vol(cA)

· 1

3
r

Vol(A′)
Vol(cA)

. Due to space

limitations, this is only discussed in the extended
version of this paper [10].

Let c2 denote the cost for checking one node if
it is a possible collision cell. Then, the runtime for
computingpc(A) for all nodes can be estimated by

T2 =

dX
i=0

c22i(
2d+1

2i
− 2)

= c22d+1(d− 1) + 2 ≤ c2m logm

because for a node with depthimaximal2d−i+1−2
child nodes have to be checked.

Obviously,T2 is better, becausec′1 À logm, and
becausec1 is a very expensive operation compared
to c2. Indeed, our experiments in Section 4 show
that our second algorithm is substantially faster so
that it can be performed at startup time.

3.5 Probability Parameters
As will be explained in Section 3.6,Pr[c(A∩B) ≥
x] can be computed from 3 parameters only:

s = # cells contained inA ∩B,
sA = # possible collision cells fromA in A ∩B,
sB = # possible collision cells fromB in A ∩B.

They can be determined very fast during the col-
lision detection process [11]. Figure 6 gives an
overview of the algorithm computeProb(A,B).

computeProb(A,B)
computes, sA, sB ;
look up forPr[c(A ∩B) ≥ x]

using(s, sA, sB);
estimatePr[P (A) ∩ P (B) 6= ?] by
Pr[c(A ∩B) ≥ x] andLB(cA∩B);

Figure 6: computeProb(A,B) estimates the proba-
bility Pr[P (A)∩P (B) 6= ?] by only 3 parameters
that can be efficiently computed on-the-fly.

3.6 Probability Computations
In this section, we explain the computation of the
probabilityPr[c(A ∩B) ≥ x] and its usage.
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3.6.1 Probability of collision cells

Given a partitioning ofA ∩ B and the numbers
s, sA, sB , the question is: what is the probability
that at leastx of the s cells are possible collision
cells of thesA cells and arealsopossible collision
cells of thesB cells? This is the probability that at
leastx collision cells exit.

Note that thesA + sB possible collision cells are
randomly but not independently distributed among
thes cells: obviously, it can never happen that two
or more of thesA or sB , resp., possible collision
cells are distributed on the same cell. This problem
can be stated more abstractly and generalized by the
following definition.

Definition 6 (Pr[# filled bins ≥ x]) Given u
bins, v blue balls, andw red balls. The balls
are randomly thrown into theu bins, whereby a
bin never gets two or more red or two or more
blue balls. The probability that at leastx of the
u bins get a red and a blue ball is denoted as
Pr[# filled bins ≥ x].

If u = s, v = sA andw = sB , this definition
is related to our original problem by the following
observation, because we assume that each cell of
the partitioning has the same probability of being a
possible collision cell.

Observation 1
Pr[c(A ∩B) ≥ x] ≈ Pr[# filled bins ≥ x].

Now, let us determinePr[# filled bins ≥ x].
The probability, that exactlyt of the u bins get a
red and a blue ball, is

�
w
t

��
u−w
v−t
�
/
�
u
v

�
.

Thus, the probability that at leastx of theu bins
get a red and a blue ball, is

Pr[# filled bins ≥ x] = 1−
x−1X
t=0

�
w
t

��
u−w
v−t
��

u
v

� (2)

3.6.2 Probability of collision

Until now, for computing a lower bound for
Pr[P (A) ∩ P (B) 6= ?] (see Equation 1) we have
only used the probability that at leastone colli-
sion cell exists inA ∩ B. Although the algorithm
achieves very good quality using only that proba-
bility, we can improve the lower bound by using the
probability thatseveralcollision cells are in the in-
tersection, i.e., by usingPr[c(A∩B) ≥ x], x > 1.

Let a partitioning ofA ∩ B be given. Then,
a lower bound for the probabilityPr[P (A) ∩

P (B) 6= ?] can be computed by

Pr[P (A) ∩ P (B) 6= ?] ≥
max

x≤min{sA,sB}

n
Pr[c(A ∩B) ≥ x]·�

1− (1− LB(cA∩B))x
�o

(3)

because
�
1 − (1 − LB(cA∩B))x

�
denotes a lower

bound for the probability that in at least one of the
x collision cells a collision takes place. Note that, if
we use the approximation shown in Observation 1,
this is not a lower bound any longer, butonlya good
estimation of it.

In practice, it is sufficient to evaluate Equation 3
for smallx, because for realistic values ofs, sA, sB ,
andLB(cA∩B) it assumes the maximum at a small
x. Consequently, we boundx by a small number
(e.g., 10) in Equation 3. To give an overview of the
behaviour ofPr[P (A) ∩ P (B) 6= ?], Figure 7
visualizes Equation 3 for differentsA and sB (x
is bounded as described above). Summarizing this
section, in order to get a better lower bound for the
collision probability,Pr[P (A) ∩ P (B) 6= ?] can
be computed by Equation 3 instead of Equation 1.

Figure 7: ProbabilityPr[P (A) ∩ P (B) 6= ?] for
a fixeds (=300). Left: LB(cA∩B) = 0.5, right:
LB(cA∩B) = 0.1.

3.6.3 Probability of intersection in a cell

We have already shown how to estimateLB(cA∩B)
in a previous paper [11]. Therefore, we only give
the solution for estimating it. LetdA anddB de-
note the depth of nodeA andB in their respective
BV hierarchies anddmaxA , dmaxB the maximum
depths of the hierarchies. Then,

LB(cA∩B) ≈ dA + dB
dmaxA + dmaxB

.

4 Results
Because our approach is applicable to most hierar-
chical BV hierarchies, we have decided to imple-
ment two basic data structures, namely an octree
and an AABB tree, that are used in many VR ap-
plications and that can easily be turned into ADB-
trees. The construction heuristic of the AABB tree
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is the same as that used for the restricted boxtree
[22]. Our measurements show that the AABB tree
performs better than the octree by a factor> 3.
Therefore, all the following benchmarks were per-
formed using our ADB-tree based on AABBs.

As mentioned in Section 3.1, the quality of the
collision detection depends, to some extent, on the
number of cells a BV is partitioned into. Accord-
ing to our experiments,83 cells are optimal. The
number of possible collision cells can be computed
by our algorithms shown in Section 3.4. For our
models, the exact algorithm needs about 2 minutes
on average for the computation of possible collision
cells for one complete BV hierarchy, while the ap-
proximative algorithm needs only less than 2 sec-
onds, for our most complex model of 200,000 poly-
gons. All our measurements were performed using
the exact algorithm, but the approximative one re-
duces the quality of the collision detection only by
about 0.2% points on average.

We implemented our new algorithm in C++. As
of yet, the implementation is not fully optimized.
In the following, all results have been obtained on a
2.4 GHz Pentium-IV with 1 GB main memory.

For timing the performance and measuring the
quality of our algorithm, we have used a set of
CAD objects, each of them with varying complexi-
ties (see Figure 1 in the Color Plates Appendix).

Benchmarking is performed by the procedure
proposed in Zachmann [22], which computes aver-
age collision detection times for a range of distances
between two identical objects.

4.1 Distribution of Possible Collision Cells
One premise of our average-case approach is the
assumption that the probability of being a possible
collision cell is evenly distributed among all cells
of the partitioning (see Section 3.1). Here, we give
some empirical results suggesting that in practical
cases this assumption is actually valid.

Given an ADB-tree, we can identify corre-
sponding cells of all nodes by a numberx ∈
{1, . . . , 512}. Thus, for allx we can count over
all nodes how often that cell is a possible collision
cell throughout the tree (this numberdb(x) ≤ n).

Figure 8 shows the distribution of the possible
collision cells for different models with varying
complexities.

Obviously, our assumption seems to be met by
almost all objects occurring in practice. An ex-
ception might be the door-lock model with207 290
polygons, wheremax{db(x)} andmin{db(x)} are
about 30% larger and smaller than the average.

4.2 Time and Quality versus Complexity

Each plot in Figure 9 shows the runtime for a model
of varying complexity (the legend gives the number
of polygons per object). In most cases, the runtime
is fairly independent of the complexity.

Figure 10 shows the error rates corresponding to
the timings in Figure 9. Here, the error is defined
as the percentage of wrong detections. For mea-
suring them, we have compared our results with
an exact approach. Only collision tests are consid-
ered where at least the outer BVs, which enclose the
whole objects, intersect. Apparently, the error rates
are always relatively low and mostly independent of
the complexities: on average, only 1.89% (sharan),
1.54% (door lock), and 2.10% (pipes) wrong colli-
sions are reported if the objects have a distance be-
tween 0.4 and 2.1, and about 3.19% (sharan), 1.71%
(door lock), and 3.15% (pipes) wrong collisions are
reported for distances between 1 and 2.

4.3 Time versus Quality

In this section, we examine how the runtime de-
pends on the quality of the collision detection.

As mentioned in Section 3.1, the runtime and the
quality can be influenced by the values ofpmin and
kmin (see also Figure 3): the smallerpmin orkmin,
the shorter is the runtime and, usually, the more er-
rors are made.

Figure 11 on the left shows the correlation be-
tween the runtime andpmin (car, 20026 polygons).
The corresponding error rates are shown in the mid-
dle. Obviously, aspmin increases the error rate de-
creases. There are a few exceptions, where more
errors are made when using a largerpmin. We con-
jecture that this is caused by pairs of BVs where
corresponding polygons (that do intersect) have a
low probability of intersection. Forpmin = 0.9 and
pmin = 0.99 the errors differ only by less than 2%
points while forpmin = 0.9 andpmin = 0.5 the
errors differ by about 5% points on average (object
distances between 1.2 and 2).

In Figure 11 (right) the timings for differentkmin
(the number of pairs of collision nodes that have to
be found before the traversal stops) are compared
(car, 20026 polygons). Due to space limitations, the
corresponding errors can only be found in the ex-
tended version of this paper [10]. Only about 0.2%
points less errors are made ifkmin increases from 5
to 10, while 2% points less errors occur ifkmin is
changed from 1 to 5 (object distances between 1.2
and 2). Comparing the timings forkmin = 5 and
kmin = 10, it is questionable whether an increase
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Figure 8: Histogram of the number of times,db(x), cell x occurred as a possible collision cell in the
ADB-tree. The number in parentheses in the legend gives the number of polygons.

in accuracy by 0.2% points justifies a decrease in
speed by a factor≈ 2.3.

4.4 Performance Comparison
A runtime comparison between our approach and
a DOP tree algorithm can be found in Figure 9.
We have implemented the DOP tree with the same
care as for our new approach. The runtime for the
DOP tree is only shown for a single resolution at
which the highest performance was achieved using
the DOP tree approach. As you can notice, our algo-
rithm is always remarkably faster, e.g., in the case of
the car body our new algorithm is≈ 3 times faster
on average (kmin = 10, pmin = 0.99) and> 6
times faster if the error rate may increase by only
0.2% points (kmin = 5, pmin = 0.99, see also
Figure 11).

5 Conclusion and Future Work
In this paper we have presented a general method to
turn a conventional hierarchical collision detection
algorithm into one that uses probability estimations
to decrease the quality of collision detection in a
controlled way. To our knowledge, this is the first
approach to this problem.

Our approach is made possible by augmenting
traditional BV hierarchies with just a few addi-
tional parameters per node, which are utilized dur-
ing traversal to efficiently compute the probability
of a collision occurring among the polygons of a
pair of BVs.

We have implemented our new ADB-trees
(average-distribution trees) based on AABBs and
octrees and present performance measurements and
comparisons with a fast traditional algorithm. The
results show a speedup of about a factor 3 to 6 with
only about4% error on average. Furthermore, er-
ror rates and performance are almost independent
of the number of polygons.

Currently, we are investigating the exploitation
of curvature distributions in order to improve error
rates and performance.

An interesting extension of our new algorithm
would be the modelling of contacts, and an estima-
tion of separation distance or penetration depth.
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Figure 9: Timings for different models and different polygon counts (kmin = 10 andpmin = 0.99). Also,
a runtime comparison to a DOP tree is shown (see Section 4.4).
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