
Computer Graphics International 2004 (CGI), June 16–19, Crete, Greece. IEEE Computer Society Press.

Consistent Normal Orientation for Polygonal Meshes

Pavel Borodin Gabriel Zachmann Reinhard Klein

Institute of Computer Science II, University of Bonn, Germany
{borodin, zach, rk}@cs.uni-bonn.de

Abstract

In this paper, we propose a new method that can con-
sistently orient all normals of any mesh (if at all possi-
ble), while ensuring that most polygons are seen with their
front-faces from most viewpoints. Our algorithm combines
the proximity-based with a new visibility-based approach.
Thus, it virtually eliminates the problems of proximity-
based approaches, while avoiding the limitations of previ-
ous solid-based approaches.

Our new method builds a connectivity graph of the
patches of the model, which encodes the “proximity” of
neighboring patches. In addition, it augments this graph
with two visibility coefficients for each patch. Based on
this graph, a global consistent orientation of all patches is
quickly found by a greedy optimization.

We have tested our new method with a large suite of mod-
els, many of which from the automotive industry. The results
show that almost all models can be oriented consistently
and sensibly using our new algorithm.

1. Introduction

Boundary representations consist of a set of primitives,
with or without topological information. Important exam-
ples of such primitives are polygons, NURBS patches, and
patches generated from subdivision surfaces. In many ar-
eas of computer graphics, it is desirable or even necessary
that the primitives of a model be consistently oriented (in a
sense to be defined later), i.e., that the normals point in the
“correct” direction.

One area, where consistent normal orientation is highly
desirable, is real-time rendering. Figure 1a shows an exam-
ple of an inconsistently oriented polygonal model, which
results in incorrect lighting (the so-called “checkerboard ef-
fect”). This could be remedied by two-sided lighting, or
by doubling the number of light sources. However, both
ways will decrease rendering performance. In addition, cor-
rect normals are still needed to perform back-face culling, a
technique to further improve rendering performance.

Similarly, correct orientation of a model’s primitives is
important in ray tracing and radiosity, otherwise lighting ar-
tifacts will be caused.

(a) (b)

Figure 1. (a) A model consisting of 2398 separate
surface patches with inconsistent orientation; due
to the lighting, the faces oriented “backwards” are
rendered dark. (b) Same model after applying our
algorithm (with exactly the same lighting).

More importantly, inconsistent normal orientation can be
fatal for many well-established mesh processing algorithms.
For example, the mesh simplification algorithm proposed
by Garland and Heckbert [4] uses vertex normals to deter-
mine the order in which contraction operations are to be
performed. If applied to a model with inconsistent normals,
this algorithm will produce severe artifacts.

Other areas are the computation of basic object proper-
ties, such as volume and mass, rapid prototyping [11], NC
machining, and the optimization of wireless communication
systems [7].

Unfortunately, most modelling tools, in particular CAD
tools, pay little attention to consistent normal orientation.
There is no feature that automatically orients the normals,
so designers have to manually orient each patch.1 Many
models are not designed as solids, but just as a single sheet
of patches (such as a windshield). In addition, many mod-
els contain other geometric flaws, such as unintentionally
intersecting primitives, cracks or gaps, and T-junctions.

In this paper, we present a new algorithm for consistently
orienting the normals of a boundary representation, even in
the presence of gaps, T-junctions, and intersections. The
input consists of an arbitrary set of primitives, without any
topology information. The algorithm can handle non-closed

1At many German automotive companies, there are design guidelines
that include rules how designers should orient surface patches, but it is
often very difficult to enforce them.

1

Figure 2. Some models cannot be oriented consis-
tently. The Möbius strip is a simple example. Here,
there are different possible solutions.

and even non-manifold objects. Figure 1b shows the output
of our algorithm for the model from Figure 1a, which has
consistent normals everywhere.

Here, we will describe our algorithm for polygonal ob-
jects. Note, however, that it works just the same for objects
consisting of NURBS or other primitives. Thus, tessella-
tions from such models with consistent normals would also
be consistent.

Our algorithm first divides the model into a set of man-
ifold surface patches and consistently orients the polygons
within each patch. Then, it determines the closeness of the
patches to each other across their common boundaries, and
it approximates the visibility for each patch regarding all
possible viewpoints. Based on these it orients the patches
so that

1. consistency between the ones with close boundaries is
maximized, and

2. the visible surface of as many patches as possible is
seen with their front-faces from as many viewpoints as
possible.

Since we do not only consider solids (i.e., objects that
have, or should have, a well-defined interior and exterior), it
should be mentioned here, that for some models a consistent
orientation of all normals is not possible (see Figure 2 for
a simple example). In addition, with (intentionally) non-
manifold models, it can become very hard to define the best
of all possible orientations, even for humans. But even in
those cases, our method will still find a good solution.

The results show that for almost all models our algorithm
produces the desired normal orientation.

The next section will review some of the work related
to ours. Section 3 will describe our algorithm, and after
presenting some results in section 4, we will conclude in 5.

2. Related Work
So far, there are two approaches to solving the problem:

proximity-based or boundary-based, and solid-based.
Proximity-based and boundary-based methods try to es-

tablish topological information based on the proximity of
vertices or boundaries. In their surface reconstruction

method, Hoppe et al. [6] determine a consistent orientation
of tangent planes in all data points by solving a graph op-
timization problem. However, their method can be applied
only to 2-manifold models. Other methods are inherently
two-dimensional [7, 8].

Solid-based approaches try to partition R3 into cells
that are either inside or outside the model (or the intended
model) [14, 13]. Murali and Funkhouser [9] significantly
extend this in order to deal with gaps, T-junctions, and in-
tersections. However, these methods can handle only ge-
ometry that is closed and manifold (or intended to possess
these properties).

Borodin et al. [2] close gaps in polygonal models by pro-
gressively connecting their boundaries. They identify close
boundary edges in the same way, as we do in our method
to determine boundary coherence. In [5], Guthe et al. col-
lect the patch connectivity information in a so-called “seam
graph”, which is then used for view-dependent trimmed
NURBS rendering.

In computational geometry, a lot of work has been de-
voted to robust computing [12, 3, 10]. However, these meth-
ods are not applicable here, because they try to avoid errors
caused during the computation, while our algorithm tries to
correct errors in the input data.

In this paper, we propose to combine the proximity-
based approach with an approach we call visibility-based,
thus fixing the problems of the proximity-based and circum-
venting those of the solid-based approaches.

3. Description of the Algorithm
In this section, we will first outline the algorithm, and

then provide the details in the following subsections.

3.1. Outline
The input to our algorithm is an arbitrary polygon soup,

i.e., a set of unorganized polygons without any explicit
topology information, with or without normals. Since the
orientation of each polygon’s normal can be encoded in its
vertex order, the problem of orientation of normals is equiv-
alent to the problem of ordering vertices in polygons con-
sistently. In the following, we will treat the term polygon
normal synonymous with the term vertex order.

Usually, the output from modelling tools consists of a
number of patches. Here, a patch consists of a set of
polygons that are connected to each other, i.e., for which
topology information can be constructed trivially. How-
ever, between patches there are usually more or less wide
gaps. First, we build the neighbourhood information, di-
vide the model into manifold surface patches, and detect
their boundaries. At this point, we also orient the polygons
consistently within each patch, which can be done trivially
based on the topology information that is now available. Af-
ter that, we determine those pairs of patches that are close to

2

each other along some extent of their respective boundaries.
For each such boundary pair we calculate its coherence co-
efficient.

Next, we determine the visibility coefficients for both
sides of each patch. These coefficients describe how much
of the surface of the patch is visible when viewed from all
different viewing angles.

Finally, using both the boundary coherence and visibil-
ity coefficients we compute a global consistent orientation
of the whole model. Patch boundaries that are close to each
other make our algorithm consider normal orientation con-
sistency more important than front-face visibility. On the
other hand, patches that share only very loose boundaries
with other patches are oriented such that front-face visibility
is favored over normal consistency across the boundaries.

In the following, we will describe each step of the algo-
rithm in detail.

3.2. Detection of Patches

As already mentioned, the input of our algorithm is a set
of unorganized polygons. First, we read the input polygons
and convert them to an indexed face set.

After that, we build the neighbourhood information for
the mesh. In order to do so, we detect and collect all bound-
ary and non-manifold edges. As boundary edges we define
all edges which are incident to only one polygon. As non-
manifold edges we define all edges which are incident to
more than two polygons. During the traversal of the mesh
we divide it into a set of manifold surface patches, which
either are not connected with each other or connected only
at vertices or non-manifold edges. For each patch we con-
sistently orient all polygons belonging to it, which is trivial,
due to the manifold topology that we now have. Of course,
after that the orientation could differ between two neighbour
patches, even if it was consistent in the original data.

The only problem that remains is how to orient the
patches with respect to each other, which is not trivial, be-
cause their boundaries are only more or less close to each
other along a part of that boundary.

3.3. Calculation of Boundary Coherence

At this stage we want to find close boundaries of dif-
ferent patches and determine the degree of their coherence.
To accelerate finding pairs of close boundary edges we use
a 3D grid, but many other spatial acceleration structures,
such as k-d trees, can be used as well. Note that we should
set a large search distance, as the quality of the results will
suffer, if it is too small.

Assume that we have found the boundary edge en
j from

patch Pn to be the closest neighbour for a boundary edge
em
i from patch Pm. Then, we calculate the local coherence

P
1

P
3

P
2

e
4

1

e
5

1

e
2

1e
1

1

e
1

3

e
2

3

e
3

1

e
3

3
e

4

3

e
5

3

e
1

2

e
2

2

e
3

2 e
4

2

c
11

13
c

34

23

c
42

12

c
51

12

c
45

23

c
33

13

c
21

13

c
32

13

c
12

c
13

c
23

Figure 3. Local coherences cmn
ij and coherence co-

efficients cmn for patches P 1, P 2, P 3.

between these two edges as

cmn
ij = − sgn(smn

ij)

√
‖smn

ij ‖

1 + dmn
ij

, (1)

where smn
ij = ~em

i · ~en
j is the scalar product of ~em

i and ~en
j ,

dmn
ij is the shortest distance between em

i and en
j .2

The absolute value of the local coherence is approxi-
mately proportional to the edges’ lengths and inversely pro-
portional to the distance between them. Its sign shows
whether the polygons incident to these boundary edges have
the same or different orientation.

All local coherences for edge pairs from the patches Pm

and Pn are summed up into the coherence coefficient:

cmn =
∑
i,j

cmn
ij . (2)

Figure 3 shows an example of the coherence coefficients.
The idea of the boundary coherence coefficient is that it can
give a hint as to which patches should probably be oriented
consistently. This is, of course, only an intrinsic constraint.

3.4. Calculation of Visibility
We still need an external indicator to help choose the cor-

rect overall orientation of all patches. As mentioned before,
our goal is to find a global orientation of patches, such that
as many polygons as possible can be seen with their front-
faces from most viewpoints. For this purpose, we want to
determine the visibility of each side of each patch when
seen from all possible viewpoints from outside the whole
object. To do this, we can use various methods.

3.4.1. Ray shooting method. The first method we have
tried is similar to a common raytracer. On the surface of
each patch Pm we randomly and uniformly choose nm

points, where nm is proportional to the area of Pm. Starting
from each of these points we shoot a ray in a random direc-
tion. If the ray does not intersect any other polygons, we

2Note that all lengths are normalized by dividing them by the length of
the longest side of the model’s bounding box.

3

Figure 4. Ray space can be represented by a 5D
cartesian rectangle with the help of the direction
cube.

increment the counter for the polygon’s side corresponding
to the half-space in which the ray was shot. So, each patch
has two counters nm

f and nm
b , which are the accumulation

of all polygon counters. Finally, we define the front- and
back-face visibility coefficients for each patch as

vm
f =

nm
f

nm
, vm

b =
nm

b

nm
. (3)

The main drawback of this method is that one needs to
shoot a very large amount of rays in order to obtain an ac-
ceptable reliability.

3.4.2. 5D octree method. In the previous method we walk
along a ray every time we shoot it into the scene. Of course,
we accelerate this by any of the well-known data structures,
such as k-d trees. However, rays are essentially static ob-
jects, just like the geometry of the model. So, based on the
ideas of [1], we develop the following algorithm.

We discretize directions by the so-called direction cube
(see Figure 4). Now we can build six octrees over the space
of all rays, which are the 5-dimensional rectangles R =
U × [−1,+1]2 ×{+x,−x, +y,−y, +z,−z}, where U is a
suitable 3-dimensional bounding box around the complete
model. Each cell, of the 5D octree corresponds to a beam in
3D geometric space, emanating from a 3D cell in geometric
space [15].

Initially, we start with the root of the octree that com-
prises all possible rays. We associate all patches of our
model with the root. Then, we recursively partition a node
of the octree and distribute the set of patches among its chil-
dren. A patch is associated with a child if it intersects the
beam that child corresponds to. We stop the partitioning
(i.e., conceptually we create a leaf), if either of the follow-
ing conditions holds:

1. There is only one patch left in the 3D cell of the node.
Now we must consider two sub-cases (see Figure 5):

(a) There is no other patch associated with the node,
i.e., all rays starting from the patch in the cube and
in the direction of the beam would not hit any other
patch (except for self-occlusions). Therefore, we
add an amount to the visibility coefficient that cor-
responds to the spatial angle of the beam. Note that
this angle depends only on the depth of the node,

(a) (b)

Figure 5. The two basic cases that can occur during
computation of the visibility coefficients using a
5D octree over ray space.

so the increase of the visibility coefficient can be
precomputed.

(b) There are other patches associated with the node.
This means that at least some rays shot from within
the 3D cell would hit another patch. Since we are
only interested in approximations of the visibility
coefficient, we assume that all rays would hit, and
therefore we don’t increase the coefficient.

2. The node’s cell is too small (i.e., we have reached the
maximum depth). Now we just consider the two sub-
cases of the previous case for each of the patches that
are (partially) inside the 3D cell of the node.

Note again, that this computes, just like the previous of
the following method, an approximation of the visibility co-
efficient. In our experience, though, such approximations
are sufficient for all models we have tried so far.

Since we have now defined what a 5D cell of the octree
represents, it is almost trivial to define how objects are as-
signed to sub-cells: we just compare the bounding volume
of each object against the sub-cells 3D beam. Note that
an object can be assigned to several sub-cells (just like in
regular 3D octrees). The test whether or not an object in-
tersects a beam could be simplified further by enclosing a
beam with a cone, and then checking the objects bounding
sphere against that cone. This just increases the number of
false positives a little bit.

Note that the octree does not have to be built at all. As
soon as we arrive at a leaf, we possibly increase the vis-
ibility coefficient, and then backtrack the recursion — we
never actually construct any nodes. This greatly increases
processing time. Furthermore, in contrast to [1], we need
only very little memory, because we only keep some arrays
of pointers to patches, one per recursion level. The number
of levels is fairly limited (10–20).

3.4.3. GPU-based method. This method uses the GPU to
calculate the visibility of single patches. The whole mesh is
rendered from different points of view with colour coding,
then the frame buffer is read and processed.

In order to get correct results we have to distribute the
viewpoints uniformly around the model. We achieve this by

4

placing them on the vertices of a tessellation of the bound-
ing sphere of the model, produced by a successive subdivi-
sion of the icosahedron.

For each viewpoint we render the whole model onto a
square viewport with a side length lvp, using orthogonal
projection, without shading and without anti-aliasing. Each
side of each patch is drawn in an unique colour, which al-
lows to unambiguously identify it when reading the pixels
from the frame buffer. For each non-black pixel we increase
the appropriate counter nm

f or nm
b (for front-face or back-

face, respectively) of the patch Pm.
The side length lvp should be chosen such that the small-

est patch in the model will still occupy at least a few pix-
els from several viewpoints. Therefore, this method is only
suitable for models where the ratio of the bounding box to
the size of the smallest patch is not to large.

After nt viewpoints, we define the front- and back-face
visibility coefficients for each patch Pm as

vm
f =

nm
f

nt × l2vp × am
, vm

b =
nm

b

nt × l2vp × am
, (4)

where am is the area of patch Pm.

3.5. Consistent Orientation of Patches
After we have computed boundary coherence and vis-

ibility coefficients, we combine this information to find a
consistent, global orientation of all surface patches.

For each patch Pm we already have its area am and two
visibility coefficients vm

f and vm
b . We also have the set C of

boundary coherence coefficients cmn.
For each possible joint orientation of patches we define

the overall front-face visibility Vf , back face visibility Vb,
and coherence C of the super-patch as

Vf =

∑
(vm

f · am)∑
am

, Vb =
∑

(vm
b · am)∑
am

,

C =
∑

cmn.

(5)

Our goal is to find the orientation of all patches that max-
imizes both overall front-face visibility Vf and overall co-
herence C for all super-patches.

We will now repeatedly replace the set of patches P by
a new set P ′, where two former patches P k, P l ∈ P have
been joined conceptually into a super-patch P j ∈ P ′. Dur-
ing this join operation, the orientation of one or both patches
can be flipped.

In the following we will denote by the word patch either
an original patch or a number of patches joined into one
super-patch.

When we flip the orientation of a patch P k, we update
the coherence and visibility coefficients related to this patch

in the following way:

v̂k
f = vk

b , v̂k
b = vk

f ,

∀cmk : ĉmk = −cmk, ∀ckn : ĉkn = −ckn
(6)

In order to achieve a fast algorithm, we use a greedy
strategy: in a queue, we sort all pairs of patches for which
the boundary coherence is defined, so that the absolute val-
ues of the coherence coefficients cmn are sorted in descend-
ing order. Then, we connect pairs of patches into super-
patches, which get their own visibility coefficients. We also
compute new boundary coherence coefficients between the
new super-patch and the other patches and insert them into
the queue.

More specifically, with each step we take a pair of
patches Pm and Pn with the largest absolute coherence co-
efficient cmn out of the queue. Their visibility coefficients
are vm

f , vm
b , vn

f , and vn
b , respectively. Depending on a all

these coefficients, we make a decision considering joint ori-
entation of both patches.

3.5.1. Conforming coefficients. If

(cmn > 0 ∧ vm
f ≥ vm

b ∧ vn
f ≥ vn

b) ∨
(cmn > 0 ∧ vm

f ≤ vm
b ∧ vn

f ≤ vn
b) ∨

(cmn < 0 ∧ vm
f ≥ vm

b ∧ vn
f ≤ vn

b) ∨
(cmn < 0 ∧ vm

f ≤ vm
b ∧ vn

f ≥ vn
b),

then the visibility coefficients agree with the coherence co-
efficients. Therefore, we connect both patches into one
super-patch S and define its front-face and back-face vis-
ibility coefficients as

vf =
vm

max · am + vn
max · an

am + an
,

vb =
vm

min · am + vn
min · an

am + an
,

(7)

where vm
max = max(vm

f , vm
b), vm

min = min(vm
f , vm

b), am

and an are the areas of the patches Pm and Pn. We also
change orientation of one or both patches, if necessary (if
vf < vb). If cmn was negative, it becomes positive after the
change of orientation (according to equations 6.

This choice of orientations results in the maximization
of the front-face visibility vf of the super-patch S and, at
the same time, its consistent orientation.

3.5.2. Conflicting coefficients. If

(cmn > 0 ∧ vm
f ≥ vm

b ∧ vn
f ≤ vn

b) ∨
(cmn > 0 ∧ vm

f ≤ vm
b ∧ vn

f ≥ vn
b) ∨

(cmn < 0 ∧ vm
f ≥ vm

b ∧ vn
f ≥ vn

b) ∨
(cmn < 0 ∧ vm

f ≤ vm
b ∧ vn

f ≤ vn
b),

then the visibility coefficients come into conflict with the
coherence coefficients: if we choose the patch orientations

5

according to cmn, the front-face visibility of the resulting
super-patch will be not the maximum possible; on the other
hand, the choice of orientations, which maximizes the front-
face visibility, will result in inconsistent orientation on the
boundary between the patches.

To find a tradeoff between the front-face visibility and
boundary coherence, we compare them with some prede-
fined values, which are parameters of the algorithm.

As already mentioned in 3.1, in case of close patch
boundaries we consider normal orientation consistency
more important than front-face visibility. Therefore, we
first compare the boundary coherence with a threshold C0.
If |cmn/lmn| > C0, where lmn is the sum of lengths of
all edges that contribute to cmn, we assume the coherence
between two patches to be strong and preserve their consis-
tent orientation by connecting both patches into one super-
patch. The visibility coefficients of the new super-patch are
defined as

vf = max(v1, v2), vb = min(v1, v2), where

v1 =
vm

max · am + vn
min · an

am + an
,

v2 =
vm

min · am + vn
max · an

am + an
.

(8)

If necessary, we change the orientation of one or both
patches.

Otherwise, we compare the visibility coefficients off the
two patches. If for one of the patches both visibility coeffi-
cients are very small or differ not much, and the visibility of
the other patch dominates over it with respect to the patches’
areas, we assume that its incorrect orientation will have only
tiny impact on the overall front-face visibility. Therefore, if
for the patch Pm(

vm
b > εv ∧

vm
f

vm
b

< kv ∨ vm
b < εv ∧ vm

f < εv

)
∧

v1 < v2, (9)

holds, then we connect both patches into one super-patch.
Here, εv is a lower threshold of visibility, below which we
assume it is not important; kv is a minimum ratio of largest
to smallest visibilities of a patch, below which we assume
their incorrect orientation is not important; v1 and v2 are
defined in equation 8. The visibility coefficients of the new
super-patch are calculated according to equation 8. If nec-
essary, we change the orientation of one or both patches.

If condition 9 does not hold, we perform these compar-
isons again for the second patch Pn, and, if true, we still
connect the two patches.

In all other cases we decide to favor front-face visibil-
ity over normal consistency across the boundaries and do
not connect the patches. All their coefficients remain un-
changed and we proceed to the next pair of patches from
the priority queue.

(a) (b)

Figure 6. The coffee mug model used in [9]: (a)
polygons are oriented randomly (back-facing poly-
gons are drawn in black); (b) after applying our
algorithm all polygons are oriented correctly

After the whole queue is processed, we get the final
global orientation of all surface patches.

4. Results

We have tested our method with a large number of mod-
els consisting of up to 3,000 surface patches.

Our new algorithm produced the desired orientation for
almost all models of our test suite. Figure 7 shows a sample
of our test suite. Our method can also handle the model
shown in Figure 6, which Murali and Funkhouser reported
to be difficult for proximity-based approaches.

Additionally, we tested the robustness of our algorithm.
To this end, we changed the orientation of a random sample
of the input polygons (see Figure 6a). This had no influ-
ence on the result, i.e., our algorithm does not depend on
the initial orientation of the input and all normals are cor-
rect afterwards.

We have also investigated whether only one of the two
criteria (boundary coherence or visibility) would be suffi-
cient. Our tests have shown that for many models the inde-
pendent maximization of front-face visibility for each sin-
gle patch can be sufficient. Using boundary coherence only
was successful with some models. However, there are mod-
els where both criteria are needed. Figures 8 and 9 show
examples where using only one of the two criteria fails to
produce the desired result.

Table 1 shows the performance rates of our algorithm for
3 different models, each at three different levels of detail. To
calculate the visibility coefficients we used the GPU-based
method with 80 viewpoints and viewport of 400x400 pix-
els. The timings have been obtained on Pentium 4/1.8GHz
with GeForce2 MX. Obviously, the overall times are domi-
nated by the visibility computation. This time and also the
time for building the topology information and detecting the
patches are mostly linear in the number of polygons. The
time for calculating the boundary coherence coefficients de-
pends mostly on the number of boundary edges. Appar-
ently, for the first model the simplification tool performed
almost no reduction on boundaries.

6

(a) (b)

Figure 7. A model consisting of 323 patches, which are shown in different colours. Dark lighting shows
back-facing polygons, which denote incorrect orientation. (a) Original model; (b) after applying our
algorithm, all patches are correctly oriented.

(a) (b) (c)

Figure 8. A model with 71 patches: (a) original model; (b) after applying our algorithm with only boundary
coherence taken into account; (c) taking both boundary coherence and visibility into account.

(a) (b)

Figure 9. A model with 137 patches: (a) after applying our algorithm with only visibility taken into account;
some incorrectly oriented patches are marked with arrows; (b) taking both boundary coherence and
visibility into account.

(a) (b) (c)

Figure 10. A model with 1250 patches: (a) original model with patches shown in different colours and
lighted from both sides – many patches overlap or are coplanar with each other; (b) after applying our
algorithm – several patches are oriented incorrectly; (c) same model lighted from both sides.

7

No. of No. of Patch Coher. Visib.
polygons patches time (s) time (s) time (s)

1 180 252 78 5.6 0.7 17.7
60 080 80 1.5 0.6 6.6
18 019 83 0.4 0.5 2.5

2 194 668 1 508 5.9 3.4 19.0
64 648 1 509 1.8 2.0 6.8
19 142 1 511 0.4 1.1 2.6

3 300 836 3 310 10.5 9.2 29.1
84 673 2 040 2.7 2.8 9.1
14 327 2 067 0.4 0.9 2.5

Table 1. Performance rates of our algorithm for 3
models at different levels of detail: time for detect-
ing the patches, time for calculating the bound-
ary coherence coefficients, and time for calculat-
ing the visibility coefficients.

It is difficult to compare the performance of our al-
gorithm with that of Murali and Funkhouser without re-
implementing their approach. Therefore, we tried to convert
the timings reported by them on our platform. We used a
scaling factor of 50, which means that their algorithm could
handle a model of about 1200–1600 polygons in about 1.5–
4.5 seconds. In contrast, our method can handle a model of
15000–18000 polygons in 3.4–4.1 seconds.
5. Conclusions and Future Work

We have proposed a new approach, which we call
visibility-based, to the problem of consistently and sensi-
bly orienting all normals of arbitrary polygonal models. We
combine this approach with a proximity-based approach,
which yields a method that can correctly orient more mod-
els than previous methods.

Our method produces the desirable solution for almost
all practical cases. Only in cases with a lot of coplanar poly-
gons it produces sub-optimal results.

The algorithm is controlled by only very few parameters,
and their adjustment is not critical. While some of them
balance the tradeoff between accuracy and speed, the oth-
ers determine the choice between consistent orientation and
visibility.

As explained earlier, our method is applicable to objects
consisting of other primitives as well, such as NURBS. This
is one avenue for future work.

Another area is the search of other metrics and other cri-
teria for decision-making in conflict situations. Also, ac-
celeration and increase of accuracy of our method could be
considered as further development.

Acknowledgements
We would like to thank Thomas Funkhouser for provid-

ing us with the coffee mug model and our colleague Michael
Guthe for his valuable advice. The bot model is courtesy of
Michael Beals. Models of automotive parts are courtesy of
DaimlerChrysler AG.

References
[1] J. Arvo and D. Kirk. Fast ray tracing by ray classification. Computer

Graphics (SIGGRAPH ’87 Proceedings), 21(4):55–64, July 1987.

[2] P. Borodin, M. Novotni, and R. Klein. Progressive gap closing for
mesh repairing. In J. Vince and R. Earnshaw, editors, Advances in
Modelling, Animation and Rendering, pages 201–213. Springer Ver-
lag, July 2002.

[3] S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for compu-
tational geometry. In Proc. 9th Annu. ACM Sympos. Comput. Geom.,
pages 163–172, May 1993.

[4] M. Garland and P. S. Heckbert. Simplifying surfaces with color
and texture using quadric error metrics. In D. Ebert, H. Hagen, and
H. Rushmeier, editors, IEEE Visualization ’98, pages 263–270, 1998.

[5] M. Guthe, J. Meseth, and R. Klein. Fast and memory efficient view-
dependent trimmed nurbs rendering. In S. Coquillart, H.-Y. Shum,
and S.-M. Hu, editors, Pacific Graphics 2002, pages 204–213. IEEE
Computer Society, October 2002.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graph-
ics, 26(2):71–78, 1992.

[7] B. W. Kernighan and C. J. van Wyk. Extracting geometrical infor-
mation from architectural drawings. In Proc. of the Workshop on
Applied Computational Geometry, pages 82–87, May 1996.

[8] R. Laurini and F. Milleret-Raffort. Topological reorganization of in-
consistent geographical databases: a step towards their certification.
Computer and Graphics, 18(6):803–813, 1994.

[9] T. M. Murali and T. A. Funkhouser. Consistent solid and bound-
ary representations from arbitrary polygonal data. In Symposium on
Interactive 3D Graphics, pages 155–162, 196, 1997.

[10] M. Segal. Using tolerances to guarantee valid polyhedral modeling
results. In F. Baskett, editor, Computer Graphics (SIGGRAPH ’90
Proceedings), volume 24, pages 105–114, Aug. 1990.

[11] X. Sheng and I. R. Meier. Generating topological structures for sur-
face models. IEEE Computer Graphics and Applications, 15(6):35–
41, 1997.

[12] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete Comput. Geom., 18(3):305–
363, 1997.

[13] S. Teller and P. Hanrahan. Global visibility algorithms for illumi-
nation computations. In Computer Graphics Proceedings, Annual
Conference Series, 1993, pages 239–246, 1993.

[14] W. C. Thibault and B. F. Naylor. Set operations on polyhedra us-
ing binary space partitioning trees. In M. C. Stone, editor, Com-
puter Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages
153–162, July 1987.

[15] G. Zachmann and E. Langetepe. Geometric data structures for com-
puter graphics. In SIGGRAPH ’03 Proceedings. ACM Transactions
of Graphics, July 2003. Tutorial.

8

