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Chapter 1

Reactive Systems, Behaviour,
Specifications and Models

Reactive Systems. A reactive computer system continuously interacts

with its operational environment: at any point in time, inputs from the

environment to the system may occur, and the system should be ready to

react on these inputs in an appropriate way. In general, the interaction

takes place over a longer period of time (think of an aircraft engine con-

troller that should certainly be operative during the duration of the 
ight);

in many applications reactive computer systems are not supposed to termi-

nate at all, because the services they deliver do not allow for any downtime

(so-called 24/7 systems).

Behaviour, States and Events. As a consequence, the behaviour of

reactive systems cannot simply be described by initial and termination

state, as would be possible for sequential terminating software programs.

Instead, behaviour is characterised by (possibly in�nite) sequences of state

changes, called computations, executions or runs of the reactive system:

c = s0.s1.s2 . . .

denotes a sequence of states si which have been observed as \snapshots"

of the system state at several points in time during the execution. s0 was

the �rst observation, s1 the second, and so on. Observe that computations
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represent a discretised view on the observable state components: it may

be the case that between observations si and si+1 additional state changes

took place which we could not observe or were not interested in. In theory

it would be possible for digital computer systems to observe every state

change in a computation since the electronic circuits involved process data

in discrete steps timed by the digital clock. For physical systems, however,

when time-continuous observables are involved (e. g. change of tempera-

ture over time), computations can never capture the complete evolution of

system states.

For reactive real-time systems, the system execution time t ∈ R≥0 will
be an explicit state variable, or it can be measured and recorded during

system execution. It is often desirable to represent computations as pairs

of execution time and other state values. This is usually written in the

form

c = (t0, s0).(t1, s1).(t2, s2) . . .

We require that such timed computations ful�l the following realistic as-

sumptions

1. Time is monotonic. This means that consecutive time stamps in a

computation never decrease.

2. Finite variability. The computation can perform only �nitely many

state changes in any �nite time interval.

3. Bounded variability. There exists global upper bounds β, δ, such

that the computation can perform at most β state changes in any

time interval of a duration less or equal to δ. This is a stronger

alternative to �nite variability: it states that the state changes inside

the computation cannot be accelerated.

4. Absence of time convergence. The sequence of ti does not converge

to a �nite time value.

5. Absence of time lock. A time lock exists if the computation is time

convergent and a computation su�x exists where no state changes
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occur anymore. The system is \locked" in this state for in�nitely

many steps, while the time converges to a �nite value.

6. Non zenoness condition. In�nitely many state changes in the com-

putation require in�nite time. This means that systems cannot be

in�nitely fast. Zenoness complements time lock: a Zeno computation

is time convergent and performs in�nitely many state changes on a

computation su�x.

Systems with mixed discrete and time-continuous observables are called

hybrid systems ; they have been studied in detail by Henzinger [8] and

others. The semantics of hybrid systems can be described by an extended

notion of computations chybrid structured as

chybrid = s0.flow0.s1.flow1.s2.flow2.s3 . . .

Hybrid computations are interpreted in the following way.

1. Sequence s0.s1.s2.s3 . . . describes the system state at discrete points

in time, such that the transitions si −→ si+1 capture all discrete

variable changes (so-called jumps) in this computation. The discrete

changes may a�ect both variables with discrete range (like int, Z or

subsets thereof) and continuous range (like R). Typically, jumps are

interpreted to require zero time, so that time passes in between two

jumps.

2. Between state changes si −→ si+1 of discrete variables, only the time-

continuous variables change over the time available between the entry

of state si at time ti and the transition to si+1 at time ti+1. This change

of time-continuous variables x is speci�ed by

flowi = (fi : (0, ti+1 − ti)→ R, _fi : (0, ti+1 − ti)→ R)

with a di�erentiable function f and the constraint

∀t ∈ (ti, ti+1) � x(t) = x(ti) +
∫ t
0

_fi(t)dt

The variable value x(ti) is the result of the jump when entering si.

From there, the value of x changes according to the integrated deriva-

tive.
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It is possible to abstract from concrete states in the description of re-

active system behaviour by recording sequences of events. Events denote

discrete points in time where certain properties of the state space become

true. This abstraction may help to reduce the amount of information in

computations to the data which is \relevant" in the application context.

Slightly more formal, any predicate p over state variables gives rise to

an event ep which is triggered according to the following rules.

1. ep occurs initially (at execution time stamp 0), if and only if p eval-

uates to true initially. (This convention is inspired by the de�nition

of change events in SysML.) If several events occur initially, because

all of their predicates evaluate to true, they are listed in a pre�x of

the trace of events in arbitrary order, all of them equipped with time

stamp 0.

2. ep occurs at time ti, i > 0, where ti is a time stamp in the (state-

based) computation, if and only if

� p evaluates to false in computation step ti−1 and

� p evaluates to true in computation step ti.

If several events need to be triggered at the same point in time ti,

because all of their predicates where false at ti−1 and became true

at ti, these events are recorded in the trace with the same time stamp

ti, and in arbitrary order. Having the same time stamp in a trace

is always interpreted as the fact that an order of event occurrence

cannot be determined.

Example 1. Suppose we observe temperature changes temp in a reactor

at discrete points in time, and this results in a run

π =def (t0, temp0).(t1, temp1).(t2, temp2) . . . (tk, tempk) . . .

where the state observations consist of tuples (timestamp ti, temperature

tempi observed at time ti). Suppose further that we are interested in
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observing whether a temperature thresholdmax is exceeded at tk by tempk,

and that the computation satis�es

∀i ∈ {0, . . . , k− 1} : tempi ≤ max
∀i ∈ {k, . . . , k+ 3} : tempi > max

∀i ∈ {k+ 4, . . .} : tempi ≤ max

Introducing two events

� temp ok, induced by predicate p0 ≡ temp ≤ max, and

� temp too high, induced by predicate p1 ≡ ¬p0.

the computation can be abstracted to a trace of events

πevent =def (t0, temp ok).(tk, temp too high).(tk+4, temp ok)

�

Specifications. A speci�cation is a description of the expected or ad-

missible behaviours of a system. In general, �rst order predicate logic can

be used to write speci�cations by giving logical characterisations of the

state sequences or event sequences which are admissible in computations.

Since these logical characterisations always deal with sequences of states or

events, more elegant logical formalisms (temporal logic, trace logic) have

been invented, in order to represent these logical formulas in a more ele-

gant way. Some of these logical formalisms will be presented in the sections

below.

Example 2. Suppose we require in Example 1 that the temperature

threshold in the reactor should never be exceeded for longer than δ time

units. This can be expressed by a formula referring to arbitrary computa-

tions

π =def (t0, temp0).(t1, temp1).(t2, temp2) . . .

in the following way:

∀π : ∀i ≥ 0 : tempi > max⇒ (∃j > 0 : tempi+j ≤ max∧ ti+j − ti ≤ δ)
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On the event abstraction level, consider arbitrary computations

πevent =def (t0, e0).(t1, e1) . . .

Now the requirement can be expressed as

∀πevent : ∀i ≥ 0 : ei = temp too high⇒ (ei+1 = temp ok∧ ti+1 − ti ≤ δ)

�

Models. A model is a representation of the system from which all possi-

ble behaviours can be theoretically derived in a mechanical way by means

of simulations.

Model Checking. A procedure to investigate whether the possible be-

haviours of a model satisfy a given speci�cation is called model checking,

or, more speci�c, property checking.

Another variant of model checking investigates whether two given mod-

els produce the same computations (i. e., have the same behaviour). This

technique is called equivalence checking.

A third variant checks whether the sets of computations associated with

two models ful�l a more general relation than equality, as, for example, a

subset relation. This variant is usually called re�nement checking.

Exercise 1. Fig. 1.1 shows a laboratory which is equipped with a laser

and a door locking mechanism, both controlled by a controller component.

When the laboratory is empty, the door is locked and the laser is switched

on. Anyone who wants to enter the room has to push a button whereupon

the controller switches the laser o� and unlocks the door.

Right after being switched on the laser is in the state on which, by

itself, changes to active after a certain period of time. The same applies to

the states o� and passive.

At any time, the door is either open or closed. After the door has been

opened, it closes automatically. A counter counts how often the door has

14



open−request button

door

laser

Controller

communication

laboratory

Figure 1.1: Laboratory setup from Exercise 1

been opened or closed. It can be assumed that at any time at most one

person has access to the open-request button and may enter the lab.

Assuming t, door, dcnt and laser being variables re
ect-

ing the point in time, the door state, the door counter and

the laser state respectively, computations c are of the form

(t0, door0, dcnt0, laser0).(t1, door1, dcnt1, laser1) . . . with domains

D(t) = R, D(door) = { open, closed }, D(dcnt) = N,
D(laser) = {on, active, o�, passive}

1.1 Find logical formulae to express the following textual requirements:

a) In the initial state the door is closed, the counter is 0 and the laser

is in the active state.

b) Whenever the laser is in the state on, it will transit to state active

after a �nite number of steps.

c) The change of laser state from o� to passive takes at most X time

units.

d) If the laser is not in the state passive, the room has to be empty and

the door has to be closed.
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e) The laser has to be in the state passive, if the room is not empty or

the door is open.

1.2 De�ne events e0, . . . , en abstracting concrete computations c to abstract

computations cE of the form (t0, e0).(t1, e1) . . . . Adapt the logical formulae

from part 1.1 to abstract computations over these events. �
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Chapter 2

Transition Systems and Kripke
Structures

The operational semantics of speci�cation formalisms for reactive systems,

as well as of computer programs, can be described by means of state transi-

tion systems. For the veri�cation of properties of speci�cations or programs

it is useful to extend the notion of transition systems by adding informa-

tion about the basic properties which are true in each state. This leads to

the de�nition of Kripke structures. The de�nitions below follow closely [5,

pp. 14].

Definition 1 A State Transition System is a triple TS = (S, S0, R), where

� S is the set of states,

� S0 ⊆ S is the set of initial states,

� R ⊆ S× S is the transition relation.

�

Given a state transition system, its computations can be determined

as follows. Let Sω denote the set of in�nite sequences of elements from S,

that is, in�nite sequences of states: from now on we only consider non-

terminating systems, so that computations are never �nite1. Every com-

1Observe that even for terminating systems we can assume that their computations

are in�nite by repeating all termination states ad in�nitum.
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putation of TS has to start in one of the initial states from S0, and each

pair of consecutive states in the sequence has to be compatible with the

transition relation. This leads to

Comp(TS) = {π ∈ Sω | π(0) ∈ S0 ∧ ∀i ≥ 0 : (π(i), π(i+ 1)) ∈ R}

It is interesting to note that Sω is actually \quite big" in the following

sense.

Lemma 1 If S contains at least two states then Sω is uncountable.

Proof. The proof applies Cantor's Diagonal Argument which has orig-

inally been used to prove that the set of real numbers is uncountable:

suppose that S has just two states s0, s1. Suppose further that Sω were

countable. Then an enumeration of Sω would exist that could be presented

in tabular form as follows.
No. Element of Sω

0 a00, a01, a02, a03, . . .

1 a10, a11, a12, a13, . . .

2 a20, a21, a22, a23, . . .

3 . . .

. . . . . .
with aij ∈ {s0, s1}. Now de�ne the following in�nite sequence of states from

{s0, s1}:

π = b0.b1.b2 . . .

such that

bi =

{
s0 if aii = s1
s1 if aii = s0

Obviously π is not contained in the table above, because for all i ≥ 0 its
ith element di�ers from table entry number i at place aii. This contradicts

the assumption that the table enumerates all elements from Sω, and hence

Sω must be uncountable. �

Definition 2 A Labelled Transition System is a tuple LTS = (S, S0, Σ, R),

where
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� S is the set of states,

� S0 ⊆ S is the set of initial states,

� Σ is a set of labels, also called events,

� R ⊆ S× Σ× S is the transition relation.

�

If we abstract from states and observe events only, the computations of

a labelled transition system are given by

Comp1(LTS) = {e ∈ Σω | ∃π ∈ Sω : π(0) ∈ S0∧∀i ≥ 0 : (π(i), e(i), π(i+1)) ∈ R}

This type of computations is typically used in the world of process algebras,

such as CSP [9]. In other scenarios it is desirable to investigate both events

and states, so that computations of the kind

Comp2(LTS) = {πe ∈ (S ∪ Σ)ω | ∀i ≥ 0 : πe(2i) ∈ S∧ πe(2i+ 1) ∈ Σ∧

πe(0) ∈ S0 ∧ (πe(2i), πe(2i+ 1), πe(2i+ 2)) ∈ R}

State transition systems are the preferred mathematical models to rea-

son about state-based reactive systems, where communication takes place

according to the shared variable paradigm. Labelled transition systems

are the preferred model for reasoning on the event abstraction level. In

the sections to follow we focus on state-based systems represented by state

transition systems.

A proposition is a logical expression which consists of Boolean operands

composed by the logical operators ∧,∨,¬,⇒,⇔. The variables occurring

in propositions are called free variables, because they can be associated

with concrete values, making the formula true or false. In propositional

logic, the operands in propositions are elementary statements p without

free variables, so p corresponds to a Boolean variable. In �rst order logic,

propositions may contain arbitrary Boolean expressions over free variables

with di�erent types as operands. Moreover, �rst order expressions may

contain universal quanti�cation ∀ and/or existential quanti�cation ∃ oper-
ators and associated bound variables. For example, ∀x ∈ Z : x2 + y ≥ 0 is
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a �rst order formula. It has free variable y and bound variable x. For any

y ≥ 0, the formula evaluates to true, for any y < 0, the formula evaluates

to false.

An atomic proposition is a logical proposition which cannot be divided

further. Examples are true, false, a, x < y, but x < y∧a is not considered

as atomic because it represents the conjunction of a and x < y.

Definition 3 A Kripke Structure K = (S, S0, R, L,AP) is a state transi-

tion system (S, S0, R) augmented by a set AP of atomic propositions and

a labelling function

L : S→ 2AP

mapping each state s of K to the set of atomic propositions valid in s.

Furthermore it is required that the transition relation R is total in the

sense that ∀s ∈ S : ∃s ′ ∈ S : (s, s ′) ∈ R. �

If a state transition system contains terminal states, that is, states

s ∈ S satisfying ∀s ′ ∈ S : (s, s ′) 6∈ R, we can always extend R to a total

transition relation R suitable for Kripke structures by adding self loops to

the terminal states in R:

R = R ∪ {(s, s) | s ∈ S∧ (∀s ′ ∈ S : (s, s ′) 6∈ R)}

State Space of Valuation Functions. Next, we specialise on speci�ca-

tion formalisms where the state space can always be de�ned by a tuple of

variables, together with their current values. In this context, a state is a

mapping from symbols to current values. The mapping is partial, since

the visibility of symbols may depend on scope rules. Let V = {x0, x1, . . .}

be the set of all variable symbols associated with a speci�cation, a model

or a program. For each variable x ∈ V, let Dx denote its type (also called

domain) comprising all possible values x can assume. We require a spe-

cial element > to be contained in each Dx, denoting an unde�ned variable

state, such as an arbitrary input value or a stack variable which is still in an

unde�ned state since no assignments to the variable have been performed

so far. Let D =
⋃
x∈V Dx be the union over all domains of variables from V.
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A valuation (function) is a partial mapping

s : V 6→ D

which is compatible with the symbol types Dx, in the sense that

∀x ∈ dom s : s(x) ∈ Dx

Expression Valuation. Given a valuation function s : V 6→ D and a

well-typed expression e(x1, . . . , xn) with free variables xi ∈ V we can eval-

uate e in state s by inserting the valuation of each xi in state s into the

expression. This extends the valuation function on variable symbols to

well-typed expressions in a natural way:

s(e(x1, . . . , xn)) =def e(s(x1), . . . , s(xn))

If e(x1, . . . , xn) is a Boolean expression and s(e(x1, . . . , xn)) = true then we

say that e(x1, . . . , xn) holds in state s and write

s |= e(x1, . . . , xn).

Instead of \e holds in state s" we also say that s is a model for e.

Kripke Structures With State Spaces of Valuation Functions. In

the transition systems and Kripke structures to consider from now on, the

state space will always be represented by a set of valuation functions. This

has a consequence on the atomic propositions to consider: All information

that can be obtained from the fact that a system is in state s : V 6→ D is a

consequence from the atomic propositions specifying exactly the valuation

of each variable in the current state s, that is,

x0 = s(x0), x1 = s(x1), . . . (∗)

Every other atomic proposition, say, x0 < x1 can be derived from the

propositions (*): For example, x0 < x1 holds in state s if and only if s(x0) <

s(x1). For the moment, our sets of atomic propositions will therefore ful�l

the subset relation

AP ⊆ {x = d | x ∈ V ∧ d ∈ Dx} (∗∗)
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Observe, however, that we will also consider other atomic propositions later

on in order to avoid the state explosion that would occur if we enumerated

AP from (**) for variables x with large data types, such as 32 and 64 bit

integers and 
oats.

The special nature of the atomic propositions from AP in (**) implies

that the mapping L can be easily determined for a Kripke structure as

soon as their state space, initial state and transition relation is known:

Considering (*) and (**), the atomic propositions valid in some state s are

obviously

L(s) = {x = d ∈ AP | s(x) = d} (∗ ∗ ∗)
Note that this choice of atomic propositions and labelling function in a

Kripke Structure K = (S, S0, R, L,AP) does not introduce any abstraction

information about the state transition system S = (S, S0, R): the labelling

function (∗ ∗ ∗) just asserts that the variables have values as speci�ed by

the state valuation functions.

In the more general { and practically relevant { case, the atomic propo-

sitions in AP are used to abstract the concrete variable values (like x = 5)

to more general information items (such as x < threshold). The general

rule applies, however, that L(s) shall always be consistent to the valuation

function s in the sense that

∀s ∈ S : L(s) = {p ∈ AP | s |= p}.

This means that L(s) always contains exactly those atomic propositions

from AP that evaluate to true in s.

First Order Representations. Let φ be a �rst order logical formula,

x a free variable in φ and ε an expression. Then φ[ε/x] denotes the for-

mula which results from replacement of every free occurrence of x by ε.

This term replacement can be applied more than once, which is written

φ[ε0/x0, ε1/x1, . . .]; in which case the replacements are applied from left to

right.

Let s ∈ S be a valuation and φ a (�rst order) logical formula with free

variables from V = {x0, x1, . . .}. We say that φ holds in state s and write
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s |= φ, if the formula evaluates to true when replacing every free variable

x occurring in φ by its valuation s(x); that is, φ[s(x0)/x0, s(x1)/x1, . . .] is a

tautology.

Based on this replacement concept, the initial states S0 of a transition

system based on variables and valuations can be speci�ed by means of a

�rst order logical formula I, if S0 coincides with the set of all valuations

where I holds, that is,

S0 = {s : V 6→ D | s |= I}

Conversely, given S0 and assuming that S0 is �nite, we can always construct

such an I by setting

I ≡
∨
s∈S0

(
∧
x∈V

x = s(x))

If the �niteness assumptions do not hold we can write

I ≡ ∃s ∈ S0 : ∀x ∈ V : x = s(x)

In analogy, we can specify transition relations by means of �rst order

formulas. In contrast to the initial state formula, however, we now have

to consider pre- and post states. Therefore we consider formulas with free

variables in V and V ′ = {x ′ | x ∈ V} and associate unprimed variable

symbols x with the prestate and primed variables with the poststate. Let

s, s ′ two valuations and ψ a �rst-order formula with free variables in V,V ′.

We say that ψ holds in (s, s ′) and write (s, s ′) |= ψ if

ψ[s(x0)/x0, s(x1)/x1, . . . , s
′(x0)/x

′
0, s
′(x1)/x

′
1, . . .]

evaluates to true. With this notation a formula T with free variables in

V,V ′ speci�es a transition relation R ⊆ S× S by setting

R = {(s, s ′) ∈ S× S | (s, s ′) |= T }

Conversely, given transition relation R we can construct a suitable formula

T by

T ≡ ∃(s, s ′) ∈ R : ∀x ∈ V, x ′ ∈ V ′ : x = s(x)∧ x ′ = s ′(x)
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Example 3. Consider two parallel processes P0, P1 acting on global

variables s, c0, c1. Suppose the processes are executed on a single-core

CPU such that each assignment is atomic, but the processes may have to

release the CPU between two arbitrary statements.

int s = 0;

int c0 = 0;

int c1 = 0;

1 P0 {

2 do { s = 0;

3 while ( s == 0 );

4 c0 = 1; // process data

5 c0 = 0;

6 } while (1);

7 }

8

1 P1 {

2 do { s = 1;

3 while ( s == 1 );

4 c1 = 1; // process data

5 c1 = 0;

6 } while (1);

7 }

8

To capture the complete state space, we add two program counters p0, p1
in range {1, 2, . . . , 7} indicating the next statement to be executed by P0,

P1, respectively. The semantics of this little parallel program is speci�ed

as follows: The symbol set of the parallel system is V = {p0, p1, s, c0, c1}

with p0, p1 ∈ {1, 2, . . . , 7}, c0, c1, s ∈ B. The initial state is captured by the

formula

I ≡ p0 = 1∧ p1 = 1∧ s = 0∧ c0 = 0∧ c1 = 0
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The transition relation is speci�ed by the formula

T ≡ (p0 = 1∧ p
′
0 = 2∧ p

′
1 = p1 ∧ s

′ = s∧ c ′0 = c0 ∧ c
′
1 = c1)∨

(p0 = 2∧ p
′
0 = 3∧ p

′
1 = p1 ∧ s

′ = 0∧ c ′0 = c0 ∧ c
′
1 = c1)∨

(p0 = 3∧ s = 0∧ p
′
0 = 3∧ p

′
1 = p1 ∧ s

′ = s∧ c ′0 = c0 ∧ c
′
1 = c1)∨

(p0 = 3∧ s 6= 0∧ p ′0 = 4∧ p ′1 = p1 ∧ s ′ = s∧ c ′0 = c0 ∧ c ′1 = c1)∨
(p0 = 4∧ p

′
0 = 5∧ p

′
1 = p1 ∧ s

′ = s∧ c ′0 = 1∧ c
′
1 = c1)∨

(p0 = 5∧ p
′
0 = 6∧ p

′
1 = p1 ∧ s

′ = s∧ c ′0 = 0∧ c
′
1 = c1)∨

(p0 = 6∧ p
′
0 = 2∧ p

′
1 = p1 ∧ s

′ = s∧ c ′0 = c0 ∧ c
′
1 = c1)∨

(p1 = 1∧ p
′
1 = 2∧ p

′
0 = p0 ∧ s

′ = s∧ c ′1 = c1 ∧ c
′
0 = c0)∨

(p1 = 2∧ p
′
1 = 3∧ p

′
0 = p0 ∧ s

′ = 1∧ c ′1 = c1 ∧ c
′
0 = c0)∨

(p1 = 3∧ s = 1∧ p
′
1 = 3∧ p

′
0 = p0 ∧ s

′ = s∧ c ′1 = c1 ∧ c
′
0 = c0)∨

(p1 = 3∧ s 6= 1∧ p ′1 = 4∧ p ′0 = p0 ∧ s ′ = s∧ c ′1 = c1 ∧ c ′0 = c0)∨
(p1 = 4∧ p

′
1 = 5∧ p

′
0 = p0 ∧ s

′ = s∧ c ′1 = 1∧ c
′
0 = c0)∨

(p1 = 5∧ p
′
1 = 6∧ p

′
0 = p0 ∧ s

′ = s∧ c ′1 = 0∧ c
′
0 = c0)∨

(p1 = 6∧ p
′
1 = 2∧ p

′
0 = p0 ∧ s

′ = s∧ c ′1 = c1 ∧ c
′
0 = c0)

Studying T induces the following intuitive interpretation of the parallel

process behaviour.

� Following the single-core CPU paradigm, T expresses an interleav-

ing semantics: in each program state, either P0 or P1 performs a

transition, but never both of them. This is re
ected in T by the fact

that no disjunct allows p0 and p1 to change their value in the same

transition.

� The undetermined scheduling strategy is re
ected by the non-

determinism in T : the pre-conditions in several disjuncts may be

enabled in the same program state. Only one of the enabled disjuncts

will lead to a transition, and the selection is non-deterministic. Prac-

tically, this means that we do not know when the { possibly unfair!

{ scheduler will assign the single CPU core available to P0 and when

to P1.

� As a consequence of the non-deterministic scheduling strategy, the

program may lead to starvation of P0 or P1: if, for example, p0 =
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3∧s = 0, P0may perform an active wait transition, where the program

counter remains unchanged. Then P1 cannot progress, and T allows

the active-wait transition with pre-condition p0 = 3 ∧ s = 0 to be

taken in�nitely often. As a consequence, P1 cannot progress though

it has an enabled transition where it might progress.

For representing the associated Kripke structure we use the encoding

π0, π1, σ, ζ0, ζ1 for a Kripke state s where L(s) = {p0 = π0, p1 = π1, s =

σ, c0 = ζ0, c1 = ζ1}. For unfolding the Kripke structure from the speci�ca-

tion of the transition system we proceed as follows:

1. Construct the initial states: This is done by �nding all solutions

s : V 6→ D of the formula I describing the initial state. In our example

this is trivial, since I speci�es exactly one admissible initial value for

each variable, so S0 consists just of the one valuation s0 = {p0 7→
1, p1 7→ 1, s 7→ 0, c0 7→ 0, c1 7→ 0}. In the general case, the set of all

valuations s with s |= I has to be constructed. Each initial state s is

labelled as described above by L(s) = {x0 = s(x0), x1 = s(x1), . . .}. If

the number of variables involved and their data ranges are small this

can be done using truth tables for I. For more complex applications

more sophisticated methods will be introduced later on.

2. Expand from the initial states: Starting with each initial state,

expand the Kripke structure by applying the transition relation. This

process stops as soon as the expansions of all states generated so far

have already been generated before, that is, as soon as the expansion

process reaches a �xed point. More formally, given a state s which

has already been reached by the expansion, we need to construct

all solutions of T [s(x0)/x0, s(x1)/x1, . . .], that is T , with all pre-state

variables replaced by their actual values in s. Every solution s ′ gives

rise to a new Kripke state with L(s ′) = {x0 = s
′(x0), x1 = s

′(x1), . . .}.

Let's expand our initial state 1,1,0,0,0 : Replacing the prestate variables

in T with these values results in formula

T [1/p0, 1/p1, 0/s, 0/c0, 0/c1] ≡
(p ′0 = 2∧ p

′
1 = 1∧ s

′ = 0∧ c ′0 = 0∧ c
′
1 = 0)∨

(p ′1 = 2∧ p
′
0 = 1∧ s

′ = 0∧ c ′1 = 0∧ c
′
0 = 0)
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so initial state 1,1,0,0,0 expands to 2,1,0,0,0 and 1,2,0,0,0 . The resulting

complete Kripke structure for the two interacting processes in this exam-

ple is shown in Fig. 2.1. Observe that we can also represent the Kripke

structure as an in�nite tree which is called the computation tree. �
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1,1,0,0,0

2,1,0,0,0

3,1,0,0,0

3,2,0,0,0

3,3,1,0,0

1,2,0,0,0

1,3,1,0,0

4,3,1,0,0

2,3,1,0,0

3,3,0,0,0

3,4,0,0,0

6,3,1,0,0

5,3,1,1,0

3,6,0,0,0

3,5,0,0,1

2,2,0,0,0

Figure 2.1: Kripke structure for the processes P0 ‖ P1 from Example 3.
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Unwinding the Computation Tree. The following algorithm for-

malises an unwinding procedure for a �nite section of the computation

tree associated with a Kripke structure, as illustrated in Example 3. Since

a state s may occur in more than one place of the computation tree we use

tree nodes labelled by elements of set N = S × 2AP × N: (s, P, n) ∈ N de-

notes a state s ∈ S which is inserted as a tree node at level n and has valid

atomic propositions P = L(s). The computation tree to be constructed is

a structure TC = (N, ρ, succ,pred) with

� ρ ∈ N the root of the tree

� succ : N → P(N) the successor function mapping each tree node to

the set of its children. If succ(z) = ∅ then z is called a leaf of the

tree.

� pred : N → N ∪ {⊥} the predecessor function mapping each node to

its parent or { in case of the root node { to ⊥

The algorithm is shown in Fig. 2.2. It unwinds the computation tree in

a manner where a node becomes a leaf if it already occurs elsewhere on

the same path on a higher level closer to the root. This representation

is interesting in the context of test automation (to be discussed in later

chapters) and su�ces as a simpli�ed model to prove or disprove assertions

about the model with are of a certain restricted nature, to be discussed in

the next section.
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function computationTree(in (S, S0, R, L,AP) : KripkeStructure) : (N, ρ, succ,pred)

begin

n := 1; M := {(s, L(s), n) | s ∈ S0}; N := {ρ} ∪M;

succ := {ρ 7→M} ∪ {m 7→ ∅ | m ∈M};

pred := {m 7→ ρ | m ∈M} ∪ {ρ 7→ ⊥}
while M 6= ∅ do

M ′ := ∅;

foreach (s, L(s), n) ∈M do

foreach s ′ ∈ S do

if (s, s ′) ∈ R then

N := N ∪ {(s ′, L(s ′), n+ 1)};

succ(s, L(s), n) := succ(s, L(s), n) ∪ {(s ′, L(s ′), n+ 1)};

succ(s ′, L(s ′), n+ 1) := ∅;

pred(s ′, L(s ′), n+ 1) := (s, L(s), n);

if (∀k ∈ {1, . . . , n} : pr1(pred
k(s ′, L(s ′), n+ 1)) 6= s ′) then

M ′ :=M ′ ∪ {(s ′, L(s ′), n+ 1)}

endif

endif

enddo

enddo

M :=M ′

n := n+ 1;

enddo

computationTree := (N, ρ, succ,pred);

end

Figure 2.2: Algorithm for generating a �nite portion of the computation

tree associated with a Kripke Structure (S, S0, R, L,AP).
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Exercise 2. Consider the speci�cation model of component C in Fig. 2.3.

C inputs x ∈ {0, 1, 2} and outputs to y ∈ {−1, 0, 1, 2, . . .}. Its behaviour is

modelled in Statechart style: The rounded corner boxes denote locations,

also called control states. Arrows between locations denote transitions ;

a transition arrow without source location marks the initial control state.

Expressions in brackets (like [x > y]) specify guard conditions : The tran-

sition from location l0 to l1 can only be taken if x > y holds, which means,

that the current valuation s : V 6→ D results in s(x) > s(y). Expressions

after a slash, like / y = -1;, denote actions, that is, assignments to in-

ternal variables (if any) or outputs. An action is executed if its associated

transition is taken.

Applying the informal description of the behaviour of C in Example 3,

specify the initial state and the transition relation as logical formulas.

�

Exercise 3. Following the algorithm described in Fig. 2.2, draw the

initial part of the computation tree associated with the Kripke structure

of C in Exercise 2. For the �rst 3 nodes in the tree, explain how they are

derived from the transition relation. For this exercise assume N = 2. Use

the GraphViz tool2 to visualise the initial part of the computation tree.

�
2Program dot, see http://www.graphviz.org/Home.php
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y

l0 l1

l2

[x>y]/

y = y + x;

[x <= 0 ]

[y > N]/
y = −1;

[odd(y)]/
y = −1;

[x <= 0]/
y = 0;

/y = 0;

C
x

Figure 2.3: Model of component C.
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Chapter 3

Property Specification With
Temporal Logic

Temporal logic is a logical formalism aiming at the speci�cation of se-

quences of system states, that is, computations. The invention of tempo-

ral logic is attributed to Amir Pnueli [11, 12, 15].

3.1 Linear Temporal Logic LTL

Given a Kripke structure K = (S, S0, R, L) with atomic propositions AP,

linear temporal logic (LTL) has computations π = s0.s1.s2 · · · ∈ Sω of K

as models. An LTL formula ϕ expresses facts about the propositions that

are valid on such a path π. To this end, LTL uses the usual propositional

operators ∧,∨,¬, . . . to model \ordinary" propositions and to create new

LTL formulas from existing ones. In addition, LTL o�ers path operators

(also called temporal operators) to express relationships between di�erent

states on the path.

The typical approach to de�ning a logic is to

� specify a syntax subset containing only some \core operators" of the

logic,

� specify the semantics of formulas using these core operators, and
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� introduce additional \convenience operators" by specifying syntactic

equivalences of the formulas using these new operators with formulas

using core operators only.

The LTL introduction presented here follows the approach of [17].

Core Operators of LTL. As core operators for propositional formulas

we choose ∧,¬, and as core path operators X (\next") and W (\weak

until"), whose semantics is explained below.

Core Syntax of LTL. The following syntax rules specify which LTL

formulas are well-formed, if they use core operators only.

� Every Boolean constant true(= 1) or false(= 0) is an LTL formula.

� Every atomic proposition from a set AP is an LTL formula.

� If ϕ, ψ are well-formed LTL formulas, then

ϕ∧ψ, ¬ϕ, Xϕ, ϕWψ

are well-formed LTL formulas.

For displaying these rules more formally in grammar speci�cation style, p

denotes arbitrary atomic propositions from AP, and ϕ,ψ denote arbitrary

LTL formulas. Then the syntax rules above can be written equivalently as

LTL ::= p | ϕ∧ψ | ¬ϕ | Xϕ | ϕWψ

Semantics of Core LTL Formulas. The semantics of logical formulas is

speci�ed by describing the models of each formula. This is typically done

by structural induction over the formula syntax. For the core LTL, this is

shown in Table 3.1. We use the following notation for paths π = s0.s1.s2 . . .:

π(i) denotes element si of π, and π
i = sisi+1 . . . the i

th su�x of π.
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Table 3.1: Semantics of LTL formulas.

πi |= true for all i ≥ 0
πi 6|= false for all i ≥ 0

πi |= p i� p ∈ L(si) (This rule applies to all p ∈ AP.)
πi |= ¬ϕ i� πi 6|= ϕ

πi |= ϕ∧ψ i� πi |= ϕ and πi |= ψ

πi |= Xϕ i� πi+1 |= ϕ

πi |= ϕWψ i� either ∀k ≥ i : πk |= ϕ

or ∃j ≥ i : πj |= ψ and ∀i ≤ k < j : πk |= ϕ

Full LTL Syntax. Further propositional and temporal operators of LTL

are introduced via syntactic equivalence. These operators and their equiv-

alent core expressions are displayed in Table 3.2. The names of the new

path operators are G (\globally"), F (\�nally"), and U (\until").

Table 3.2: LTL operators de�ned by syntactic equivalence with core LTL

expressions.

ϕ∨ψ ≡ ¬(¬ϕ∧ ¬ψ) ϕ⇒ ψ ≡ ¬ϕ∨ψ ϕ⇔ ψ ≡ (ϕ⇒ ψ)∧ (ψ⇒ ϕ)

Gϕ ≡ ϕ W false Fϕ ≡ ¬G¬ϕ ϕUψ ≡ ϕWψ∧ Fψ

The following lemma is a simple consequence of the LTL semantics

speci�ed in Table 3.1.

Lemma 2 Let f be a quanti�er-free 1st-order expressions over the vari-

ables of a Kripke structure K. Then

πi |= f i� si |= f, where si = π
i(0) = π(i).
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Proof. For Kripke structures with valuation functions s as states, atomic

propositions p are atomic Boolean 1st order expressions over variables, us-

ing arithmetic operators and comparision operators. The labelling function

ful�ls

p ∈ L(s) i� s |= p,

which means that replacing all free variables v in p by their value s(v)

results in a true Boolean expression.

A quanti�er-free 1st-order expression is a conjunction, disjunction or

negation of atomic propositions. Applying the associated rules in Table 3.1

results in the statement of the lemma. �

LTL Formula Transformations. In every logic and every calculus it

is important to know di�erent, semantically equivalent, representations of

the same formula. Lemma 3 shows a list of some useful equivalences, and

the proof explains how these facts are typically derived, using the semantic

de�nitions of the core operators.

Lemma 3 Let ϕ,ψ be LTL formulas. Then

¬(ϕ∧ψ) ≡ ¬ϕ∨ ¬ψ

¬(ϕ∨ψ) ≡ ¬ϕ∧ ¬ψ

¬Xϕ ≡ X¬ϕ

¬Gϕ ≡ F¬ϕ

¬(ϕWψ) ≡
(
¬ψU¬(ϕ∨ψ)

)
¬(ϕUψ) ≡

(
¬ψU¬(ϕ∨ψ)

)
∨ G¬ψ

F(ϕUψ) ≡ Fψ

G(ϕWψ) ≡ G(ϕ∨ψ)
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Proof. (1) We prove ¬(ϕWψ) ≡
(
¬ψU¬(ϕ ∨ ψ)

)
by transforming the

left-hand side and right-hand side into their semantic representation.

πi |= ¬(ϕWψ) ⇔ πi 6|= ϕWψ⇔ ¬
(
∀k ≥ i : πk |= ϕ

)
∧

¬
(
∃j ≥ i : (πj |= ψ∧ ∀i ≤ k < j : πk |= ϕ)

)
⇔ (

∃h ≥ i : πh 6|= ϕ
)
∧(

∀j ≥ i : (πj 6|= ψ∨ ∃i ≤ k < j : πk 6|= ϕ)
)

⇔ (
∃h ≥ i : πh |= ¬ϕ

)
∧(

∀j ≥ i : (πj |= ¬ψ∨ ∃i ≤ k < j : πk |= ¬ϕ)
)

⇔ (
(∃h ≥ i : πh |= ¬ϕ)∧ (∀j ≥ i : πj |= ¬ψ)

)
∨(

∃j ≥ i : (πj |= ψ∧ ∀ i ≤ k < j : πk |= ¬ψ∧ ∃i ≤ h < j : πh |= ¬ϕ)
)

⇔ (
∃h ≥ i : (πh |= ¬ϕ∧ ¬ψ∧ ∀i ≤ k < h : πk |= ¬ψ)

)
⇔ πi |=

(
¬ψU¬(ϕ∨ψ)

)
(2) Now we prove F(ϕUψ) ≡ Fψ; the technique is the same as used in

step (1).

πi |= F(ϕUψ) ⇔ (
∃j ≥ i : πj |= ϕUψ

)
⇔ (

∃k ≥ j ≥ i : (πk |= ψ∧ ∀ j ≤ h < k : πh |= ϕ)
)

⇔ (
∃k ≥ i : πk |= ψ

)
⇔ πi |= Fψ

(3) Now we prove G(ϕWψ) ≡ G(ϕ∨ψ) and exploit the other equiva-

lences that are expressed in the lemma. This allows us to perform a proof

on a purely syntactic level.

πi |= G(ϕWψ) ≡ πi 6|= ¬G(ϕWψ)

≡ πi 6|= F¬(ϕWψ)

≡ πi 6|= F(¬ψU¬(ϕ∨ψ))

≡ πi 6|= F¬(ϕ∨ψ)

≡ πi 6|= ¬G(ϕ∨ψ)

≡ πi |= G(ϕ∨ψ)
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�
The next lemma shows recursive equivalences. These are very useful

in the context of bounded model checking which will be introduced in

Chapter 5.

Lemma 4 Let ϕ,ψ be LTL formulas. Then

Gϕ ≡ ϕ∧ XGϕ

Fϕ ≡ ϕ∨ XFϕ

ϕUψ ≡ ψ∨ (ϕ∧ X(ϕUψ))

Proof. (1) We prove Gϕ ≡ ϕ∧ XGϕ by transforming the formulas into

LTL core syntax and then applying their semantic de�nitions. The left-

hand side of the equivalence is transformed into a predicate of �rst order

logic as follows.

πi |= Gϕ ≡ πi |= ϕWfalse

≡ ∀k ≥ i : πk |= ϕ

Now the right-hand side formula is transformed as follows.

πi |= ϕ∧ XGϕ ≡ (πi |= ϕ)∧ (πi+1 |= Gϕ)

≡ (πi |= ϕ)∧ (πi+1 |= ϕWfalse)

≡ (πi |= ϕ)∧ (∀k ≥ i+ 1 : πk |= ϕ)
≡ ∀k ≥ i : πk |= ϕ

This proves the �rst equivalence, because both sides have been transformed

into the same �rst order predicates. The other equivalences are handled in

Exercise 4. �

Exercise 4. Prove the equivalences

Fϕ ≡ ϕ∨ XFϕ

ϕUψ ≡ ψ∨ (ϕ∧ X(ϕUψ))

speci�ed in Lemma 4. �
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Positive Normal Form. Every LTL formula can be equivalently repre-

sented by a formula in postive normal form (PNF); the latter adhere to

the syntax

PNF ::= true | false | p | ¬p | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | Xϕ | ϕ1Uϕ2 | ϕ1Wϕ2

This is a direct consequence of Lemma 3.

Propositional LTL (pLTL). In some situations, it is useful to abstract

from state valuation functions s : V 6→ D. Instead, states are just uninter-

preted elements of some state space S. The \interesting" information about

a Kripke structure over S is encoded alone by means of atomic propositions

p ∈ AP and the labelling function L : S → 2AP. As models of an LTL for-

mula ϕ we now consider in�nite sequences of sets of atomic propositions,

that is

π ∈
(
2AP
)ω

and say that πi is a model for atomic proposition p ∈ AP (again written as

πi |= p) if and only if p ∈ π(i). Then the other semantic rules of Table 3.1

can be re-used without changes.

3.2 The Computation Tree Logic CTL∗

The temporal logics discussed in the remainder of this chapter are dis-

tinguished from LTL by the fact that their models are arbitrary Kripke

structures, whereas LTL uses linear models, that is, in�nite computation

paths, only. As a consequence, the new logics introduced below consider

branching situations on computations paths, and these are modelled by

trees. This motivates the name Computation Tree Logic, abbreviated by

CTL, that is always part of the speci�c logic's name.

Operators. CTL∗ formulas are based on the following operators:

� The path quanti�ers are

– A (\on every path")
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– E (\there exists a path")

� The temporal operators are

– X (\next time")

– G (\globally" or \always")

– F (\eventually" or \�nally")

– U (\until")

– R (\release")

Apart from these new operators the conventional Boolean operators can

be used, as will be speci�ed in the syntax de�nition below.

Syntax of CTL∗ formulas. CTL∗ distinguishes between

� state formulas which refer to properties of a speci�c Kripke state

� path formulas which specify properties of a path in the computation

tree.

State and path formulas refer recursively to each other. The set of all

valid CTL∗ formulas is given by the state formulas generated according to

the following inductive rules:

1. Every atomic proposition p ∈ AP is a state formula.

2. If f and g are state formulas then ¬f, f∧ g, f∨ g are state formulas.

3. If f is a path formula then E f,A f are state formulas.

The path formulas are de�ned according to the following rules:

(iv) Every state formula is also a path formula.

(v) If f and g are path formulas, then ¬f, f∧ g, f∨ g are path formulas.

(vi) If f and g are path formulas, then X f,F f,G f, f U g, f R g are path

formulas.
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More formally, we can write these syntax rules in EBNF notation as

follows, where p ∈ AP, φ denotes state formulas and ψ denotes path for-

mulas

CTL∗-formula ::= φ

φ ::= p | ¬φ | φ∨ φ | φ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ∨ψ | ψ∧ψ | X ψ | F ψ | G ψ | ψ U ψ | ψ R ψ

Semantics of CTL∗ formulas. The semantics of CTL∗ formulas is ex-

plained using a Kripke structure M, speci�c states s of M and paths π

through the computation tree of M. We write

M,s |= φ (φ a state formula)

to express that φ holds in state s of M. We write

M,π |= ψ(ψ a path formula)

to express that ψ holds along path π throughM. For CTL∗ formulas φ we

say φ holds in the Kripke model M and write

M |= φ

if and only if ∀s0 ∈ S0 : M,s0 |= φ. Recall that for paths π = s0.s1.s2 . . .,

π(i) denotes element si of π, and π
i = si.si+1 . . . the i

th su�x of π.

The inductive de�nition of |= is given in Fig. 3.1, where p denotes atomic

propositions from AP, φ,φi denote state formulas and ψ,ψj denote path

formulas:

Exercise 5. Using the syntax rules of CTL∗ formulas and a syntax tree

representation, prove or disprove that the following formulas conform to

the CTL∗-syntax (a, b, c ∈ AP):

1. AG(XFa∧ ¬(bUGc))

2. AXG¬a∧ EFG(a∨ A(bUa))

�
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M,s |= p ≡ p ∈ L(s)
M,s |= ¬φ ≡ M,s 6|= φ
M, s |= φ1 ∨ φ2 ≡ M,s |= φ1 or M,s |= φ2

M,s |= φ1 ∧ φ2 ≡ M,s |= φ1 and M,s |= φ2

M,s |= E ψ ≡ there is a path π from s such that M,π |= ψ

M, s |= A ψ ≡ on every path π from s holds M,π |= ψ

M,π |= φ ≡ M,π(0) |= φ

M,π |= ¬ψ ≡ M,π 6|= ψ
M,π |= ψ1 ∨ψ2 ≡ M,π |= ψ1 or M,π |= ψ2

M,π |= ψ1 ∧ψ2 ≡ M,π |= ψ1 and M,π |= ψ2

M,π |= X ψ ≡ M,π1 |= ψ

M,π |= F ψ ≡ there exists k ≥ 0 such that M,πk |= ψ

M,π |= G ψ ≡ For all k ≥ 0 M,πk |= ψ

M,π |= ψ1Uψ2 ≡ there exists k ≥ 0 such that M,πk |= ψ2 and for all 0 ≤ j < k M,πj |= ψ1

M,π |= ψ1Rψ2 ≡ for all j ≥ 0 holds: if M,πi 6|= ψ1 for every i < j then M,πj |= ψ2

Figure 3.1: Semantics of CTL∗ formulas.

Exercise 6. Using the Kripke structure displayed in Fig. 2.1 prove or

disprove the following CTL∗-assertions, using the semantic de�nition de-

scribed in Fig. 3.1 in a step-by step manner. For each of the formulas, give

a textual interpretation of their meaning.

1. AG¬(c0 ∧ c1)

2. A(Fc0 ∧ G(c0 ⇒ F(c1 ∧ Fc0)))

Justify why the �rst assertion could be proved on the �nite represen-

tation of the Kripke structure's computation tree as explained in algo-

rithm 2.2 while this is not possible for the second assertion. �

3.3 The Computation Tree Logic CTL

A frequently used subset of CTL∗ is called CTL. It is de�ned by the fol-

lowing restricted syntactic rule (CTL.vi) for the path formulas (the other

rules (i), (ii), (iii) for CTL∗ syntax apply in the same way to CTL):
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(CTL.vi) If f and g are state formulas then X f,F f,G f, f U g, f R g are

path formulas.

More formally, the CTL syntax is de�ned by (p denotes atomic propositions

from AP)

CTL-formula ::= φ

φ ::= p | ¬φ | φ∨ φ | φ∧ φ | E ψ | A ψ

ψ ::= X φ | F φ | G φ | φ U φ | φ R φ

As a consequence, the temporal operators X,F,G,U,R can never be pre-

�xed by another temporal operator in CTL. Only pairs consisting of path

quanti�er and temporal operator can occur in a row.

Example 4. The CTL∗ formula A(FGf) (On every path, f will �nally

hold in all states) has no equivalent in CTL. �

Theorem 1 Every CTL formula can be expressed by means of the op-

erators ¬,∨,EX,EU,EG.

Proof. Obviously φ1∧φ2 can be expressed as ¬(¬φ1∨¬φ2). The theorem

now follows from the fact that the following equivalences hold for all CTL

state formulas φ,φ1, φ2:

1. AXφ ≡ ¬EX(¬φ)

2. EFφ ≡ E(trueUφ)

3. AGφ ≡ ¬EF(¬φ)

4. AFφ ≡ ¬EG(¬φ)

5. A(φ1Uφ2) ≡ ¬E(¬φ2U(¬φ1 ∧ ¬φ2))∧ ¬EG¬φ2
6. A(φ1Rφ2) ≡ ¬E(¬φ1U¬φ2)

7. E(φ1Rφ2) ≡ ¬A(¬φ1U¬φ2)

8. Eφ ≡ E(falseUφ) if φ does not contain E,A,X,F,G,U,R

9. Aφ ≡ ¬E(falseU¬φ) if φ does not contain E,A,X,F,G,U,R

The proof of these equivalences is performed using the semantic rules given

in Fig. 3.1, to be performed by the reader in Exercise 7. �

Exercise 7. Prove the 9 semantic equivalences used in the proof of

Theorem 1. �

43



3.4 The Computation Tree Logics ACTL∗

and ACTL

If we restrict CTL∗ formulas to universal quanti�cation only, the resulting

computation tree logic is called ACTL∗. More precisely, ACTL∗ only admits

CTL∗ formulas satisfying

� The formula is in positive normal form, that is, the negation oper-

ator ¬ is only applied to atomic propositions.

� The only occurring path quanti�er is A.

The corresponding restriction of CTL formulas to universal quanti�ca-

tion is called ACTL.

Example 5. AFAXa is an ACTL formula, but AGEFa is not in ACTL∗,

since its E-free representation AG¬AG¬a is not in positive normal form.

�
In Section 7.4 we will prove a theorem about simulation relations be-

tween Kripke structures, and the properties that may be transferred from

an abstract Kripke structure to its associated concrete one. It will turn out

that a su�cient condition for this implication from abstract to concrete

level is for the formula to be in the subset of ACTL∗ or ACTL, respec-

tively.

3.5 Safety Properties and

Over-approximation of

LTL Safety Violation Formulae by CTL

The material presented in this section is based on Peleska et al. [14].

3.5.1 Safety Properties

A safety property P is a set of computations π ∈ Sω, such that for every

π ′ ∈ Sω with π ′ 6∈ P, the fact that π ′ does not ful�l P can already be
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decided on a �nite pre�x of π ′. This is speci�ed more formally in the

following de�nition.

Definition 4 (Safety Property) A safety property P ⊆ Sω is a set of

computations satisfying

∀π ′ ∈ Sω \ P �
(
∃π ′′ � π ′′ ≤ π ′ ∧ (∀τ ∈ Sω � π ′′.τ 6∈ P)

)
.

Intuitively speaking, this de�nition states that any computation π ′ vio-

lating the safety property P (that is, π ′ ∈ Sω \P) has a �nite pre�x π ′′ such
that no in�nite continuation τ of π ′′ can ever be safe (that is, an element

of P) again.

Sistla has shown that every safety property P can be characterised by

a Safety LTL formula ϕ, so that the computations in P are exactly those

ful�lling ϕ. The Safety LTL formulae are speci�ed as follows [17, Theo-

rem 3.1]:

1. Every unquanti�ed �rst-order formula is a Safety LTL-formula.

2. If ϕ,ψ are Safety LTL-Formulae, then so are

ϕ∧ψ, ϕ∨ψ, Xϕ, ϕWψ, Gϕ.

Observe that in these safety formulae, the negation operator must only

occur in �rst-order sub-formulae.

Suppose that a safety property P is speci�ed by Safety LTL formula ϕ.

When looking for a path π violating ϕ, the violation π |=LTL ¬ϕ can be

equivalently expressed by a formula containing only �rst-order expressions

composed by the operators ∧,∨,X,U. This is shown in the following

theorem.

Theorem 2 Let ϕ be a Safety LTL formula. Then safety violation ¬ϕ

can be equivalently expressed using �rst-order expressions composed by

operators ∧,∨,X,U.
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Proof. We use structural induction over the syntax of safety LTL formu-

lae.

Base case. If ϕ is a �rst-order expression, then its negation is again a

�rst-order expression.

Induction hypothesis. Suppose that the negation of Safety LTL formulae

ϕ,ψ can be expressed using �rst-order expressions composed by operators

∧,∨,X,U only.

Induction step. Since every Safety LTL formula can be expressed using

operators ∧,∨,X,W,G, we need to show that the negations of ϕ ∧ ψ,

ϕ∨ψ, Xϕ, ϕWψ, Gϕ can also be expressed using �rst-order expressions

composed by operators ∧,∨,X,U. To prove this, we use the equivalences

for LTL formulae established in Lemma 3.

Case ϕ∧ψ. Since ¬(ϕ∧ψ) ≡ ¬ϕ∨ ¬ψ and, according to the induction

hypothesis, ϕ,ψ can be negated using �rst-order expressions composed by

operators ∧,∨,X,U only, the induction step holds for operator ∧.

Case ϕ∨ψ. Since ¬(ϕ∨ψ) ≡ ¬ϕ∧¬ψ and ϕ,ψ can be negated using �rst-

order expressions composed by operators ∧,∨,X,U only, the induction

step holds for operator ∨.

Case Xϕ. Since ¬Xϕ ≡ X¬ϕ and ϕ can be negated using �rst-order ex-

pressions composed by operators ∧,∨,X,U only, the induction step holds

for operator X.

Case (ϕWψ). Since ¬(ϕWψ) ≡
(
¬ψU¬(ϕ∨ψ)

)
≡
(
¬ψU(¬ϕ∧¬ψ)

)
and

ϕ,ψ can be negated using �rst-order expressions composed by operators

∧,∨,X,U only, the induction step holds for operator W.

Case Gϕ. Since ¬Gϕ ≡ F¬ϕ ≡ (trueU¬ϕ) and ϕ can be negated

using �rst-order expressions composed by operators ∧,∨,X,U only, the

induction step holds for operator G. This completes the proof. �
As a consequence of Theorem 2, a model checker specialised on the

detection of safety violations only needs to support the evaluation of �rst-

order formulae and operators ∧,∨,X,U.

Full LTL and CTL have di�erent expressiveness, and neither one is

able to express all formulae of the other with equivalent semantics [6]. In
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this section, however, it will be shown that any safety violation speci�ed

by an LTL formula f on a path π can also be detected by applying CTL

model checking to a translated formula Φ(f) on any Kripke structure K

containing π as a computation. This is, however, an over-approximation,

in the sense that witnesses forΦ(f) in K will not always correspond to \real"

rule violations in the IXL con�guration. An algorithm for identifying false

alarms is presented in Section 3.5.4.

3.5.2 A Transformation from LTL Safety Violation
Formulae to CTL

Recalling from Theorem 2 that any safety violation can be speci�ed using

�rst-order formulae and operators ∧,∨,X,U, we specify a partial trans-

formation function Φ : LTL 6→ CTL as follows.

Φ(f) = f for all �rst-order expressions f

Φ(f∧ g) = Φ(f)∧Φ(g)

Φ(f∨ g) = Φ(f)∨Φ(g)

Φ(Xf) = EX(Φ(f))

Φ(fUg) = E(Φ(f)UΦ(g))

3.5.3 Model Checking of LTL Safety Formulae by CTL
Over-Approximation

Observe that Φ maps every LTL formula in its domain to a CTL state for-

mula, since �rst-order expressions are state-formulae, and any LTL formula

starting with a temporal operator is pre�xed under Φ with the existential

path quanti�er E. With this transformation at hand, the following theorem

states that the absence of witnesses for Φ(f) in K guarantees that f cannot

be ful�lled on π.

Theorem 3 Let π be any �nite path and f an LTL formula specifying

a safety violation on π. Let K be a Kripke structure over state space

S containing π as a computation. Then

π |=LTL f implies K, π(0) |=CTL Φ(f).
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Proof. The proof uses structural induction over the syntax of LTL for-

mulae representing safety violations. These are expressed by �rst-order

formulae and operators ∧,∨,X,U according to Theorem 2. Throughout

the proof, let k = |π| − 1 be the last valid index of π = π(0) . . . π(|π| − 1)

and πi = π(i).π(i + 1).π(i + 2) . . . π(k) be an arbitrary path segment of π

with 0 ≤ i ≤ k.
Base case. Suppose that πi |=LTL g for an arbitrary �rst-order expression

g. According to Lemma 2, this is equivalent to π(i) |= g. Since π is a

computation of K by assumption, πi is a path segment of K. Since the

evaluation rules for �rst-order expressions are the same in LTL and CTL,

K, π(i) |=CTL g follows. This argument was independent on the value of

0 ≤ i ≤ k. Therefore, we can conclude from π = π0 that π |=LTL f implies

K, π(0) |=CTL f for any �rst-order expression f, which concludes the base

case.

Induction hypothesis. Suppose that πi |=LTL f and πi |=LTL g imply

K, π(i) |=CTL Φ(f) and K, π(i) |=CTL Φ(g), respectively, for given LTL

formulae f, g expressing safety violations and any path segment πi with

0 ≤ i ≤ k.
Induction step. Using the induction hypothesis, it has to be shown that

πi |=LTL f ∧ g, π
i |=LTL f ∨ g, π

i |=LTL Xf, and πi |=LTL fUg imply that

K, π(i) |=CTL Φ(f)∧Φ(g), K, π(i) |=CTL Φ(f)∨Φ(g), K, π(i) |=CTL EXΦ(f),

and K, π(i) |=CTL E(Φ(f)UΦ(g)), respectively.1

Case πi |=LTL f ∧ g. This case is equivalent to πi |=LTL f and π
i |=LTL

g according to the LTL semantics speci�ed in Table 3.1. According to

the induction hypothesis, this implies K, π(i) |=CTL Φ(f) and K, π(i) |=CTL

Φ(g). According to the CTL semantics speci�ed in Table 3.1, this is in

turn equivalent to K, π(i) |=CTL Φ(f)∧Φ(g).

Case πi |=LTL f∨ g. This case is shown in analogy to the previous case.

Case πi |=LTL Xf. This case is equivalent to πi+1 |=LTL f according to

the LTL semantics speci�ed in Table 3.1. According to the induction

1Recall that we do not have to consider negation, since this only occurs inside �rst-order

formulae.
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hypothesis, this implies K, π(i + 1) |=CTL Φ(f). From the de�nition of

Φ we know that Φ(f) is a state formula. Therefore, EXΦ(f) is again

a CTL state formula. From the CTL semantics in Table 3.1 and from

the fact that K, π(i + 1) |=CTL Φ(f) has been established, we can derive

K, π(i) |= EXΦ(f). Now, by de�nition of Φ, we have EXΦ(f) = Φ(Xf),

and this proves the current case.

Case πi |=LTL fUg. This case is equivalent to

∃0 ≤ j �
(
πi+j |=LTL g∧ ∀0 ≤ ` < j � πi+` |=LTL f

)
according to the LTL semantics speci�ed in Table 3.1. The induction hy-

pothesis implies

∃0 ≤ j �
(
K, π(i+ j) |=CTL Φ(g)∧∀0 ≤ ` < j �K, π(i+ `) |=CTL Φ(f)

)
(∗)

according to the induction hypothesis. Since Φ(f), Φ(g) are state formu-

lae, Φ(f)UΦ(g) is a path formula, and the CTL semantics speci�ed in Ta-

ble 3.1 shows that (*) implies K, πi |=CTL Φ(f)UΦ(g). As a consequence,

K, π(i) |=CTL E(Φ(f)UΦ(g)) holds as well. This completes the induction

step and the proof of Theorem 3. �
Now Theorem 3 can be applied to perform fast CTL-based checks to

prove that a violation of a given LTL safety property cannot exist. This is

performed according to the following steps.

1. Let ϕ ∈ LTL be a safety property. We wish to show that K |=LTL ϕ.

This means that every computation π of K ful�ls π |=LTL ϕ.

2. K |=LTL ϕ is equivalent to the fact that no computation π of K satis�es

π |=LTL ¬ϕ.

3. From Theorem 2 we know that ¬ϕ can be expressed by means of

operators ∧,∨,X,U.

4. From Theorem 3 we know that π |=LTL ¬ϕ for any computation π of

K implies K, π(0) |=CTL φ(¬ϕ).

5. Now we apply CTL model checking on K for property φ(¬ϕ).
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6. If φ(¬ϕ) does not hold for K, we can conclude that no path π vio-

lating ϕ can exist in K, so K ful�ls LTL safety property ϕ.

7. If φ(¬ϕ) holds in K, we need to check whether the solution is also

a witness for LTL formula ¬ϕ. If this is the case, we have found a

path proving that the model violates the safety formula. If this is not

the case, we apply an LTL model checker (which requires signi�cantly

more e�ort than the CTL checker) and check whether ϕ holds.

3.5.4 False Alarms

The following example shows how the CTL over-approximation for checking

LTL formulae on non-linear models may lead to false alarms.

Example 6. Consider the transition graph of a Kripke structure K(s0)

sketched in Fig. 3.2 with root node s0 and atomic propositions p, q. It is

�ctitious, but this graph pattern might well occur in an IXL sub-model

with driving direction s0 −→ s1, where node s2 represents a point.

Each node in Fig. 3.2 is annotated with the propositions ful�lled in the

corresponding Kripke-state. For example, s1 satis�es p but not q, s4 ful�ls

p and q, and s3 satis�es neither p nor q.

Suppose we wish to prove the absence of a witness for LTL formula

(Xp) U q. Applying the checking approach described above, the formula

is translated to CTL as Φ((Xp) U q) = E((EXp) U q).

The model ful�ls K(s0) |=CTL E((EXp) U q), because the path

π = s0.s1.s2.s3.s4 . . . ful�ls (EXp) U q. This is true because the states

s0, s1, s2, s3 each ful�l EXp, and in s4, proposition q is ful�lled. Note that

in state s2, formula EXp holds because the outgoing path s2.s5.s6 . . . ful�ls

Xp. Path π, however, is not a witness for the LTL formula (Xp) U q, since

s2.s3.s4 · · · 6|=LTL Xp. Also for path π ′ = s0.s1.s2.s5.s6 . . . , the LTL formula

(Xp) U q is not ful�lled, because s6 neither ful�ls p nor q.

Summarising, the CTL-based model checking approach yields a false

alarm when trying to prove the absence of a witness for LTL formula

(Xp) U q. �
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Figure 3.2: Model ful�lling E((EXp) U q) but not (Xp) U q.
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Chapter 4

CTL Model Checking

Variants of model checking. Model checking distinguishes between

� Equivalence checking. Two models (these are usually given in state

transition system or labelled transition system representation) are

compared with respect to semantic equivalence.

� Re�nement checking. Two models are compared by means of a

(usually transitive) relation which is weaker than equivalence.

� Property checking. A model is checked with respect to an (implicit)

speci�cation : The speci�cation is given by a logical formula stating

some desired property of the model. The model is usually represented

as a transition system or as a Kripke structure K = (S, S0, R, L,AP).

The speci�cation is most frequently expressed by a temporal logic

formula φ; an alternative speci�cation formalism is trace logic.

In the most general case of property checking, we wish to identify all

states s ∈ S where φ holds, i. e., s |= φ. In most practical applications the

objective is to prove that φ holds in every initial state of the model; the

notation for this fact has been introduced before as K |= φ, de�ned by

∀φ ∈ CTL : (K |= φ⇔ (∀s ∈ S0 : s |= φ))

Model checking techniques. The technique which is introduced here is

called explicit model checking because it requires to represent the Kripke
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structure's state space in an explicit way, so that all the necessary atomic

propositions of the form x = ν can be directly derived from each state's

representation. This is the oldest form of model checking which is only

applicable if state spaces are su�ciently small to be enumerated explicitly.

Explicit model checking is a variant of global model checking ; the lat-

ter term is used when every state of a model is checked with respect to

ful�lment of a given property. In contrast to that, local model checking

only investigates whether a property holds in a speci�c state. Instead of ex-

plicit model representations in memory, it is also possible to present model

states by means of logical formulas; the most popular variant of this tech-

nique uses Ordered Binary Decision Diagrams (OBDDs) [5, Chapter 5].

This variant of global model checking is called symbolic model checking [5,

Chapter 6], because of its Boolean formula representation of the state space.

Another variant of symbolic model checking is bounded model checking

(BMC). Its purpose is to perform local model checking, but BMC investi-

gates the validity of a formula in the neighbourhood of a given state only.

As a consequence, no global model representations (whether explicit or

symbolic) are required, but results are only partial: if a solution is found,

this result would also have been found when applying global explicit model

checking; if, however, no solution is found, there might still exist a solution

beyond the state's neighbourhood which has been investigated. BMC is

studied in more detail in Chapter 5.

The basic idea of the property checking algorithm. The property

checking algorithm introduced formally below is based on the following

concept:

� The CTL speci�cation formula is decomposed into its (binary) syntax

tree.

� Starting at the leaves of the syntax tree (the leaves represent atomic

propositions), the algorithm processes a sequence of sub-formulas φi
in bottom-up manner. This is implemented by means of a recursive

in-order traversal of the syntax tree.
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� The goal of each processing step is to annotate all states s satisfying

s |= φi with the new sub-formula φi. To this end, a labelling function

Lφ : S→ 2CTL is used.

� The algorithm stops when the last formula φi having been processed

coincides with the speci�cation φ.

� The result of the algorithm is the set Sφ =def {s ∈ S | φ ∈ Lφ(s)}.

� The Kripke model (S, S0, R, L,AP) satis�es φ if its initial states are

part of Sφ, that is,

(S, S0, R, L,AP) |= φ ≡ S0 ⊆ {s ∈ S | φ ∈ Lφ(s)}

Syntax tree representation of CTL formulas. From Section 3.3 we

know that every CTL formula can be represented by means of the operators

¬,∨,EX,EU,EG alone. The binary syntax tree representation of such a

formula can be de�ned recursively using the tree notation

� ε: empty tree

� T(t0, n, t1): tree with root n and left sub-tree t0 and right sub-tree

t1.

The recursive syntax tree de�nition t(φ) for a given CTL formula φ is as

follows:

1. If φ ∈ AP then t(φ) = T(ε, φ, ε).

2. If φ = ¬φ1 then t(φ) = T(ε,¬, t(φ1)).

3. If φ = φ0 ∨ φ1 then t(φ) = T(t(φ0),∨, t(φ1)).

4. If φ = EXφ1 then t(φ) = T(ε,EX, t(φ1)).

5. If φ = E(φ0Uφ1) then t(φ) = T(t(φ0),EU, t(φ1))
1.

1We regard EU as a binary operator, so that formulas E(φ0Uφ1) could be equivalently

written as (φ0(EU)φ1). As a consequence its tree representation is T(t(φ0),EU, t(φ1))
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6. If φ = EGφ1 then t(φ) = T(ε,EG, t(φ1)).

Given a tree representation t(φ) of a formula φ, its leaves (i. e. its atomic

propositions) can be extracted by means of the function leaves : Tree→ 2AP

by means of the following recursive de�nition:

1. leaves(T(ε, φ, ε)) = {φ}

2. leaves(T(ε,¬, t(φ1))) = leaves(t(φ1))

3. leaves(T(t(φ0),∨, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

4. leaves(T(ε,EX, t(φ1))) = leaves(t(φ1))

5. leaves(T(t(φ0),EU, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

6. leaves(T(ε,EG, t(φ1))) = leaves(t(φ1))

Overview over the algorithm. In Fig. 4.1, the entry function of the

recursive algorithm is shown. checkCTL returns the set {s ∈ S | φ ∈
label(s)} of all states satisfying the given formula ψ. It remains to check

whether the initial states S0 of the Kripke Structure K form a subset of

{s ∈ S | φ ∈ label(s)}.

function checkCTL(in (S, S0, R, L,AP) : KripkeStructure; in φ : CTL) : P(S)
begin

label : S→ 2CTL;

label := {s 7→ {true} | s ∈ S};
calcLabel((S, S0, R, L,AP), φ, label);

checkCTL := {s ∈ S | φ ∈ label(s)};

end

Figure 4.1: Main algorithm for CTL property checking against Kripke

structures.
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In Fig. 4.2, the main function calcLabel of the algorithm is shown. It

traverses the syntax tree representation of the formula ψ to be checked and

calls recursively itself or special sub-functions for processing sub-formulas.

Atomic propositions, negation, disjunction, and EX-formulas are handled

directly by calcLabel ; formulas containing operators EU and EG are pro-

cessed by sub-functions specialised for this purpose.

In the algorithm of Fig. 4.8 SCC denotes a set of strongly connected

components, that is, maximal subgraphs C of S ′ such that every node in C

is reachable from every other node in C by a path contained entirely in C.

We require that every C is nontrivial, that is, C contains either more than

one node or it contains one node with a self-loop. The classical algorithm

for identifying SCCs in a given graph has been developed by Tarjan [18].
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procedure calcLabel(in (S, S0, R, L,AP) : KripkeStructure;

in φ : CTL;

inout label : S→ 2CTL)

begin

if φ ∈ AP then

calcLabelAP((S, S0, R, L,AP), φ, label);

elseif t(φ) = T(ε,¬, t(φ1)) then

calcLabel((S, S0, R, L,AP), φ1, label);

calcLabelNE((S, S0, R, L,AP), φ1, label);

elseif t(φ) = T(t(φ0),∨, t(φ1)) then

calcLabel((S, S0, R, L,AP), φ0, label);

calcLabel((S, S0, R, L,AP), φ1, label);

calcLabelOR((S, S0, R, L,AP), φ0, φ1, label);

elseif t(φ) = T(ε,EX, t(φ1)) then

calcLabel((S, S0, R, L,AP), φ1, label);

calcLabelEX((S, S0, R, L,AP), φ1, label);

elseif t(φ) = T(t(φ0),EU, t(φ1)) then

calcLabel((S, S0, R, L,AP), φ0, label);

calcLabel((S, S0, R, L,AP), φ1, label);

calcLabelEU((S, S0, R, L,AP), φ0, φ1, label);

elseif t(φ) = T(ε,EG, t(φ1)) then

calcLabel((S, S0, R, L,AP), φ1, label);

calcLabelEG((S, S0, R, L,AP), φ1, label);

endif

end

Figure 4.2: Label calculation { control algorithm driven by formula syntax.
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procedure calcLabelAP(in (S, S0, R, L,AP) : KripkeStructure;

in p : AP;

inout label : S→ 2CTL)

begin

foreach s ∈ S do

if p ∈ L(s) then
label(s) := label(s) ∪ {p};

endif

enddo

end

Figure 4.3: Algorithm for labelling states with atomic propositions.

procedure calcLabelNE(in (S, S0, R, L,AP) : KripkeStructure;

in φ1 : CTL;

inout label : S→ 2CTL)

begin

foreach s ∈ S do

if φ1 6∈ label(s) then

label(s) := label(s) ∪ {¬φ1};

endif

enddo

end

Figure 4.4: Algorithm for labelling states with negated formulas ¬φ1.
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procedure calcLabelOR(in (S, S0, R, L,AP) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S→ 2CTL)

begin

foreach s ∈ S do

if φ0 ∈ label(s)∨ φ1 ∈ label(s) then
label(s) := label(s) ∪ {φ0 ∨ φ1};

endif

enddo

end

Figure 4.5: Algorithm for labelling states with φ0 ∨ φ1 formulas.

procedure calcLabelEX (in (S, S0, R, L,AP) : KripkeStructure;

in φ1 : CTL;

inout label : S→ 2CTL)

begin

foreach s ∈ S do

if ∃s ′ ∈ S : R(s, s ′)∧ φ1 ∈ label(s ′) then
label(s) := label(s) ∪ {EXφ1};

endif

enddo

end

Figure 4.6: Algorithm for labelling states with EXφ1 formulas.
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procedure calcLabelEU (in (S, S0, R, L,AP) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S→ 2CTL)

begin

// De�ne T as sequence of states (in arbitrary order) ful�lling φ1

T := 〈s ∈ S | φ1 ∈ label(s)〉;
foreach s ∈ T do

label(s) := label(s) ∪ {E(φ0Uφ1)};

enddo

while T 6= ε do

s := head(T);

T := tail(T);

foreach u ∈ {v ∈ S | R(v, s)} do

if E(φ0Uφ1) 6∈ label(u)∧ φ0 ∈ label(u) then
label(u) := label(u) ∪ {E(φ0Uφ1)};

// Append state u to sequence T

T := T.u;

endif

enddo

enddo

end

Figure 4.7: Algorithm for labelling states with E(φ0Uφ1) formulas.
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procedure calcLabelEG(in (S, S0, R, L,AP) : KripkeStructure;

in φ1 : CTL;

inout label : S→ 2CTL)

begin

S ′ := {s ∈ S | φ1 ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S ′}

T := 〈s | ∃C ∈ SCC : s ∈ C〉;
foreach s ∈ T do

label(s) := label(s) ∪ {EGφ1};

enddo

while T 6= ε do

s := head(T);

T := tail(T);

foreach u ∈ {v ∈ S ′ | R(v, s)} do

if EGφ1 6∈ label(u) then
label(u) := label(u) ∪ {EGφ1};

// Append state u to sequence T

T := T.u;

endif

enddo

enddo

end

Figure 4.8: Algorithm for labelling states with EGφ1 formulas.

Theorem 4 The time complexity of CTL model checking is

O((|S|+ |R|) · |Φ|),

where |S| is the number of states in the underlying Kripke structure

K = (S, S0, R, L,AP), |R| is the number of transitions, and |Φ| is the size

of the CTL formula Φ to bechecked, that is, the number of operators

contained in Φ.

Exercise 8. Give an semi-formal argument for the validity of Theorem 4.

�

Exercise 9. Consider again the Kripke structure speci�ed by the tran-
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sition graph shown in Figure 4.9. It is based on the processes P0 ‖ P1
from Example 3 with the same variables, but now it is assumed that the

scheduler is fair so that starvation cannot occur. The objective of this ex-

ercise is to explain by means of a manual exercise how the classical CTL

model checking algorithm introduced above works. To this end, analyse

the following CTL formulas

� AGAFc0

� AGAFc1

� EG(c1 = 0∨ (s = 0∧ c0 = 0))

and perform the following tasks.

1. Explain the meaning of each formula in natural language.

2. For the �rst and third formula, produce a manual illustration of the

model checking algorithm as follows.

� Transform the formula into the standard form according to The-

orem 1, which is accepted by the model checking algorithm.

� Draw the formula tree.

� Explain how the model checking algorithm traverses the formula

tree.

– Explain which function is called in each step, including the

recursions.

– Whenever a function call terminates (so all of its recursive

sub-calls have terminated), draw a new version of the graph

and annotate the nodes with the new (atomic or non-atomic)

formulas that have found to be valid (if any).

The last drawing of the graph should mark each node where the

complete formula holds.

�
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2,2,0,0,0

1,1,0,0,0

2,1,0,0,0

3,1,0,0,0

3,2,0,0,0

3,3,1,0,0

1,2,0,0,0

1,3,1,0,0

4,3,1,0,0

2,3,1,0,0

3,3,0,0,0

3,4,0,0,0

6,3,1,0,0

5,3,1,1,0

3,6,0,0,0

3,5,0,0,1

3,2,0,0,0

Figure 4.9: Kripke structure for Exercise 9.
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Chapter 5

Bounded Model Checking

5.1 Motivation

The applicability and e�ciency of property checking techniques as the one

described in Chapter 4 depends on the possibility to create an explicit,

global representation of the Kripke structure in memory. As a consequence,

models with very large state spaces cannot be handled by explicit model

checking, and it is a priori impossible to check models with in�nite state

spaces.

In contrast to that, bounded model checking (BMC) is a symbolic,

local model checking technique that aims at �nding a witness for the va-

lidity of some property s |= ϕ in the vicinity of a state s only. States are

represented by propositions, and possible transitions between states are

represented by the model's transition relation in propositional form. As a

consequence, also in�nite models can be represented symbolically by means

of �nite propositions.

The introduction of BMC is due to [2, 3].

64



5.2 BMC Instances

Definition of BMC instances. Bounded model checking investigates

solutions of propositions of the form

bmc ≡ J(s0)∧
k∧
i=1

Φ(si−1, si)∧G(s0, . . . , sk) (5.1)

These are called BMC instances. For solving the BMC instance in formula

(5.1), one has to �nd model states s0, . . . , sk making bmc evaluate to true.

Since every state si is a mapping from variable symbols v ∈ V to current

values si(v) ∈ Dv, the BMC instance (5.1) represents a formula with

(k+ 1) ·#V unknown quantities si(v), i = 0, . . . , k, v ∈ V

to be �xed when solving bmc. The formula components of bmc are inter-

preted as follows.

The conjunct J(s0) speci�es possible start states s0 in whose neighbour-

hood solutions of formula (5.1) should be found. In this chapter, s0 does

not necessarily denote an initial state of the underlying Kripke structure

K = (S, S0, R, L), but any state that is suitable for starting the search for a

solution. J is a proposition with free variables in V, the variable set of K's

state space S ⊆ (V → D). The notation J(s0) is short for

J(s0) ≡ J[s0(v)/v | v ∈ V]

that is, proposition J with every free variable v exchanged by its value s0(v)

in state s0. Note that J(s0) may identify more than one state s0 as a suitable

start state, if predicate J admits more than one solution for variables v ∈ V
and their domains Dv.

Conjunct
∧k
i=1Φ(si−1, si) speci�es the unrolling of the transition re-

lation Φ. Proposition Φ represents K's transition relation as described in

Chapter 1. As described there, Φ is a proposition with free variables in V

and V ′, the unprimed variables denoting pre-states of a transition speci�ed

by Φ and the primed variables v ′ ∈ V ′ denoting the post-states. Notation

Φ(si−1, si) speci�es the application of Φ to pre-state si−1 and post-state si.

Φ(si−1, si) ≡ Φ[si−1(v)/v, si(v)/v
′ | v ∈ V]
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denotes the proposition φ, with every unprimed variable v replaced by its

value in state si−1 and every primed variable replaced by its value in state

si. Intuitively speaking, the conjunct
∧k
i=1Φ(si−1, si) ensures that every

solution s0 . . . sk of a BMC instance (5.1) is a valid computation fragment

of the model K: each pair of consecutive states si−1, si is connected by the

transition relation.

Conjunct G(s0, . . . , sk) is the veri�cation goal of the BMC in-

stance (5.1). It is a proposition over all unknown quantities si(v), i =

0, . . . , k, v ∈ V. It describes a desired or an unwanted property of the model

in the vicinity of states satisfying J(s0), to be ful�lled by a computation

fragment s0 . . . sk of model K.

Summarising, a BMC instance (5.1) speci�es a Boolean problem over

unknown quantities si(v), i = 0, . . . , k, v ∈ V which can be informally ex-

pressed as follows.

Find a valid computation fragment s0 . . . sk of model K that

starts in a state satisfying J and satis�es goal G.

Desired and undesired model properties. If G represents an un-

wanted model property, a solution of BMC instance (5.1) uncovers a mod-

elling error. Conversely, if we have a property P that should always be ful-

�lled by states satisfying J, we try to solve a BMC instance with G ≡ ¬P.

Again, a solution of this instance uncovers a modelling error, namely the

violation of P. Therefore BMC is very suitable for bug �nding. The global

veri�cation of assertions, however, is more di�cult, since not �nding a so-

lution for a given k does not necessarily mean that we cannot �nd one for

k ′ > k. Global solution techniques will be discussed later in this chapter.

In model-based testing, BMC instances may specify test cases, that is,

valid computation fragments of the model where a speci�c test objective

can be investigated [13]. For these types of applications G expresses a

desired model property.

Any solution s0, . . . , sk of a BMC instance bmc is called a witness of

bmc.
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False alarms and related terms. If G represents an unwanted model

property, a solution of BMC instance (5.1) may represent a false alarm,

if the start state s0 of the solution is unreachable from any initial state

s ∈ S0. False alarms are also called false positive ; this term is borrowed

from the �eld of medicine, where a \positive" outcome of a medical exami-

nation means that the patient is a�ected by the disease under consideration.

Conversely, a \negative" result of a medical examination indicates that the

patient is not a�ected by the disease. This leads to the term false negative,

if �nding no solution of a BMC instance (5.1) with unwanted property G

indicates that G is never ful�lled when starting from states ful�lling J, but

in truth solutions could be found for higher values of k.

Solution techniques. Solutions of BMC instances (5.1) can be generated

by SAT solvers if all model variables v ∈ V are typed as Booleans. Other-

wise, an SMT solver is required to handle other data types and associated

operators for the transformation of variable values. Today's SMT-solvers

typically support Booleans, integers with bit vector or integer arithmetic,

and arrays thereof. Some solvers already support 
oating point arithmetic

with associated operations and transcendent functions.1

Complexity considerations. Finding solutions of BMC instances (5.1)

has worst-case complexity O(2k), because every new unrolling step k of

the transition relation introduces a whole new set of unknown quantities

sk(v), v ∈ V. Various SMT-solving techniques, however, ensure that this

worst case is not encountered too often.

5.3 LTL Property Specifications

on Finite Traces

While the previous chapter described explicit global model checking against

CTL properties, bounded model checking is typically performed against

LTL properties. This is because BMC investigates computation fragments

1See, for example, http://www.informatik.uni-bremen.de/agbs/
orian/sonolar/

67



in the vicinity of a given start state. The semantics of LTL formulas as

speci�ed in Section 3.1 has (in�nite) computations as models. In BMC,

however, only �nite computation fragments are investigated. Therefore an

alternative semantic description of LTL is required that

� allows to decide the validity of s |= ϕ on a �nite computation frag-

ment, and

� is consistent with the original semantics introduced on in�nite com-

putations.

This semantics has been introduced in [3] by de�ning the bounded seman-

tics of formulas ϕ with �xpoint evaluation encoding |[M,ϕ, k]|.

An encoding |[M,ϕ, k]| consists of three parts:

� Model constraints |[M]|k,

� Loop constraints |[LoopConstraints]|k, and

� LTL formula translations |[ϕ]|k0 to propositions G.

It is de�ned by

|[M,ϕ, k]| ≡ |[M]|k ∧ |[LoopConstraints]|k ∧ |[ϕ]|k0

Model constraints |[M]|k encode legal initialised �nite traces of the model

M with length k:

|[M]|k ≡ J(s0)∧
k∧
i=1

Φ(si−1, si)

The

|[LoopConstraints]|k ∧ |[ϕ]|k0

speci�es the propositional encoding G(s0, . . . , sk) of the veri�cation goal

which has originally been de�ned by an LTL formula. The encoding rules

are explained below in Section 5.4. As a result, |[M,ϕ, k]| corresponds to

a BMC instance as speci�ed in formula (5.1).
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5.4 Finite Trace Semantics for LTL Formulas

– the Fixpoint Evaluation Encoding

Loop constraints. As will become apparent below, the bounded seman-

tics of LTL formulas evaluated on a path segment π = s0 . . . sk depends on

the fact whether sk is a lasso state, meaning that sk = sj−1 holds for some

0 < j ≤ k (see Fig. 5.1). This consideration induces the loop constraints

speci�ed in Table 5.1, where `j = 1 for some 0 < j ≤ k if and only if

sk = sj−1. Note that `k = 1 denotes the situation where sk = sk−1, that is,

path segment π ends in a self loop emanating from state sk. InLoopi is true

if si is in the loop part of the trace. The loop selectors `0, . . . , `k determine

where the path loops, if `j is true then the path has the loop part sj. . . . .sk.

At most one loop selector is allowed to be true. When no `i is true, then

the trace is a no-loop case. In the k loop case, LoopExists will be true and

in the no-loop case it will be false.

s0 s1
. . . . . .

� �

sk�1

sj
`=1

sj�1
=sk

Figure 5.1: Lasso-shaped computation fragment s0 . . . sk.
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Table 5.1: Loop Constraints

Base `0 ⇔ 0

InLoop0 ⇔ 0

`i ⇒ (si−1 = sk)

1 ≤ i ≤ k InLoopi ⇔ InLoopi−1 ∨ `i
InLoopi−1 ⇒ ¬`i

LoopExists⇔ InLoopk

Proposition |[LoopConstraints]|k denotes the conjunction of the con-

straints listed in Table 5.1, such that |[LoopConstraints]|k always evalu-

ates to true. This enforces consistent assignments of `i, InLoopi, and

LoopExists both in presence and in absence of loops.

Transformation rules. The following tables specify the translation rules

|[ϕ]|0 of LTL formulas ϕ into propositions G. Table 5.2 shows the transla-

tion of LTL formulas that are propositions without any temporal operators.

Consistent with our intuition, propositions evaluate to true in the compu-

tation segment si . . . sk, if and only if they evaluate to true in state si.

Table 5.2: Translation of propositional LTL formulas.

|[ϕ]|i 0 ≤ i ≤ k

|[p]|i p ∈ L(si)

|[¬p]|i p 6∈ L(si)

|[ψ1 ∧ψ2]|i |[ψ1]|i ∧ |[ψ2]|i

|[ψ1 ∨ψ2]|i |[ψ1]|i ∨ |[ψ2]|i

For formulas ϕ containing path operators X,U,R, the translation of

|[ϕ]|i depends on the cases 0 ≤ i < k and i = k, as speci�ed in Ta-
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ble 5.3. The auxiliary translation operators 〈〈ψ1Uψ2〉〉j and 〈〈ψ1Rψ2〉〉j are
needed to terminate the translation process in the case where |[ψ1Uψ2]|i
or |[ψ1Rψ2]|i do not hold on s0 . . . sk: as de�ned in Table 5.4, the auxiliary

operators terminate with result false, if i = k is reached and |[ψ2]|k does

not hold.

Table 5.3: Translation rules for path operators X,U,R.

|[ϕ]|i 0 ≤ i < k i = k

|[Xψ]|i |[ψ]|i+1

∨k
j=1

(
`j ∧ |[ψ]|j

)
|[ψ1Uψ2]|i |[ψ2]|i ∨

(
|[ψ1]|i ∧ |[ψ1Uψ2]|i+1

)
|[ψ2]|i ∨

(
|[ψ1]|i ∧ (

∨k
j=1(`j ∧ 〈〈ψ1Uψ2〉〉j))

)
|[ψ1Rψ2]|i |[ψ2]|i ∧

(
|[ψ1]|i ∨ |[ψ1Rψ2]|i+1

)
|[ψ2]|i ∧

(
|[ψ1]|i ∨ (

∨k
j=1(`j ∧ 〈〈ψ1Rψ2〉〉j))

)

Table 5.4: Speci�cation of the auxiliary translation operators 〈〈ψ1Uψ2〉〉j
and 〈〈ψ1Rψ2〉〉j.

〈〈ϕ〉〉i 0 ≤ i < k i = k

〈〈ψ1Uψ2〉〉i |[ψ2]|i ∨
(
|[ψ1]|i ∧ 〈〈ψ1Uψ2〉〉i+1

)
|[ψ2]|k

〈〈ψ1Rψ2〉〉i |[ψ2]|i ∧
(
|[ψ1]|i ∨ 〈〈ψ1Rψ2〉〉i+1

)
|[ψ2]|k

Exercise 10. Give a de�nition of the bounded semantics of ψ1Wψ2 in

analogy to the speci�cations for U,R in Table 5.3 and Table 5.4 �

Exercise 11. In Example 3, apply the bounded semantics of LTL to

prove the existence of a �nite computation segment s0 . . . sk starting in the

initial state and satisfying

ϕ ≡
(
(p0 < 3)U(G(2 ≤ p0 ≤ 6∧ 2 ≤ p1 ≤ 6))

)
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To achieve this, proceed as follows.

1. Construct a computation segment s0 . . . sk satisfying the formula by

hand, using the transition graph representation of the interaction of

parallel processes P0, P1 in Fig. 2.1.

2. Now prove that your path satis�es the formula by creating the BMC

instance according to Formula (5.1). To this end,

� Prove that each pair of consecutive states in your path are related

by the transition relation speci�ed in Example 3. Do this for the

�rst 5 states of your segment only.

� Translate ϕ according to the bounded semantics for the appro-

priate k which is needed to �nd the solution. Since the resulting

formula |[ϕ]|0 is quite long for the value of k which is needed, you

may reduce |[ϕ]|0 by dropping disjuncts that will not be ful�lled

by the solution. This leads to a sub-formula which implies |[ϕ]|0,

and which is solved by the solution s0 . . . sk.

�

Biere et al. [3, Theorem 3.1] have stated and proven the relationship

between witnesses of LTL formulae in �nite �xpoint encoding and witnesses

of LTL formulae in the \usual" interpretation on in�nite paths as follows.

Theorem 5 Given a Kripke structure K and an LTL formula ψ. Then

the following statements are equivalent.

1. There exists a computation (i.e. an initialised in�nite path) π of

K such that π |= ψ in the LTL semantics speci�ed in Table 3.1.

2. There exists k ∈ N such that |[K,ψ, k]| is satis�able.

Moreover, |[K,ψ, k]| is satis�able if |[ψ]|0 holds on the �nite computation

pre�x π(0) . . . π(k) of some computation π of K. �
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5.5 Verifying Global Properties With BMC

BMC veri�es local properties in the neighbourhood of given states, inves-

tigating all states that are reachable from there by means of a bounded

number of transitions. We will now investigate the question how to use

BMC to global model properties in models with potentially large, but �-

nite state spaces.

5.5.1 k-Induction

An alternative to exploring the vicinity of a state until the recurrence di-

ameter has been reached is the so-called k-induction originally introduced

in [16]. The crucial algorithm presented there is speci�ed in Fig. 5.2. It is

specialised on proving safety conditions of the form

ϕ ≡ GP where P is a �rst order predicate

This algorithm uses the following notation. Proposition P is the safety

property whose invariant validity is to be proved or disproved by the algo-

rithm for every path starting in an initial state. For predicate α, Sat(α) is

the Boolean return value of a SAT or an SMT solver. If the return value

is true, the solver has found a solution, and as a side e�ect, the solution

is stored in the the sequence c[0..i] = c0 . . . ci of state vectors. Every vec-

tor ci is indexed over all variables in V = {v1, . . . , vn}, and its value cij
corresponds to the ith state valuation function value si(vj) for variable vj.

Taut(α) returns true if and only if α is a tautology, that is, it evaluates

to true for all possible assignments of its free variables. With an ordinary

SAT or SMT solver, Taut(α) is evaluated by proving that Sat(¬α) does

not have any solution.

Proposition I(s0) is a proposition characterising the initial states, as

explained in the previous chapters. Proposition path(s[0..i]) states that state

sequence s[0..i] = s0 . . . si consists of neighbouring states, each pair connected

by the transition relation.

path(s[0..i]) ≡
∧
0≤j<i

Φ(sj, sj+1)
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function kInd(k : N0; I : InitialCondition;Φ : TransitionRelation;

out tr : Trace) : B
begin

i = k;

while true do

if Sat(¬(I(s0)∧ path(s[0..i])⇒ all.P(s[0..i]))) then

tr = Trace(c[0..i]);

return false;

endif

if Taut((all.¬I(s[1..i+1])∧ loopFree(s[0..i+1]))⇒ ¬I(s0))∨

Taut(loopFree(s[0..i+1])∧ all.P(s[0..i])⇒ P(si+1)) then

return true;

endif

i = i+ 1;

enddo

end

Figure 5.2: k-induction algorithm.
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Predicate all.α(s[0..i]) states that α holds in every state s0 . . . si,

all.α(s[0..i]) ≡
∧
0≤j≤i

α(sj)

Predicate loopFree(s[0..i+1]) states that the sequence s0 . . . si+1 is a cycle

free path.

loopFree(s[0..i+1]) ≡ path(s[0..i+1])∧
∧

0≤j<r≤i+1

sj 6= sr

Algorithm kInd() operates as follows.

1. The while-loop terminates if

(a) a path of length i exists which begins in an initial state and

violates the invariant P in at least one state (this is the case where

the Sat-condition of the �rst if-command evaluates to true), or

(b) all loop-free paths starting in an initial state are shorter than

i+ 1 (this is the �rst disjunct of the second if-condition), or

(c) if any extension of any loop free path segment of length i which

satis�es P in every state s0 . . . si will also satisfy P in si+1 (this

is the second disjunct of the second if-condition).

2. In termination case (a) a violation of the safety property has been

detected: there exists a path of length i, starting in an initial state,

such that P is violated somewhere on this path. Observe that if

k > 0, Sat(¬(I(s0) ∧ path(s[0..i]) ⇒ all.P(s[0..i=k])) is also ful�lled if P

is violated in some sj with s < k, because

¬all.P(s[0..i=k]) ≡
i∨
j=0

¬P(sj)

3. Since i is incremented in every cycle of the while-loop, any violation

of P in a reachable state s will �nally be found, as soon as the value

of i equals the shortest reachable path from an initial state to s. This

statement is true, provided that the loop's second if-condition only

evaluates to true if no reachable state can violate P.

75



4. In case (b) the condition evaluates to true if there is no path start-

ing in an initial state which is loop free, never returns to an initial

state, and has a length of i + 1. Since the �rst if-condition has al-

ready checked all initialised paths of length i and did not detect any

violation of P so far, we can terminate and con�rm the validity of P

in every reachable state.

5. In case (c) the condition evaluates to true if all loop-free traces of

length i + 1 satisfy P(si+1) if P(sj) already holds for j = 0, 1, . . . , i.

Observe that the traces under consideration do not necessarily start

in an initial state, but may begin in arbitrary system states. This is

necessary for the induction step: it allows us to \move forward" on

any initialised trace s[0..i] satisfying P in every state to a trace s[1..i+1]
which also satis�es P everywhere. This principle can be continued

ad in�nitum, so validity of P is proven on reachable states in any

distance from an initial state, and the termination is justi�ed.

6. If both disjuncts of if-condition 2 evaluate to false, two cases may

occur.

(a) A trace s[0..i+1] where P holds from s0 to si, but not anymore in

si+1 and which starts in an initial state has been found. This will

lead to termination in the �rst if-condition of the next loop cycle,

and the violation of the safety invariant will be indicated by

means of a solution of (loopFree(s[0..i+1])∧all.P(s[0..i])∧¬P(si+1)).

(b) A loop-free trace s[0..i+1] where P holds from s0 to si, but not

anymore in si+1 has been found, but this trace does not begin in

an initial state. Then it will be checked in the next cycle, �rst if-

condition, whether an initialised trace of the same length exists,

also violating P. If this is the case, a safety violation has been

detected. Otherwise the loop is continued. In the worst case

situation, much longer loop-free initialised traces can be found,

and at the same time longer traces satisfying (loopFree(s[0..i+1])∧

all.P(s[0..i]) ∧ ¬P(si+1)) can be found, but these traces are not

reachable from an initial state. This may delay termination of
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the algorithm in a considerable way.

To mitigate this problem, it is advisable to extend the safety

property P by a conjunct P ′ characterising reachable states, and

use the algorithm to prove global validity of P ∧ P ′. If P ′ Is a

good approximation of reachable states, termination condition

(3) will only be violated if a real violation of P occurred in a

reachable state si+1. This technique is called strengthening of

the invariant P. In any case, care must be taken that P ′ is

always an over-approximation of reachable states, so that no

reachable states can ever be forgotten.

In [3] it is shown how the k-induction principle described in this section

can be extended to general LTL formulas.

Exercise 12. Using Example 3, illustrate how the k-induction algorithm

operates in order to prove G¬(c0 ∧ c1). �

Exercise 13. Construct a Kripke structure and a safety invariant GP,

such that the k-induction proof for GP is best performed with a value

k ≥ 1. �
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Chapter 6

Model Checking With nuXmv

Currently, one of the most popular model checkers that is freely licensed in

binary form for non-commercial or academic purposes, is nuXmv1 [4]. Its

modelling language and checking capabilities are described in the nuXmv

user manual.2 The tool supports several variants of model checking, such

as BMC, k-induction, and classical algorithms based on binary decision

diagrams (BDDs).

In this chapter we introduce the nuXmv modelling language and the

speci�cation of CTL and LTL assertions, as far as needed in this lecture.

6.1 Encoding Simple Kripke Structures in

nuXmv

Consider a very basic type of Kripke structures, where states are just un-

interpreted elements represented by enumeration values or integers, and

atomic propositions are just elementary statements without references to

variables. An example of such a Kripke structure called Oven is given in

Fig. 6.1. Model Oven describes a simple cooking oven with six states.

1https://nuxmv.fbk.eu
2https://nuxmv.fbk.eu/pmwiki.php?n=Documentation.Home
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Figure 6.1: Kripke structure presenting a kitchen oven.

The atomic propositions labelling the states have the meaning

S The oven has been started

E The oven is in an error state

C The oven door is closed

H The oven is hot

The normal operation of the oven is to start from s1 by closing the door,

this leads to state s3. After that the oven is started, this leads to s6. After
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having been started the oven heats up (state s4). It is possible to stay in

s4 forever, so the food in the oven can be overcooked and burnt. It is also

possible to open the door at any time (transit to state s1), so that the oven

is switch o�. The best way to enjoy the cooked food is to wait until its

done and then stop the heating (transit to s3). There, the oven door can

be opened (transit to s1) and the perfectly cooked food can be relished.

If the oven is started before the door is closed (transition s1 −→ s2),

error states are visited where the oven is never heated (s2, s5). From there,

only a reset leading to transition s2 −→ s1 enables us to start cooking again.

Note that the transition labels in Fig. 6.1 are not part of the Kripke

structure, they just have illustrative purposes. There is no concept of

inputs and outputs: all model information is encoded in the transitions

and the labelling function.

The representation in Fig. 6.1 corresponds to the mathematical repre-

sentation

Oven = (S, S0, R,AP, L)

S = {s1, s2, s3, s4, s5, s6}

S0 = {s1}

R = {(s1, s2), (s1, s3), (s2, s1), (s2, s5), (s3, s2), (s3, s6),

(s4, s1), (s4, s3)(s4, s4), (s5, s2)(s6, s4)}

AP = {S, E,C,H}

L = {s1 7→ {}, s2 7→ {S, E}, s3 7→ {C}, s4 7→ {C,H}, s5 7→ {S,C, E}, s6 7→ {S,C}}

Listing 6.1 shows a practical way to encode such a simple Kripke struc-

ture in the syntax of the nuXmv input language.

1. The states are represented by one variable declared as enumeration

or as a �xed integer range (variable state in line 3, here we use the

encoding by an enumeration).

2. The initial state is set by an ASSIGN-directive (lines 8 | 9).

3. For each atomic proposition, a Boolean variable is declared (lines 4

| 7).
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4. The atomic propositions that are valid in a state are speci�ed by

means of invariant statements (INVAR, lines 24|29), structured by

the possible state values. These lines specify the labelling function

L : {s1, s2, s3, s4, s5, s6}→ 2{S,E,C,H}.

5. The transition relation is speci�ed by a next-directive, as shown in

lines 12 | 20. The case statement is interpreted like an if-else state-

ment. The if-conditions are speci�ed before the colon \:". The post-

state value of the variable (variable state in our example) that should

hold after a certain condition is ful�lled is speci�ed after the colon.

Using set enumerations as shown in lines 14|19, nondeterministic

assignments are realised.

Listing 6.1: nuXmv model of the Kripke structure shown in Fig. 6.1

1 MODULE main

2 VAR

3 state : fs1,s2,s3,s4,s5,s6g;

4 ps : boolean; -- atomic proposition S

5 pe : boolean; -- atomic proposition E

6 pc : boolean; -- atomic proposition C

7 ph : boolean; -- atomic proposition H

8 ASSIGN

9 init(state) := s1;

10

11 -- next states depend on the selected transition

12 next(state) :=

13 case

14 state = s1 : f s2, s3 g;

15 state = s2 : f s1, s5 g;

16 state = s3 : f s1, s6 g;

17 state = s4 : f s1, s3, s4 g;

18 state = s5 : f s2 g;

19 state = s6 : f s4 g;

20 esac;

21

22

23 -- Atomic propositions only depend on the state

24 INVAR state = s1 −> !ps & !pe & !pc & !ph;
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25 INVAR state = s2 −> ps & pe & !pc & !ph;

26 INVAR state = s3 −> !ps & !pe & pc & !ph;

27 INVAR state = s4 −> !ps & !pe & pc & ph;

28 INVAR state = s5 −> ps & pe & pc & !ph;

29 INVAR state = s6 −> ps & !pe & pc & !ph;

6.2 Specifying Assertions

For the purposes of this lecture, LTL and CTL property speci�cations are

associated with a model. This can be done in the same �le, after the model

speci�cation. Of the Oven model introduced above, useful assertions to be

checked by nuXmv are shown in Listing 6.2. CTL properties are speci-

�ed after keyword SPEC, LTL speci�cation after keyword LTLSPEC. Since

programming errors can occur when coding a model in the nuXmv input

language, it is always useful to specify properties checking whether the

model has been properly constructed. If this is the case, further formulae

are speci�ed to deal with application-speci�c properties the model should

have.

Listing 6.2: CTL and LTL speci�cations that are ful�lled by the Oven

model from Listing 6.1.

1

2 -- Validate that transitions have been properly defined

3 -- These properties show that no transition has the wrong target state

4 SPEC AG (state = s1 −> AX (state in fs2,s3g))

5 SPEC AG (state = s2 −> AX (state in fs1,s5g))

6 SPEC AG (state = s3 −> AX (state in fs1,s6g))

7 SPEC AG (state = s4 −> AX (state in fs1,s3,s4g))

8 SPEC AG (state = s5 −> AX (state in fs2g))

9 SPEC AG (state = s6 −> AX (state in fs4g))

10

11 -- Validate that transitions have been properly defined

12 -- These properties show that no transition has been forgotten

13 SPEC AG (state = s1 −> EX (state in fs3g))

14 SPEC AG (state = s1 −> EX (state in fs2g))

15 SPEC AG (state = s2 −> EX (state in fs1g))

16 SPEC AG (state = s2 −> EX (state in fs5g))

17 -- ...
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18

19 -- Check that we can always go back to the initial state

20 SPEC AG ( state != s1 −> EF ( state = s1 ) )

21

22 -- Check that we can always finally get our food hot

23 SPEC AG ( EF ph )

24

25 -- Check that the door is always closed when the oven is heated

26 LTLSPEC G(ph −> pc)

27

28 -- Check that the oven can never be hot if an error occurred.

29 LTLSPEC G(ph −> X !pe)

30

31 -- Check that we can always recover from errors

32 SPEC AG (pe −> EF !pe)

33

34 -- Check that starting the oven will always result in heat,

35 -- unless an error occurred before

36 LTLSPEC G( (ps & !pe) −> X ph)

6.3 Encoding Complex Kripke Structures in

nuXmv

As discussed in the previous chapters, more complex Kripke structures

usually involve variables, and the state spaces are de�ned by means of

valuation functions s : V → D mapping variable values into some value

domain. For these structures, it is advisable to encode nuXmv models by

means of the transition relation. This is shown in Listing 6.3 for the two

processes applying the strict alternation protocol in Example 3. Observe

that the transition relation encoded after keyword TRANS in this listing is

represented exactly as shown on page 25 for this example.

1. We declare nuXmv variables in one-to-one correspondence to the vari-

ables of the Kripke structure (lines 2 | 8).

2. The primed variables v ′ occurring in our transition relations and de-

noting the post-state of the variable, after the transition has been

performed, are encoded by next(v) in the nuXmv model.
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Listing 6.3: nuXmv-model for the two processes from Example 3.

1 MODULE main

2 VAR

3 s : f 0, 1 g;

4 c0 : boolean;

5 c1 : boolean;

6

7 p0 : f 1, 2, 3, 4, 5, 6, 7, 8 g;

8 p1 : f 1, 2, 3, 4, 5, 6, 7, 8 g;

9

10 ASSIGN

11

12 init(s) := 0;

13 init(c0) := FALSE;

14 init(c1) := FALSE;

15 init(p0) := 1;

16 init(p1) := 1;

17

18 TRANS

19 (p0 = 1 & next(p0) = 2 & next(p1) = p1 & next(s) = s

20 & next(c0) = c0 & next(c1) = c1)

21 j (p0 = 2 & next(p0) = 3 & next(p1) = p1 & next(s) = 0

22 & next(c0) = c0 & next(c1) = c1)

23 j (p0 = 3 & s = 0 & next(p0) = 3 & next(p1) = p1

24 & next(s) = s & next(c0) = c0 & next(c1) = c1)

25 j (p0 = 3 & s != 0 & next(p0) = 4 & next(p1) = p1

26 & next(s) = s & next(c0) = c0 & next(c1) = c1)

27 j (p0 = 4 & next(p0) = 5 & next(p1) = p1 & next(s) = s

28 & next(c0) = TRUE & next(c1) = c1)

29 j (p0 = 5 & next(p0) = 6 & next(p1) = p1 & next(s) = s

30 & next(c0) = FALSE & next(c1) = c1)

31 j (p0 = 6 & next(p0) = 2 & next(p1) = p1 & next(s) = s

32 & next(c0) = c0 & next(c1) = c1)

33

34 j (p1 = 1 & next(p1) = 2 & next(p0) = p0 & next(s) = s

35 & next(c0) = c0 & next(c1) = c1)

36 j (p1 = 2 & next(p1) = 3 & next(p0) = p0 & next(s) = 1

37 & next(c0) = c0 & next(c1) = c1)

38 j (p1 = 3 & s = 1 & next(p1) = 3 & next(p0) = p0 & next(s) = s

39 & next(c0) = c0 & next(c1) = c1)

40 j (p1 = 3 & s != 1 & next(p1) = 4 & next(p0) = p0 & next(s) = s
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41 & next(c0) = c0 & next(c1) = c1)

42 j (p1 = 4 & next(p1) = 5 & next(p0) = p0 & next(s) = s

43 & next(c0) = c0 & next(c1) = TRUE)

44 j (p1 = 5 & next(p1) = 6 & next(p0) = p0 & next(s) = s

45 & next(c0) = c0 & next(c1) = FALSE)

46 j (p1 = 6 & next(p1) = 2 & next(p0) = p0 & next(s) = s

47 & next(c0) = c0 & next(c1) = c1)

Useful veri�cation and validation formulae for this model are shown in

Listing 6.4.

Listing 6.4: CTL formulae for validating the nuXmv-model shown in List-

ing 6.3.

1 -- Validate that processes can finally reach the last line of the code.

2 SPEC EF (p0 = 6)

3 SPEC EF (p1 = 6)

4

5 -- Verify that the strict alternation protocol never

6 -- allows that P0 and P1 are in their critical sections

7 -- at the same time.

8 SPEC AG ( !(c0 & c1) )

9

10 -- Validate that it is possible for each process to

11 -- enter their critical sections

12 SPEC EF ( c0 )

13 SPEC EF ( c1 )

14

15 -- Scheduler allows for starvation

16 SPEC EF ( EG p0 = 3 )

17 SPEC EF ( EG p1 = 3 )

18

19 -- We don’t have fairness in the scheduler, so there should be

20 -- infinite paths where either P0 or P1 never reach

21 -- the critical section (this is just another way of looking

22 -- at the starvation problem)

23 --

24 SPEC EG( ! c0 )

25 SPEC EG( ! c1 )
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Chapter 7

Data Abstraction

This section deals with state space reduction by means of data abstraction.

7.1 Equivalence Classes and Factorisation of

Transition Systems

Let TS = (S, S0, R) a transition system and ∼⊆ S×S an equivalence relation

on S, that is,

� ∀s ∈ S : s ∼ s (re
exivity)

� ∀s, s ′ ∈ S : s ∼ s ′ ⇒ s ′ ∼ s (symmetry)

� ∀s, s ′, s ′′ ∈ S : s ∼ s ′ ∧ s ′ ∼ s ′′ ⇒ s ∼ s ′′ (transitivity)

Let S/∼ denote the set of equivalence classes; each class is written in the

form [s] ∈ S/∼, [s] =def {u | s ∼ u}. An equivalence relation gives rise to a

transition system factorised by ∼ which is de�ned by

TS/∼ =def (S/∼, S0/∼, R/∼)

S0/∼ =def {[s0] | s0 ∈ S0 ∧ [s0] ∈ S/∼}
R/∼ =def {([s], [s

′]) | ∃u ∈ [s], u ′ ∈ [s ′] � R(u, u ′)}
(7.1)
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7.2 Auxiliary Variables and Associated

Equivalence Classes

Let us consider now again only state spaces S whose elements are variable

valuations s : V 6→ D,V = {x1, x2, . . .}. Let AUX = {a1, a2, . . .} a set of

fresh variables such that V ∩ AUX = ∅. Let ei(x
i
1, x

i
2, . . .) be expressions

associated with each ai ∈ AUX. For a �xed set of auxiliary variables ai
and expressions ei, extend valuation functions by

se : V ∪AUX 6→ D

dom se = dom s ∪ {ai ∈ AUX | xi1, x
i
2, . . . ∈ dom s}

se|V = s that is, ∀x ∈ V ∩ dom se : se(x) = s(x)

∀ai ∈ AUX ∩ dom se : se(ai) = ei(s(x
i
1), s(x

i
2), . . .)

Observe that the expressions ei(x
i
1, x

i
2, . . .) induce a type Dai on the cor-

responding auxiliary variables ai. We denote the transition system ex-

tended by the variables from AUX and the extended valuations se by

TSe = (Se, S0e, Re), where the transition relation is de�ned by

Re =def {(se, s
′
e) | (se|V , s

′
e|V) ∈ R}

A collection of auxiliary variables induces an equivalence relation ∼ on

TSe = (Se, Soe, Re) by de�ning

∀s, s ′ ∈ S : s ∼ s ′ ≡def (∀a ∈ AUX : se(a) = s
′
e(a))

TSe/∼ is called the factorisation of TS by means of the data abstraction

ai = ei(x
i
1, x

i
2, . . .), i = 1, 2, . . .

Observe that, given a valuation (s : V 6→ D) ∈ S, its equivalence class
[s] may also be regarded as a valuation function on the variables from AUX

by setting

∀ai ∈ AUX : [s](ai) =def ei(s(x1), s(x2), . . .)

The de�nition of ∼ guarantees that this valuation function is well-de�ned,

since all members s ′ ∈ [s] ful�ll

∀i : ei(s(x1), s(x2), . . .) = ei(s ′(x1), s ′(x2), . . .)
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Lemma 5 Suppose that the initial state S0 is characterised by �rst-

order predicate I with free variables in V = {x1, x2, . . .}, and that the

transition relation R ⊆ S × S is characterised by predicate R with free

variables in V and V ′ =def {x
′
1, x

′
2, . . .}. Then the respective predicates

for TSe/∼ are given by

I/∼(a1, a2, . . .) =def ∃ξ1, ξ2, . . . � (∀i : ai = ei(ξ1, ξ2, . . .))∧ I[ξ1/x1, ξ2/x2, . . .]
(7.2)

R/∼(a1, a2, . . . , a ′1, a ′2, . . .) =def ∃ξ1, ξ2, . . . , ξ ′1, ξ ′2, . . . �
∀i : (ai = ei(ξ1, ξ2, . . .)∧ a ′i = ei(ξ ′1, ξ ′2, . . .))∧
R[ξ1/x1, ξ2/x2, . . . , ξ ′1/x ′1, ξ ′2/x ′2, . . .]

(7.3)

Proof. From (7.1) and the fact that I characterises S0 we conclude that

S0e/∼ = {[s0] : AUX 6→ D | s0 : V ∪AUX 6→ D∧ I[s0(x1)/x1, s0(x2)/x2, . . .]}

Therefore, in order to prove correctness of I/∼, it has to be shown that

S =def {sa : AUX 6→ D | I/∼[sa(a1)/a1, sa(xa)/a2, . . .]} =
{sa : AUX 6→ D | ∃ξ1, ξ2, . . . � (∀i : sa(ai) = ei(ξ1, ξ2, . . .))∧ I[ξ1/x1, ξ2/x2, . . .]}

equals S0e/∼.

We show �rst that S0e/∼ ⊆ S: Let [s0] ∈ S0e/∼. De�ne ξi =def

s0(xi), i = 1, 2, . . .. Then, because I[s0(x1)/x1, s0(x2)/x2, . . .] holds, this
implies I[ξ1/x1, ξ2/x2, . . .]. Furthermore, [s0](ai) = ei(s0(x1), s0(x2), . . .)

by de�nition of [·], so (∀i : ai = ei(ξ1, ξ2, . . .)). As a consequence,

I/∼[[s0](a1)/a1, [s0](a2)/a2, . . .] holds which shows that [s0] ∈ S.
Now we show S ⊆ S0e/∼: Let sa ∈ S, then there exist ξ1, ξ2, . . .

such that (∀i : sa(ai) = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .]. Now de-

�ne a valuation s0 : V 6→ D by s0(xi) =def ξi, i = 1, 2, . . .. This s0 is

contained in S0 and therefore [s0] ∈ S0e/∼, since I[ξ1/x1, ξ2/x2, . . .] and
therefore I[s0(x1)/x1, s0(x2)/x2, . . .] holds. Since sa(ai) = ei(ξ1, ξ2, . . .) =

ei(s0(x1), s0(x2), . . .), the construction of s0 implies sa = [s0], so sa ∈ S0e/∼,
and this shows S ⊆ S0e/∼ and proves (7.2).

For proving (7.3), recall from (7.1) that the transition relation of the

factorised transition system TSe/∼ is de�ned by

R/∼ =def {([s], [s
′]) | ∃u ∈ [s], u ′ ∈ [s ′] � R(u, u ′)}
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We de�ne

R =def {(sa, s
′
a) | R/∼[sa(a1)/a1, sa(a2)/a2, . . . , s ′a(a1)/a ′1, s ′a(a2)/a2, . . .]}

and show that R/∼ equals R.

To show that R/∼ ⊆ R, suppose that ([s], [s ′]) ∈ R/∼. By de�nition of

[·], R/∼ and R there exists u, u ′ : V 6→ D such that

∀i : (ei(s(x1), s(x2), . . .) = ei(u(x1), u(x2), . . .)∧
ei(s

′(x1), s
′(x2), . . .) = ei(u

′(x1), u
′(x2), . . .))∧

R[u(x1)/x1, u(x2)/x2, . . . , u ′(x1)/x ′1, u ′(x2)/x ′2, . . .]

holds. Setting ξi = u(xi), ξ
′
i = u

′(xi), i = 1, 2, . . . yields

∀i : (ai = ei(ξ1, ξ2, . . .)∧ a ′i = ei(ξ ′1, ξ ′2, . . .))∧R[ξ1/x1, ξ2/x2, . . . , ξ ′1/x ′1, ξ ′2/x ′2, . . .]

and, since ei(s(x1), s(x2), . . .) equals ei(ξ1, ξ2, . . .) and ei(s
′(x1), s

′(x2), . . .)

equals ei(ξ
′
1, ξ

′
2, . . .), this implies that

R/∼[[s](a1)/a1, [s](a2)/a2, . . . , [s ′](a1)/a ′1, [s ′](a2)/a ′2, . . .]

holds. This proves ([s], [s ′]) ∈ R.
It remains to show that R ⊆ R/∼. To this end, assume that (sa, s

′
a) ∈ R.

By de�nition of R and R/∼ this implies the existence of ξi, ξ
′
i, i = 1, 2, . . .

such that

∀i : (sa(ai) = ei(ξ1, ξ2, . . .)∧ s ′a(a ′i) = ei(ξ ′1, ξ ′2, . . .))∧
R[ξ1/x1, ξ2/x2, . . . , ξ ′1/x ′1, ξ ′2/x ′2, . . .]

Now de�ne

s : V 6→ D; s(xi) 7→ ξi, s
′ : V 6→ D; s ′(xi) 7→ ξ ′i, i = 1, 2, . . .

Then [s] = sa and [s ′] = s ′a and

R[s(x1)/x1, s(x2)/x2, . . . , s ′(x1)/x ′1, s ′(x2)/x ′2, . . .] by construction and

this implies R(s, s ′) and �nally yields ([s], [s ′]) ∈ R/∼. This shows

(sa, s
′
a) ∈ R/∼ and completes the proof. �

89



7.3 Data Abstraction on Kripke Structures

Given a Kripke structure K = (S, S0, R, L) and a set AUX of auxiliary

variables ai with associated expressions ei(x
i
1, x

i
2, . . .) we can extend K to

a Kripke structure Ke =def (Se, Soe, Re, Le) by de�ning its set of atomic

propositions and the labelling function as

APe =def AP ∪APAUX
APAUX =def {ai = α | ai ∈ AUX∧ α ∈ Dai}

Le : Se → 2APe

Le(s) = L(s) ∪ {ai = ei(s(x
i
1), s(x

i
2), . . .) | ai ∈ AUX}

If we now factorise Ke's transition system (Se, Soe, Re) by the equivalence

relation ∼ introduced by AUX then we can extend the abstracted transition

system to a Kripke structure by \forgetting" about the original variables in

V and considering only the propositions on abstraction variables of AUX.

This is done in the obvious way by de�ning a labelling function

Le/∼ : Se/∼ → 2APAUX ; [s] 7→ {ai = ei(s(x
i
1), s(x

i
2), . . .) | ai ∈ AUX}

Note that Le/∼ is well-de�ned since all members of [s] induce the same

valuations for all ai ∈ AUX. As a consequence

Ke/∼ = (Se/∼, S0e/∼, Re/∼, Le/∼)

is a well-de�ned Kripke structure, and the explicit model checking algo-

rithms introduced in Section 4 can be applied to Ke/∼, as long as we only

consider CTL formulas ϕ over the auxiliary variables from AUX, without

any reference to the variables from V. Such a formula would also be appli-

cable to the unfactorised Kripke structure Ke. Therefore we would like to

know when a formula ϕ proven to be valid in Ke/∼ is also valid in Ke.

Example 7. Consider the Kripke Structure depicted in Fig. 7.1, which is

associated with a speci�cation model of a tra�c light controller. As is well

known to every law-abiding citizen, we always stop our cars on red and on

yellow. Therefore, if we are only interested in knowing when cars are in a
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tl = green

l0

tl = red

l1 l2

l3

tl = yellow

tl = yellow

Figure 7.1: Kripke structure of tra�c light controller from Example 7.

halt-state in front of the tra�c light, it makes sense to introduce a Boolean

auxiliary variable

stops =def (tl = red∨ tl = yellow)

Factorisation against the equivalence relation introduced by stops leads to

the abstracted Kripke structure shown in Fig. 7.2.

Now suppose we wish to prove that EF(tl = green) holds for the Kripke

structure of the original model in Fig. 7.1. The assertion can be readily

expressed on abstract level as EF(¬stops) which obviously holds on ab-

stract level, since every path in Fig. 7.2 visits (m1,¬stops). Similarly, the

concrete condition AF(tl = red ∨ tl = yellow) can be expressed in an

abstract way as AFstops. It is easy to see that it holds on abstract level.

In these special cases, the assertions also hold on concrete level, but this

is not always the case: On abstracted level we can also prove the formula

EG(stops) which obviously does not hold in the concrete model with its

concrete formula representation EG(tl = red ∨tl = yellow). Conversely,

the concrete model satis�es AF(tl = green), while the corresponding for-

mula AF(¬stop) is not ful�lled on abstract level. �

Exercise 14. Consider the slightly modi�ed speci�cation model from Ex-

ercise 2, now shown in Fig. 7.3. Assume now that x and y have unbounded

range Dx = Dy = Z, so that explicit model checking becomes infeasible.

Chose suitable abstraction variables and construct the corresponding fac-

torisation of the model's Kripke structure such that the following assertion

91



m0

stops

m1

not stops

Figure 7.2: Abstracted Kripke structure induced by auxiliary variable

stops in Example 7.

can be proved using the explicit CTL model checking algorithms on the

abstracted Kripke structure:

¬EF(l0∧ odd(y))

Give informal justi�cations for

� the completeness and correctness of your abstracted Kripke structure

(since you do not want to enumerate the concrete (in�nite!) Kripke

structure of the model),

� the fact that the proof for the abstracted model implies that the

assertion also holds for the concrete model.

�

7.4 Simulations

In order to investigate the situations where assertions on auxiliary variables

proven on abstract level also hold for the concrete level we introduce the

concept of simulations :
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[x <= 0 and not odd(y)]

l0 l1

l2

[x>y]/

y = y + x;

[odd(y)]/
y = −1;

[x <= 0]/
y = 0;

/y = 0;

Figure 7.3: Model for Exercise 7.

Definition 5 (Simulation) Given two Kripke structures K =

(S, S0, R, L), K
′ = (S ′, S ′0, R

′, L ′) such that K refers to atomic propo-

sitions AP and K ′ refers to atomic propositions AP ′ and AP ′ ⊆ AP.

The relation H ⊆ S × S ′ is called a simulation, if the following

conditions hold for all (s, s ′) ∈ H:

1. L(s) ∩AP ′ = L ′(s ′)

2. ∀s1 ∈ S : R(s, s1)⇒ ∃s ′1 ∈ S ′ � R ′(s ′, s ′1)∧H(s1, s ′1)
We write K 4 K ′ (K is simulated by K ′) if such a simulation H exists

and

∀s0 ∈ S0 � ∃s ′0 ∈ S ′0 : H(s0, s ′0)
�

Example 8. Consider again the tra�c light example introduced in Ex-

ample 7. In a more formal way, its Kripke structure, extended by auxiliary

variable stops can be introlduced as follows.
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TLe = (S, S0, R,AP, L)

S = {l0, l1, l2, l3}

S0 = {l0}

R = {(l0, l1), (l1, l2), (l2, l3), (l3, l0)}

AP = {tl = red, tl = yellow, tl = green, stops}

L = {l0 7→ {tl = red, stops}, l1 7→ {tl = yellow, stops},

l2 7→ {tl = green}, l3 7→ {tl = yellow, stops}}

Now we \guess" an abstracted Kripke structure and show that this is indeed
a simulation of TLe. To this end, we invent an equivalence relation on the
state space S by de�ning

∼ ⊆ S× S
∼ = {(l0, l0), (l1, l1), (l2, l2), (l3, l3),

(l0, l1), (l0, l3), (l1, l0), (l3, l0), (l1, l3), (l3, l1)}

This induces two equivalence classes

[l0] = {l0, l1, l3} and [l2] = {l2}

Applying the construction rules of Formula (7.1), this induces the Kripke
structure

TLe/∼ = (S ′, S ′
0, R

′, AP ′, L ′)

S ′ = {[l0], [l2]}

S ′
0 = {[l0]}

R ′ = {([l0], [l0]), ([l0], [l2]), ([l2], [l0])}

AP ′ = {stops}

L ′ = {[l0] 7→ {stops}, [l2] 7→ { }}

Now we guess the simulation relation H ⊆ S× S ′ as
H = {(l, [l]) | l ∈ S},

which can be explicitly enumerated as (note that [l0] = [l1] = [l3])

H = {(l0, [l0]), (l1, [l0]), (l2, [l2]), (l3, [l0])}.

It will turn out below in Theorem 6 that this is the standard construction
for creating simulation relations with factorised Kripe structures. Let's
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prove that H is indeed a simulation relation. Following De�nition 5, we
�rst have to show that L(s) ∩ AP ′ = L ′(s ′) for all states s related by the
simulation H. This holds, since

L(l0) ∩AP ′ = {stops} = L ′([l0])
L(l1) ∩AP ′ = {stops} = L ′([l0])
L(l2) ∩AP ′ = { } = L ′([l2])
L(l3) ∩AP ′ = {stops} = L ′([l0])

Next, we have to show that Condition 2 of De�nition 5 holds; this follows
from the facts that

(l0, l1) ∈ R∧ ([l0], [l0]) ∈ R ′ ∧ (l0, [l0]) ∈ H∧ (l1, [l0]) ∈ H,
(l1, l2) ∈ R∧ ([l0], [l2]) ∈ R ′ ∧ (l1, [l0]) ∈ H∧ (l2, [l2]) ∈ H,
(l2, l3) ∈ R∧ ([l2], [l0]) ∈ R ′ ∧ (l2, [l2]) ∈ H∧ (l3, [l0]) ∈ H,
(l3, l0) ∈ R∧ ([l0], [l0]) ∈ R ′ ∧ (l3, [l0]) ∈ H∧ (l0, [l0]) ∈ H.

Finally, we note that (l0, [l0]) ∈ H, so the initial state of TLe is mapped

to the initial state of TLe/∼. This concludes the proof that TLe 4 TLe/∼.

�
Before exploiting the simulation concept in Theorem 7 below, it is nec-

essary to show that the equivalence relation ∼ induced by auxiliary vari-

ables as introduced above establishes a simulation relation between original

Kripke structure Ke and its factorisation Ke/∼
1:

Theorem 6 Given ∼, equivalence classes [s], APe, Le, Ke, Ke/∼ as in-

troduced in Section 7.3 above, de�ne

H =def {(s, [s]) | s ∈ Se} ⊆ Se × Se/∼
Then H is a simulation between Ke and Ke/∼ and Ke 4 Ke/ ∼ holds.

Proof. Let H be de�ned according to the precondition of the theorem and

s ∈ Se, so that (s, [s]) ∈ H. By the construction rules given in Section 7.3,

the states of Ke are labelled with atomic propositions from AP ∪ APAUX,
and the states (i. e., equivalence classes) of Ke/∼ are labelled with atomic

propositions from APAUX. As a consequence, the construction of the la-

belling functions Le on Ke and Le/∼ on Ke/∼ implies

Le(s) ∩APAUX = {ai = ei(s(x
i
1), s(x

i
2), . . .) | ai ∈ AUX} = Le/∼([s])

1So Example 8 is just a con�rmation of Theorem 6 by example.
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Therefore condition (i) of De�nition 5 holds.

Now let s1 ∈ Se such that R(s, s1). By construction of R/∼ in Sec-

tion 7.1 this implies R/∼([s], [s1]) and by construction of H this also implies

H(s1, [s1]). Therefore condition (ii) of De�nition 5 is also ful�lled.

Finally, we note that ∀s0 ∈ S0 : H(s0, [s0]) holds by construction of H,

and [s0] ∈ S0e/∼ by construction of Ke/∼. As a consequence, Ke 4 Ke/ ∼,

and this completes the proof. �

Definition 6 Let K 4 K ′ with simulation relation H ⊂ S × S ′ and
H(s, s ′). Suppose π is a path in K starting at s and π ′ a path starting

at s ′ in K ′. We say that π and π ′ correspond to each other if

∀i ≥ 0 : H(π(i), π ′(i))

�

Lemma 6 Let K 4 K ′ with simulation relation H ⊂ S× S ′ and H(s, s ′).
Then for every path π in K starting at s there is a corresponding path

π ′ in K ′ starting at s ′.

Proof. Since π is a path starting at s,

π(0) = s∧ (∀i ≥ 0 : R(π(i), π(i+ 1)))

follows. Since s = π(0) and H(s, s ′), this implies H(π(0), s ′). Applying

condition (ii) of De�nition 5 successively on π(0), π(1), π(2), . . . this yields

the existence of states π ′(i) ∈ S ′, i ≥ 0, such that

π ′(0) = s ′ ∧ (∀i ≥ 0 : R ′(π ′(i), π ′(i+ 1))∧H(π(i+ 1), π ′(i+ 1))),

so π ′ is a path in K ′, and it corresponds to π by construction. �

Theorem 7 Assume K 4 K ′. Then for every ACTL∗ formula φ with

atomic propositions in AP ′

(K ′ |= φ) implies (K |= φ)
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Proof. Let φ an ACTL∗ formula as de�ned in Section 3.4. Suppose

K ′ |= φ, which is equivalent to ∀s ′0 ∈ S ′0 : (K ′, s ′0) |= φ. We have to show

that for any s0 ∈ S0, (K, s0) |= φ holds. This is achieved by proving the

more general fact that

∀(s, s ′) ∈ H : ((K ′, s ′) |= φ)⇒ ((K, s) |= φ) (∗)

which implies our original proof goal. The proof of (*) is performed by

structural induction over the formula φ. Assume (s, s ′) ∈ H and (K ′, s ′) |=

φ for the rest of this proof.

(1) If φ is an atomic proposition, then (K, s) |= φ if and only if φ ∈
L(s). Since (K ′, s ′) |= φ by assumption, φ must be contained in AP ′.

Since K ′ simulates K, we can conclude L(s)∩AP ′ = L ′(s ′) (condition (i) of

De�nition 5). Now K ′ |= φ, and therefore φ ∈ L ′(s ′) and L ′(s ′) = L(s)∩AP ′,
so φ ∈ L(s) follows.

(2) Let φ = ¬φ1 and suppose (K
′, s ′) |= φ. Since φ is an ACTL∗ formula

φ1 must be an atomic proposition. This implies that φ1 6∈ L ′(s ′) and, since
L ′(s ′) = L(s) ∩ AP ′ and φ1 ∈ AP ′ also φ1 6∈ L(s). This means K, s 6|= φ1
and therefore K, s |= ¬φ1 which is equivalent to K, s |= φ.

(3) Let φ = φ1 ∨ φ2 such that φi are state formulas for i = 1, 2 and

(K, s) |= φi whenever (K ′, s ′) |= φi. Since (K ′, s ′) |= φ, (K ′, s ′) |= φ1 or

(K ′, s ′) |= φ2 follows. If (K
′, s ′) |= φ1 then we know already that (K, s) |= φ1

follows, and this implies (K, s) |= φ1 ∨ φ2. The same argument applies if

(K ′, s ′) |= φ2. As a consequence (K, s) |= φ1 or (K, s) |= φ2 holds, which

proves (K, s) |= φ1 ∨ φ2.

(4) Let φ = φ1 ∧ φ2 such that φi are state formulas for i = 1, 2 and

(K, s) |= φi whenever (K
′, s ′) |= φi. This case is handled in analogy to (3).

(5) Let φ a state formula, such that (K, s) |= φ whenever (K ′, s ′) |= φ.

Let π a path with π(0) = s, and π ′ its corresponding path in K ′, starting

at s ′ = π ′(0) (this path exists according to Lemma 14). Suppose that

K ′, π ′ |= φ (remember that every state formula is also a path formula).

This is equivalent to K ′, π ′(0) |= φ, so by our assumption K, π(0) |= φ.

This implies that K, π |= φ. Now we have shown that K, π |= φ whenever

K ′, π ′ |= φ on a path π ′ corresponding to π.

(6) Let φ = Aψ such that ψ is a path formula and K, π |= ψ whenever

97



K ′, π ′ |= ψ, where π, π ′ are corresponding paths starting in s and s ′, re-

spectively. Now K, s |= Aψ is equivalent to the condition that every path

π emanating from s satis�es K, π |= ψ. Since K ′, s ′ |= Aψ we know that

K ′, π ′′ |= ψ for every π ′′ starting at s ′, so this holds in particular for the

path π ′ corresponding to π. Therefore also K, π |= ψ holds, and this implies

K, s |= Aψ since π was an arbitrary path starting at s.

(7) Let φ = ψ1 ∨ ψ2, such that ψi are path formulas where K, π |= ψi
whenever K ′, π ′ |= ψi for i = 1, 2 on a path π ′ corresponding to π. Suppose

K ′, π ′ |= ψ1∨ψ2. This means that K ′, π ′ |= ψ1 or K
′, π ′ |= ψ2. By (5) we can

deduce that K, π |= ψ1 or K, π |= ψ2, and we have shown that K, π |= ψ1∨ψ2
whenever K ′, π ′ |= ψ1 ∨ψ2 on a path π ′ corresponding to π.

(8) Let φ = ψ1 ∧ ψ2, such that ψi are path formulas where K, π |= ψi
whenever K ′, π ′ |= ψi for i = 1, 2 on a path π ′ corresponding to π. With

an argument analogous to (7) it is shown that K, π |= ψ1 ∧ ψ2 whenever

K ′, π ′ |= ψ1 ∧ψ2 on a path π ′ corresponding to π.

(9) Let φ = Xψ and ψ a path formula such that K, π |= ψ holds

whenever K ′, π ′ |= ψ holds on a path π ′ corresponding to π. Now K ′, π ′ |=

Xψ is equivalent to K ′, π ′1 |= ψ. Since π ′1 corresponds to π1 we know

already that K ′, π ′1 |= ψ implies K, π1 |= ψ. As a consequence K, π |= Xψ

also holds.

(10) The cases φ = Fψ,φ = Gψ,φ = ψ1Uψ2, φ = ψ1Rψ2 are shown

in analogy to (9), and this completes the proof. �

Exercise 15. Give the following explanations regarding the proof of

Theorem 7:

1. Give a detailed formal explanation why the theorem follows from (*).

2. Give a formal syntax speci�cation for ACTL∗ similar to EBNF nota-

tion introduced for CTL∗ formulas in Section 3.2.

3. Explain how ACTL∗ is inductively de�ned according to De�nition 11:

(a) What might be a suitable universe U?

(b) What is the base set B?

(c) Which are the constructors r ∈ K?
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4. Explain how the proof of Theorem 7 applies the principle of structural

induction.

�

Theorem 8 Let K = (S, S0, R, L) and K
′ = (S, S ′0, R

′, L) Kripke structures

with variable symbols from V and atomic propositions AP, using the

same set of states S and the same labelling function L : S→ 2AP. Let I,
I ′ be the �rst order predicates characterising the initial states S0 and

S ′0, respectively, and R, R ′ the �rst order predicates characterising the
transition relations R and R ′, respectively. Suppose that

� I ⇒ I ′
� R⇒ R ′

Then K 4 K ′.

Proof. See Exercise 16. �

Exercise 16. Prove Theorem 8, using the facts on �rst order representa-

tions given in Section 2. �

7.5 Bisimulations

Having studied simulations it is natural to ask how much we have to

strengthen the simulation de�nition in order to be sure that all CTL∗

formulas valid in one Kripke structure are also valid in the other one and

vice versa. This leads us to the concept of bisimulation.

Definition 7 (Bisimulation) Given two Kripke structures K =

(S, S0, R, L), K
′ = (S ′, S ′0, R

′, L ′) such that K,K ′ refer to the same set of

atomic propositions AP. A relation B ⊆ S × S ′ is called bisimulation

(relation) between K and K ′, if and only if the following conditions

hold for all s ∈ S, s ′ ∈ S ′ with B(s, s ′):

1. L(s) = L ′(s ′)
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2. ∀s1 ∈ S : R(s, s1)⇒ ∃s ′1 ∈ S ′ � R ′(s ′, s ′1)∧ B(s1, s ′1)
3. ∀s ′1 ∈ S ′ : R ′(s ′, s ′1)⇒ ∃s1 ∈ S � R(s, s1)∧ B(s1, s ′1)
We write K ≡ K ′ if there exists a bisimulation B between K and K ′

such that

(∀s0 ∈ S0 : ∃s ′0 ∈ S ′0 � B(s0, s ′0))∧ (∀s ′0 ∈ S ′0 : ∃s0 ∈ S0 � B(s0, s ′0))

�

Bisimilar Kripke structures satisfy the same CTL∗ formulas2:

Theorem 9 If K ≡ K ′ and φ ∈ CTL∗, then

(K |= φ) if and only if (K ′ |= φ)

�

7.6 Predicate Abstraction

With the knowledge of Section 7.3 alone we could construct abstractions

only from the original Kripke structure K = (S, S0, R, L). This is unsatisfac-

tory, since the very objective of abstraction is to help in situations where the

original Kripke structure is too large to be represented in an explicit way.

Fortunately there is an alternative for constructing abstractions: Having

de�ned auxiliary variables ai and associated expressions ai = ei(x
i
1, x

i
2, . . .)

we can lift the original predicates I,R over xj ∈ V specifying initial state

and transition relation of K to predicates over ai specifying initial state and

transition relation of the abstracted Kripke structure K ′ = (S ′, S ′0, R
′, L ′).

In the next section we will see that this relation can be further approxi-

mated by simpler predicates that still preserve the simulation relation but

are coarser and therefore even simpler to compute.

2For a proof, see [5, pp. 171].
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Definition 8 Let K = (S, S0, R, L) a Kripke structure with variables from

V = {x1, . . . , xn} and φ a predicate with free variables over V. Let

AUX = {a1, . . . , ak} a set of auxiliary variables de�ning an abstraction

relation via expressions ai = ei(x
i
1, x

i
2, . . .), i = 1, . . . , k. Then the lifting

of φ with respect to this abstraction is denoted by [φ] and de�ned as

[φ] ≡def ∃ξ1, . . . , ξn�(∀i = 1, . . . , k : ai = ei(ξ
i
1, . . . , ξ

i
n))∧φ[ξ1/x1, . . . , ξn/xn]

�

Theorem 10 Let K = (S, S0, R, L) a Kripke structure with variables

from V = {x1, . . . , xn} and φ a predicate with free variables over V.

Let AUX = {a1, . . . , ak} a set of auxiliary variables de�ning an ab-

straction relation via expressions ai = ei(x
i
1, x

i
2, . . .), i = 1, . . . , k. Let

K ′ = (S ′, S ′0, R
′, L ′) denote the abstracted Kripke structure obtained by

factorisation with ∼ as described in Section 7.3. Let I,R denote initial

condition and transition relation of K.

Then initial condition and transition relation of K ′ are given by the

lifted predicates

[I] and [R]

Proof. Applying De�nition 8 on I and R yields

[I] ≡ ∃ξ1, . . . , ξn � (∀i = 1, . . . , k � ai = ei(ξ1, . . . , ξn))∧ I[ξ1/x1, . . . , ξn/xn]
[R] ≡ ∃ξ1, . . . , ξn � ∃ξ ′1, . . . , ξ ′n � (∀i = 1, . . . , k � ai = ei(ξ1, . . . , ξn))∧

(∀i = 1, . . . , k � a ′i = ei(ξ ′1, . . . , ξ ′n))∧
R[ξ1/x1, . . . , ξn/xn, ξ ′1/x ′1, . . . , ξ ′n/x ′n]

According to Lemma 5 these formulas represent initial condition I/∼ and

transition relation R/∼ of K ′. �

The essential contribution of Theorem 10 is that for constructing a

suitable simulation for proving the validity of an ACTL formula, it is not

necessary to enumerate states and simulation relation in an explicit way.

Instead, we can lift initial condition and transition relation of the original

101



Kripke structure, thereby obtaining the initial condition and transition

relation of the simulation.

Example 9. Consider again the tra�c light example introduced in Ex-

ample 7 and extended further in Example 8. In contrast to the latter

example, we will now construct the simulation TL/ ∼ by means of predi-

cate abstraction according to Theorem 10, without explicitly enumerating

states, equivalence classes, and the elements of the simulation relation.

Moreover, we do not need to consider the extended Kripke structure TLe,

but the original structure TL without auxiliary variables.
Representing TL as a Kripke structure over variables and with initial

condition and transition relation results in the de�nition

TL

V = {`, tl}

D` = {l0, l1, l2, l3} the li are now enum values for state variable `

Dtl = {red, yellow, green}

D = D` ∪Dtl

S ⊆ V → D we don't need to enumerate the states explicitly

I ≡ ` = l0 ∧ tl = red

R ≡ (` = l0 ∧ tl = red∧ ` ′ = l1 ∧ tl
′ = yellow)∨

(` = l1 ∧ tl = yellow∧ ` ′ = l2 ∧ tl
′ = green)∨

(` = l2 ∧ tl = green∧ ` ′ = l3 ∧ tl
′ = yellow)∨

(` = l3 ∧ tl = yellow∧ ` ′ = l0 ∧ tl
′ = red)

S0 = {s : V → D | s |= I} = {{` 7→ l0, tl 7→ red}}

AP = {` = l0, ` = l1, ` = l2, ` = l3, tl = red, tl = yellow, tl = green}

L = {s 7→ {` = s(`), tl = s(tl)} | s ∈ S}

As explained before, we introduce auxiliary variable

stops ≡ (tl = red∨ tl = yellow),

so we have just one abstraction variable a1 = stops. Now we lift the initial
condition I according to De�nition 8; this results in

[I] ≡ ∃ξ`, ξtl �
(
stops = (ξtl = red∨ ξtl = yellow)

)
∧ I[ξ`/`, ξtl/tl]

≡ ∃ξ`, ξtl �
(
stops = (ξtl = red∨ ξtl = yellow)

)
∧
(
ξ` = l0 ∧ ξtl = red

)
≡ stops
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For lifting the transition relation, we need bound variable ξ for both
the unprimed and the primed variable symbols. This results in

[R] ≡ ∃ξ`, ξtl, ξ ′
`, ξ

′
tl �
(
stops = (ξtl = red∨ ξtl = yellow)

)
∧(

stops ′ = (ξ ′
tl = red∨ ξ ′

tl = yellow)
)
∧R[ξ`/`, ξtl/tl, ξ ′

`/`
′, ξ ′

tl/tl
′]

≡ ∃ξ`, ξtl, ξ ′
`, ξ

′
tl �
(
stops = (ξtl = red∨ ξtl = yellow)

)
∧(

stops ′ = (ξ ′
tl = red∨ ξ ′

tl = yellow)
)
∧(

(ξ` = l0 ∧ ξtl = red∧ ξ ′
` = l1 ∧ ξ

′
tl = yellow)∨

(ξ` = l1 ∧ ξtl = yellow∧ ξ ′
` = l2 ∧ ξ

′
tl = green)∨

(ξ` = l2 ∧ ξtl = green∧ ξ ′
` = l3 ∧ ξ

′
tl = yellow)∨

(ξ` = l3 ∧ ξtl = yellow∧ ξ ′
` = l0 ∧ ξ

′
tl = red)

)
≡ (stops∧ stops ′)∨

(stops∧ ¬stops ′)∨

(¬stops∧ stops ′)∨

(stops∧ stops ′)

≡ (stops∨ stops ′)

The graphical structure of this Kripke structure is again the one already

presented in Fig 7.2. �

Example 10. Consider again the model displayed in Fig. 7.3 with integer

variables x, y having unbounded range. With the knowledge about simula-

tions and predicate abstraction it is now possible to give a rigorous proof

for the formula ¬EF(l0∧ odd(y)). First we observe that

¬EF(l0∧ odd(y)) ≡ AG(¬l0∨ ¬odd(y))

so our proof objective is an ACTL formula. As a possible abstraction for

this objective consider
a0 = l0

a1 = l1

a2 = l2

a3 = odd(y)

(7.4)

Note, that a0, . . . , a3 form not the simplest abstraction possible to show the

required property - indeed, abstraction by a0 and a3 would su�ce. The
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4

not a1
not a2
not a3

a0
a1
not a2
not a3

not a0

a1
not a2
a3

not a0

1 2

3

not a1
a2
a3

not a0

Figure 7.4: Kripke structure for abstracted model from Example 10.
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e�ect of the coarser abstraction would be, that proving several other formu-

las like AG(¬l2∨ odd(y)) becomes impossible in the resulting abstracted

Kripke structure.

We proceed now to construct the resulting abstracted Kripke structure

without �rst unfolding the one of the concrete system, but exploiting in-

stead its predicates for initial state and transition relation.

Step. 1. Specify initial condition of the concrete system: From Fig. 7.3 we

derive

I(l0, l1, l2, x, y) ≡ l0∧ ¬l1∧ ¬l2∧ y = 0

Step. 2. Specify formula for the transition relation of the concrete system:

Evaluating Fig. 7.3 again, we derive

R(l0, l1, l2, x, y, l0 ′, l1 ′, l2 ′, x ′, y ′) ≡
((l0∧ x ≤ y∧ y ′ = y∧ l0 ′)∨

(l0∧ x > y∧ y ′ = y+ x∧ l1 ′)∨

(l1∧ x ≤ 0∧ ¬odd(y)∧ y ′ = y∧ l0 ′)∨

(l1∧ odd(y)∧ y ′ = −1∧ l2 ′)∨

(l1∧ x > 0∧ ¬odd(y)∧ y ′ = y∧ l1 ′)∨

(l2∧ x ≤ 0∧ y ′ = 0∧ l0 ′)∨

(l2∧ x > 0∧ y ′ = y∧ l2 ′))∧

((l0∧ ¬l1∧ ¬l2)∨ (¬l0∧ l1∧ ¬l2)∨ (¬l0∧ ¬l1∧ l2))∧

((l0 ′ ∧ ¬l1 ′ ∧ ¬l2 ′)∨ (¬l0 ′ ∧ l1 ′ ∧ ¬l2 ′)∨ (¬l0 ′ ∧ ¬l1 ′ ∧ l2 ′))

Step. 3. Compute the abstracted initial condition I/∼ = [I]: Applying

De�nition 8 on [I] for the given abstraction (7.4) results in

[I](a0, a1, a2, a3) ≡ ∃ξ0, ξ1, ξ2, ξ3, ξ4 �
a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4)∧

ξ0 ∧ ¬ξ1 ∧ ¬ξ2 ∧ ξ4 = 0

≡ a0 ∧ ¬a1 ∧ ¬a2 ∧ ¬a3

Step. 4. Compute the abstracted transition relation R/∼ = [R]: Applying
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De�nition 8 on [R] for the given abstraction (7.4) results in

[R](a0, a1, a2, a3, a ′0, a ′1, a ′2, a ′3) ≡
∃ξ0, ξ1, ξ2, ξ3, ξ4, ξ ′0, ξ ′1, ξ ′2, ξ ′3, ξ ′4�
a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4)∧

a ′0 = ξ
′
0 ∧ a

′
1 = ξ

′
1 ∧ a

′
2 = ξ

′
2 ∧ a

′
3 = odd(ξ ′4)∧

((ξ0 ∧ ξ3 ≤ ξ4 ∧ ξ ′4 = ξ4 ∧ ξ ′0)∨
(ξ0 ∧ ξ3 > ξ4 ∧ ξ

′
4 = ξ4 + ξ3 ∧ ξ

′
1)∨

(ξ1 ∧ ξ3 ≤ 0∧ ¬odd(ξ4)∧ ξ
′
4 = ξ4 ∧ ξ

′
0)∨

(ξ1 ∧ odd(ξ4)∧ ξ
′
4 = −1∧ ξ ′2)∨

(ξ1 ∧ ξ3 > 0∧ ¬odd(ξ4)∧ ξ
′
4 = ξ4 ∧ ξ

′
1)∨

(ξ2 ∧ ξ3 ≤ 0∧ ξ ′4 = 0∧ ξ ′0)∨
(ξ2 ∧ ξ3 > 0∧ ξ

′
4 = ξ4 ∧ ξ

′
2))∧

((ξ0 ∧ ¬ξ1 ∧ ¬ξ2)∨ (¬ξ0 ∧ ξ1 ∧ ¬ξ2)∨ (¬ξ0 ∧ ¬ξ1 ∧ ξ2))∧

((ξ ′0 ∧ ¬ξ ′1 ∧ ¬ξ ′2)∨ (¬ξ ′0 ∧ ξ
′
1 ∧ ¬ξ ′2)∨ (¬ξ ′0 ∧ ¬ξ ′1 ∧ ξ

′
2)) ≡

((a0 ∧ a
′
3 = a3 ∧ a

′
0)∨ (a0 ∧ a

′
3 ∧ a

′
1)∨ (a0 ∧ ¬a ′3 ∧ a

′
1)∨

(a1 ∧ ¬a3 ∧ a
′
3 = a3 ∧ a

′
0)∨ (a1 ∧ ¬a3 ∧ a

′
3 = a3 ∧ a

′
1)∨

(a1 ∧ a3 ∧ a
′
3 ∧ a

′
2)∨ (a2 ∧ ¬a ′3 ∧ a

′
0)∨ (a2 ∧ a

′
3 = a3 ∧ a

′
2))∧

((a0 ∧ ¬a1 ∧ ¬a2)∨ (¬a0 ∧ a1 ∧ ¬a2)∨ (¬a0 ∧ ¬a1 ∧ a2))∧

((a ′0 ∧ ¬a ′1 ∧ ¬a ′2)∨ (¬a ′0 ∧ a
′
1 ∧ ¬a ′2)∨ (¬a ′0 ∧ ¬a ′1 ∧ a

′
2)) ≡

((a0 ∧ a
′
3 = a3 ∧ a

′
0)∨ (a0 ∧ a

′
1)∨

(a1 ∧ ¬a3 ∧ a
′
3 = a3 ∧ (a ′0 ∨ a

′
1))∨ (a1 ∧ a3 ∧ a

′
3 ∧ a

′
2)∨

(a2 ∧ ¬a ′3 ∧ a
′
0)∨ (a2 ∧ a

′
3 = a3 ∧ a

′
2))∧

((a0 ∧ ¬a1 ∧ ¬a2)∨ (¬a0 ∧ a1 ∧ ¬a2)∨ (¬a0 ∧ ¬a1 ∧ a2))∧

((a ′0 ∧ ¬a ′1 ∧ ¬a ′2)∨ (¬a ′0 ∧ a
′
1 ∧ ¬a ′2)∨ (¬a ′0 ∧ ¬a ′1 ∧ a

′
2))

The resulting abstracted Kripke structure is displayed in Fig. 7.4, and it

is trivial to see from the graphic representation that AG(¬l0 ∨ ¬odd(y))

holds, because this formula is equivalent to AG(¬a0∨¬a3) and the Kripke

structure in Fig. 7.4 simulates the concrete system from Fig. 7.3 by con-

struction. �
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Exercise 17. Check whether the following C program fragment termi-

nates:

1 uint32_t x,y;

2 y = 1;

3 while ( y < 256 ) {

4 x = input(); // Assume 0 <= x <= 15

5 if ( x > y ) {

6 y = y * x;

7 }

8 }

9 exit();

Perform this check by means of an abstraction function α that calculates

the minimal number of bits needed to represent an integral number:

α : N0 → N0; x 7→ {1, if x = 0

blog2 xc+ 1, if x > 0

Observe that, since logb x ·y = logbx+ logby, the following estimates hold:

α(x · y) ≤ α(x) + α(y)
N ≤ α(x) + α(y)⇒ N− 1 ≤ α(x · y)
α(x) + α(y) ≤ N⇒ α(x · y) ≤ N

Prove termination or non-termination along the following lines:

1. Specify initial condition I and transition formula R of the concrete

program fragment above.

2. Now use the abstraction a1 = α(x), a2 = α(y). and calculate the

abstracted formulas [I] and [R].

3. Unfold the Kripke structure of the abstracted system given by [I]
and [R] and sketch how the model checking algorithms introduced in

Section 4 come to a conclusion about termination or non-termination.
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�

Example 11. We present an alternative solution for Exercise 17 which

uses another abstraction and motivates the concept of abstract interpre-

tation.

The initial condition of the program from Exercise 17 is

I(p, x, y) ≡ p = 1

The transition relation is speci�ed by the predicate

R(p, x, y, p ′, x ′, y ′) ≡
(p = 1∧ p ′ = 2∧ x ′ = x∧ y ′ = y)∨

(p = 2∧ p ′ = 3∧ x ′ = x∧ y ′ = 1)∨

(p = 3∧ p ′ = 9∧ y ≥ 256∧ x ′ = x∧ y ′ = y)∨
(p = 3∧ p ′ = 4∧ y < 256∧ x ′ = x∧ y ′ = y)∨

(p = 4∧ p ′ = 5∧ 0 ≤ x ′ ≤ 15∧ y ′ = y)∨
(p = 5∧ p ′ = 3∧ x ≤ y∧ x ′ = x∧ y ′ = y)∨

(p = 5∧ p ′ = 6∧ x > y∧ x ′ = x∧ y ′ = y)∨

(p = 6∧ p ′ = 3∧ x ′ = x∧ y ′ = y · x)

We choose the following abstraction functions { they are induced by a

scan of \relevant" decisions in the program:

a0(p, x, y) = p

a1(p, x, y) = (x ∈ [0, 15])

a2(p, x, y) = (y < 256)

a3(p, x, y) = (x > y)

In order to prove that the program never terminates we try to prove ACTL

formula

AG(a0 6= 9)
which exactly expresses non-termination.

Applying the predicate abstraction principle on abstraction functions

a0, . . . , a3 results in

[I] ≡ a0 = 1
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for the initial condition; for the abstracted transition relation we get3

[R] ≡ ∃p, x, y, p ′, x ′, y ′ :
a0 = p∧ a1 = (x ∈ [0, 15])∧ a2 = (y < 256)∧ a3 = (x > y)∧

a ′0 = p
′ ∧ a ′1 = (x ′ ∈ [0, 15])∧ a ′2 = (y ′ < 256)∧ a ′3 = (x ′ > y ′)∧

((p = 1∧ p ′ = 2∧ x ′ = x∧ y ′ = y)∨

(p = 2∧ p ′ = 3∧ x ′ = x∧ y ′ = 1)∨

(p = 3∧ p ′ = 9∧ y ≥ 256∧ x ′ = x∧ y ′ = y)∨
(p = 3∧ p ′ = 4∧ y < 256∧ x ′ = x∧ y ′ = y)∨

(p = 4∧ p ′ = 5∧ 0 ≤ x ′ ≤ 15∧ y ′ = y)∨
(p = 5∧ p ′ = 3∧ x ≤ y∧ x ′ = x∧ y ′ = y)∨

(p = 5∧ p ′ = 6∧ x > y∧ x ′ = x∧ y ′ = y)∨

(p = 6∧ p ′ = 3∧ x ′ = x∧ y ′ = y · x))
Replacing terms which may be directly expressed by ai or ¬ai due to

equality or direct implication results in the fact that [R] implies

R1 ≡ ∃x, y, x ′, y ′ :
a1 = (x ∈ [0, 15])∧ a2 = (y < 256)∧ a3 = (x > y)∧

a ′1 = (x ′ ∈ [0, 15])∧ a ′2 = (y ′ < 256)∧ a ′3 = (x ′ > y ′)∧

((a0 = 1∧ a
′
0 = 2∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 2∧ a
′
0 = 3∧ a

′
1 = a1 ∧ a

′
2)∨

(a0 = 3∧ a
′
0 = 9∧ ¬a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 3∧ a
′
0 = 4∧ a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 4∧ a
′
0 = 5∧ a

′
1 ∧ a

′
2 = a2)∨

(a0 = 5∧ a
′
0 = 3∧ ¬a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 5∧ a
′
0 = 6∧ a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 6∧ a
′
0 = 3∧ a

′
1 = a1 ∧ y

′ = y · x))
We use the following observation.

a1 ∧ a2 ∧ a3 ∧ y
′ = y · x⇒

(x ∈ [0, 15])∧ (y < 256)∧ (x > y)∧ y ′ = y · x⇒
(x ∈ [0, 15])∧ (y < 15)∧ (x > y)∧ y ′ = y · x⇒
(y ′ ≤ 210)⇒
a ′2

3Observe that we still use p, x, y as in the original transition relation above, but now

these symbols are bound to the existential quanti�er.
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Therefore R1 ⇒ R2 with

R2 ≡ ∃x, y, x ′, y ′ :
a1 = (x ∈ [0, 15])∧ a2 = (y < 256)∧ a3 = (x > y)∧

a ′1 = (x ′ ∈ [0, 15])∧ a ′2 = (y ′ < 256)∧ a ′3 = (x ′ > y ′)∧

((a0 = 1∧ a
′
0 = 2∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 2∧ a
′
0 = 3∧ a

′
1 = a1 ∧ a

′
2)∨

(a0 = 3∧ a
′
0 = 9∧ ¬a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 3∧ a
′
0 = 4∧ a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 4∧ a
′
0 = 5∧ a

′
1 ∧ a

′
2 = a2)∨

(a0 = 5∧ a
′
0 = 3∧ ¬a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 5∧ a
′
0 = 6∧ a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 6∧ a
′
0 = 3∧ a1 ∧ a2 ∧ a3 ∧ a

′
2 ∧ a

′
1 = a1)∨

(a0 = 6∧ a
′
0 = 3∧ ¬(a1 ∧ a2 ∧ a3)∧ a

′
1 = a1))

Finally R2 ⇒ R3 with

R3 ≡ (a0 = 1∧ a
′
0 = 2∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 2∧ a
′
0 = 3∧ a

′
1 = a1 ∧ a

′
2)∨

(a0 = 3∧ a
′
0 = 9∧ ¬a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 3∧ a
′
0 = 4∧ a2 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 4∧ a
′
0 = 5∧ a

′
1 ∧ a

′
2 = a2)∨

(a0 = 5∧ a
′
0 = 3∧ ¬a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 5∧ a
′
0 = 6∧ a3 ∧ a

′
1 = a1 ∧ a

′
2 = a2 ∧ a

′
3 = a3)∨

(a0 = 6∧ a
′
0 = 3∧ a1 ∧ a2 ∧ a3 ∧ a

′
2 ∧ a

′
1 = a1)∨

(a0 = 6∧ a
′
0 = 3∧ ¬(a1 ∧ a2 ∧ a3)∧ a

′
1 = a1)

Applying Theorem 8 we conclude that if the Kripke structure associated

with R3 ful�lls AG(a0 6= 9), the same holds for the structure associated

with [R], and therefore the same holds for the concrete structure associated

with R (Theorem 10). For ([I], R3), the Kripke structure looks as shown
in Fig. 7.5, and obviously every reachable Kripke state ful�lls a0 6= 9. This
proves non-termination of our sample program. �
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a0=1
 a1  a2  a3

a0=1
 a1  a2  ¬a3

a0=1
 a1  ¬a2  a3

a0=1
 a1  ¬a2  ¬a3

a0=1
 ¬a1  a2  a3

a0=1
 ¬a1  a2  ¬a3

a0=1
 ¬a1  ¬a2  a3

a0=1
 ¬a1  ¬a2  ¬a3

a0=2
 a1  a2  a3

a0=2
 a1  a2  ¬a3

a0=2
 a1  ¬a2  a3

a0=2
 a1  ¬a2  ¬a3

a0=2
 ¬a1  a2  a3

a0=2
 ¬a1  a2  ¬a3

a0=2
 ¬a1  ¬a2  a3

a0=2
 ¬a1  ¬a2  ¬a3

a0=3
 a1  a2  a3

a0=3
 a1  a2  ¬a3

a0=3
 ¬a1  a2  a3

a0=3
 ¬a1  a2  ¬a3

a0=4
 a1  a2  a3

a0=4
 a1  a2  ¬a3

a0=4
 ¬a1  a2  a3

a0=4
 ¬a1  a2  ¬a3

a0=5
 a1  a2  a3

a0=5
 a1  a2  ¬a3

a0=6
 a1  a2  a3

Figure 7.5: Kripke structure associated with ([I], R3) from Example 11.
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7.7 Predicate Approximation

Depending on the complexity of initial conditions I and transition relations
R it may be quite hard to compute [I] and [R]. It is therefore useful to

have a technique at hand for further simplifying this computation, at the

cost of not arriving exactly at [I] and [R], but at approximations of these

predicates, denoted by A(I) and A(R), respectively. We say that predicate

φ ′ approximates φ if φ⇒ φ ′.

Definition 9 Let φ a predicate in negation normal form with free vari-

ables in V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i =

1, 2, . . ., the approximation of φ is denoted by A(φ). A(φ) has free vari-
ables in {a1, a2, . . .} and is de�ned inductively by the following rules:

1. If φ is an atomic proposition4, then A(φ) =def [φ].

2. If ¬φ is a negated atomic proposition, then A(¬φ) =def [¬φ].

3. A(φ1 ∧ φ2) =def A(φ1)∧A(φ2)

4. A(φ1 ∨ φ2) =def A(φ1)∨A(φ2)

5. A(∃x : φ) =def ∃a : A(φ)

6. A(∀x : φ) =def ∀a : A(φ)
�

Theorem 11 Let φ a predicate in negation normal form with free vari-

ables in V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i =

1, 2, . . ., the lifted version of φ implies its approximated version, i. e.,

[φ](a1, a2, . . .)⇒ A(a1, a2, . . .)
Proof. The proof is performed by structural induction over the formula

φ.

Step 1. If φ is atomic or the negation of an atom, A(φ) = [φ], so there is

nothing to prove.

4Observe that this includes all primitive relations such as x < y, x = f(y, z).
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Step 2. Suppose φ ≡ φ1 ∧ φ2 and [φj] ⇒ A(φj), j = 1, 2. From the

de�nition of [·] we calculate

[φ1 ∧ φ2] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧
φ1(ξ1/x1, ξ2/x2, . . .)∧ φ2(ξ1/x1, ξ2/x2, . . .)⇒ (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧ φ1(ξ1/x1, ξ2/x2, . . .))∧

(∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧ φ2(ξ1/x1, ξ2/x2, . . .))⇒ A(φ1)∧A(φ2)
Step 3. Suppose φ ≡ φ1 ∨ φ2 and [φj] ⇒ A(φj), j = 1, 2. This case is

handled in analogy to Step. 2.

Step 4. Suppose φ ≡ ∃x : φ1 and [φ1] ⇒ A(φ1). Assume without loss

of generality that x 6= xi for all i = 1, 2, . . . and that φ = φ(x, x1, x2, . . .).

Then

[∃x : φ1] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧ (∃ξ : φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))⇒ ∃ξ, ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .)⇒ ∃ξ : (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .))∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))⇒ ∃a : A(φ1)
Step 5. Suppose φ ≡ ∀x : φ1 and [φ1] ⇒ A(φ1). This step is handled in

analogy to Step 4. �

Theorem 12 Given a Kripke structure K = (S, S0, R, L) with variables

in V = {x1, x2, . . .}, initial condition I and transition formula R. Given
an abstraction ai = ei(x1, x2, . . .), i = 1, 2, . . .. Let K ′ = (S ′, S ′0, R

′, L ′)

denote the Kripke structure with variables {a1, a2, . . .}, initial condition

A(I) and transition relation A(R). Then

K 4 K ′

Proof. Let K ′′ denote the abstracted Kripke structure with variables

{a1, a2, . . .}, initial condition [I] and transition formula [R]. From Theo-

rem 10 and Theorem 6 we know that K ′′ simulates K. From Theorem 11

we know that [I] ⇒ A(I) and [R] ⇒ A(R). Now Theorem 8 implies that

K ′ simulates K ′′. Since 4 is transitive, the theorem follows. �

Exercise 18. Given a Kripke structure K = (S, S0, R, L) we use the

following notation:
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� Ks =def (S, {s}, R, L) for s ∈ S

� s0 4 s1 ≡def there exists a simulation relation H ⊆ S × S such that

H(s0, s1)

Consider the following algorithm:

H := {(s0, s1) | L(s0) = L(s1)};

while H is not a simulation relation do

Choose (s0, s1) such that

∃s ′0 ∈ S : R(s0, s
′
0)∧ (∀s ′1 ∈ S : R(s1, s

′
1)⇒ (s ′0, s

′
1) 6∈ H);

H := H− {(s0, s1)};

enddo

1. Justify informally why H, as computed by this algorithm, is a simu-

lation relation.

2. Explain the relation between H as computed by this algorithm, s0 4
s1, Ks0 and Ks1 .

�
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Chapter 8

Abstract Interpretation

8.1 Lattice Abstractions of Primitive

Datatypes

For the simplest form of abstract interpretation which is introduced in this

section, concrete data types int, float, bool will be abstracted to their

interval lattice counterparts as described in the example above. It is also

possible to lift concrete n-ary functions

f : t1 × . . .× tn → t0

with ti ∈ {int, float, bool} to n-ary functions over their concrete data

types' lattice counterparts,

[f] : L(t1)× . . .× L(tn)→ L(t0)

This lifting operation is performed according to the following construction

(arguments ai in the following de�nition are intervals over the concrete

data types ti).

[f](a1, . . . , an) =def

⊔
{[f(x1, . . . , xn), f(x1, . . . , xn)] | xi ∈ ai, i = 1, . . . , n}(8.1)

= [inf{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}, (8.2)

sup{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}] (8.3)

Intuitively speaking, function value [f](a1, . . . , an) is constructed as follows:
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1. Calculate each concrete function value f(x1, . . . , xn) over arguments

xi from intervals ai supplied as lattice element arguments to [f].

2. Represent every concrete function value f(x1, . . . , xn) as a single-point

interval [f(x1, . . . , xn), f(x1, . . . , xn)] of the interval latice over t0.

3. The function value [f](a1, . . . , an) is now determined by calculating

the supremum over all of the single-point intervals constructed in step

(2); this may be expressed in the simpler form [inf{f(x1, . . . , xn) | xi ∈
ai, i = 1, . . . , n}, sup{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}].

Observe that for datatype float which is a �nite subset of Q it is

possible that the in�mum and/or supremum used in the construction of

[f](a1, . . . , an) does not exist:

� The in�mum or supremum may be an irrational number.

� The in�mum or supremum may be a rational number q, but q cannot

be represented as a 
oating point number.

This problem can be addressed by widening the theoretically precise

interval function value [u, u] to the closest lower and upper bounds v, v

representable in datatype float. The widening operation ensures [u, u] ⊆
[v, v], so we know that the exact result is conservatively approximated by

the representable interval [v, v].

Applying the general lifting construction (8.1) to the arithmetic opera-

tions +,−, ·, / results in the following interval counterparts:

[x, x][+][y, y] = [x+ y, x+ y]

[x, x][−][y, y] = [x− y, x− y]

[x, x][·][y, y] = [minS,maxS], S = {xy, xy, xy, xy}

[x, x][/][y, y] = [x, x][·]1/[y, y]
1/[0, 0] = ⊥
1/[y, y] = [1/y, 1/y] if 0 6∈ [y, y]

1/[y, y] = [1/y,∞[ if y = 0∧ 0 < y

1/[y, y] =] −∞, 1/y] if y < 0∧ y = 0

1/[y, y] =] −∞,∞[ if y < 0∧ y > 0
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Boolean expressions and operations are evaluated in L(B) introduced

above. In an interval context, the lattice elements are expressed as

⊥ = [ ] (the empty interval)

> = [0, 1]

true = [1, 1]

false = [0, 0]

Boolean operations b(x1, . . . , xn) are lifted to L(B)-valued operations

[b](a1, . . . , an) =


[0, 0] if ∀xi ∈ ai, i = 1, . . . , n : b(x1, . . . , xn) = 0

[1, 1] if ∀xi ∈ ai, i = 1, . . . , n : b(x1, . . . , xn) = 1

[0, 1] otherwise

Applying this to the Boolean comparisons <,≤, >,≥,=, 6= yields the fol-

lowing lattice counterparts.

[x, x] [<] [y, y] =


[0, 0] if y ≤ x
[1, 1] if x < y

[0, 1] otherwise

[x, x] [≤] [y, y] =


[0, 0] if y < x

[1, 1] if x ≤ y
[0, 1] otherwise

[x, x] [>] [y, y] =


[0, 0] if x ≤ y
[1, 1] if y < x

[0, 1] otherwise

[x, x] [≥] [y, y] =


[0, 0] if x < y

[1, 1] if y ≤ x
[0, 1] otherwise

[x, x] [=] [y, y] =


[0, 0] if x < y∨ y < x

[1, 1] if x = x = y = y

[0, 1] otherwise
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[x, x] [ 6=] [y, y] =


[0, 0] if x = x = y = y

[1, 1] if x < y∨ y < x

[0, 1] otherwise

Boolean operators ∧,∨,¬ are lifted to interval counterparts well-known

from 3-valued logic:

[x, x] [∧] [y, y] =


[0, 0] if x = x = 0∨ y = y = 0

[1, 1] if x = x = 1∧ y = y = 1

[0, 1] otherwise

[x, x] [∨] [y, y] =


[0, 0] if x = x = 0∧ y = y = 0

[1, 1] if x = x = 1∨ y = y = 1

[0, 1] otherwise

[¬][x, x] =


[0, 0] if x = x = 1

[1, 1] if x = x = 0

[0, 1] otherwise

8.2 Abstract Interpretation Concepts

The objective of abstract interpretation is to associate a single abstract

computation sequence

a = α0.α1.α2 . . .

with a program, function or method. Each element of a is an abstract

valuation function α mapping each variable symbol to its current lattice

valuation (which is an interval valuation in the simplest case considered

here). The basic principles for obtaining such an abstract interpretation

computation are as follows:

Assignments. An assignment x0 = f(x1, . . . , xn); performed in program

state αi maps to a new state αi+1 which di�ers from αi in two arguments

only:
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� The program counter p (evaluated as a concrete natural number and

not as an interval for the simplest form of abstract interpretation) is

incremented by one,

αi+1(p) = αi(p) + 1

� The new interval valuation of x0 is equal to the interval valuation of

f with argument valuations taken from state αi:

αi+1(x0) = [f](αi(x1), . . . , αi(xn))

This may be expressed equivalently as

αi+1 = αi ⊕ {p 7→ αi(p) + 1, x0 7→ [f](αi(x1), . . . , αi(xn))}

or, using the semantic brackets notation and an arbitrary abstract pre-state

α,

[[x0 = f(x1, . . . , xn); ]]A(α) = α⊕ {p 7→ α(p) + 1, x0 7→ [f](α(x1), . . . , α(xn))}

Conditional statements. A conditional statement

if ( BooleanCondition ) {

ifBlock

}

else {

elseBlock

}

evaluates to

� the valuation of the if-block if the interval valuation of

[BooleanCondition] results in [1, 1],

� the valuation of the else-block if the interval valuation of

[BooleanCondition] results in [0, 0],

� the join of the if-block and else-block valuations otherwise.
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More formally,

[[if (b) S1 else S2]]A(α) =

(if [[b]]A(α) = [1, 1] then [[S1]]A(α)

elseif [[b]]A(α) = [0, 0] then [[S2]]A(α)

else [[S1]]A(α) t [[S2]]A(α)

endif)⊕ {p 7→ p ′}

where p ′ is the program counter value of the next statement following the

if statement. For abstract valuation functions α0, α1 we de�ne their join by

joining each of their function values, that is,

α0 t α1 : V → L(D); x 7→ α0(x) t α1(x)

Observe that the set of abstract state valuation functions α becomes

a lattice by means of this join de�nition and by de�ning the meet in the

analogous way as

α0 u α1 : V → L(D); x 7→ α0(x) u α1(x)

Loops. While loops of the form

while ( BooleanCondition ) {

whileBlock

}

are interpreted as (potentially in�nite) if-else sequences

if ( BooleanCondition ) {

whileBlock;

if ( BooleanCondition ) {

whileBlock;

if ( BooleanCondition ) {

whileBlock;

if ( ....

....

}

}

}
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The properties of complete lattices (for incomplete ones widening has to

be applied) guarantee that repetitive application of the if-else rules to this

expanded loop representation results in a �xpoint, where no interval valu-

ations change any further. Therefore we can de�ne the abstract interpre-

tation of a while loop by building the supremum

[[while (b) S; ]]A(α) =

(⊔
i≥0

(F i(α))
)
⊕ {p 7→ p ′}

where F is de�ned by

F(α) = if [[b]]A(α) = [1, 1] then [[S]]A(α)

elseif [[b]]A(α) = [0, 0] then α

else [[S]]A(α) t α
endif

Expression F i(α) denotes i-fold functional composition of F applied to α,

that is,

F i(α) = F ◦ . . . ◦ F︸ ︷︷ ︸
i times

(α)

8.3 Abstract Interpretation Examples

Example 12. Consider the following C fragment consisting of a while

loop which terminates after having received an input b = 0 in the body of

the loop. We assume that the input can only assume values 0 or 1.

1 int b = 1; int x = 0;

2 while (b) {

3 x = 1 - x;

4 b = input(); // b in [0,1]

5 }

We are interested in the possible valuations of b and x in situations where

the loop terminates. We apply abstract interpretation rules for assignment

and sequential composition and get
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int b = 1; int x = 0;

// b in [1,1], x in [0,0]

while (b) {

x = 1 - x;

b = input();

}

// Due to fix point calculation below:

// b in [0,1], x in [0,1] (*)

To prove the abstract post-state (*), we apply the while-rule given above

with �x point function

F(α) = if α(b) = [1, 1] then [[x = 1− x;b = input()]]A(α)

elseif α(b) = [0, 0] then α

else [[x = 1− x;b = input()]]A(α) t α
endif

Now we calculate

F({b 7→ [1, 1], x 7→ [0, 0]}) = {b 7→ [0, 1], x 7→ [1, 1]}

F2({b 7→ [1, 1], x 7→ [0, 0]}) = F({b 7→ [0, 1], x 7→ [1, 1]})

= {b 7→ [0, 1], x 7→ [0, 0]} t {b 7→ [0, 1], x 7→ [1, 1]}

= {b 7→ [0, 1], x 7→ [0, 1]}

F3({b 7→ [1, 1], x 7→ [0, 0]}) = F({b 7→ [0, 1], x 7→ [0, 1]})

= {b 7→ [0, 1], x 7→ [0, 1]} t {b 7→ [0, 1], x 7→ [0, 1]}

= {b 7→ [0, 1], x 7→ [0, 1]}

Therefore {b 7→ [0, 1], x 7→ [0, 1]} is the supremum calculated according to

the while-rule. �
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Example 13. Consider the following C-function which inputs x, y, z and

returns a computed value.

1 /**

2 * @pre x in [0,100] and y in [0,100] and z in [-2000,-1001]

3 */

4 int f(int x, int y, int z) {

5 int w = 10;

6 if ( x > w && w > x + y )

7 {

8 w = w*x + y - 1000;

9 }

10 else

11 {

12 w = x*y;

13 }

14 return 1000 / ( z - w );

15 }

We wish to explore whether a divide-by-zero runtime error may occur,

provided that the pre-condition of the function is met. Since the only

devision in this function occurs in line 14, the veri�cation goal can be

expressed as usual as a CTL∗ formula which is indeed an ACTL formula

(we use p to denote the \program counter" indicating the current line

number of the execution):

AG(p = 13⇒ (z−w) 6= 0)

Performing the simplest form of abstract interpretation over integer inter-

vals without using contractors gives us the following interpretation results

which are marked as comments in the listing:

1 /**

2 * @pre x in [0,100] and y in [0,100] and z in [-2000,-1001]

3 */

4 int f(int x, int y, int z) {
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5 int w = 10; // w in [10,10]

6 if ( x > w && w > x + y )

7 // ([0,100] > [10,10] && [10,10] > [0,100] + [0,100])

8 // = [0,1] (top)

9 {

10 w = w*x + y - 1000; // w in [-1000,100]

11 }

12 else

13 {

14 w = x*y; // w in [0,10000]

15 }

16 // join of if-else branches: w in [-1000,10000] ;

17 // this implies (z-w) in [-12000,-1]

18 return 1000 / ( z - w );

19 // return in [-1000,0] (rules for integer division)

20 }

As a consequence, the function will not produce divide-by-zero runtime

errors as long as the pre-condition is observed, because the veri�cation

goal AG(p = 13 ⇒ (z − w) 6= 0) is a direct consequence of the stricter

assertion

AG(p = 14⇒ (z−w) ∈ [−12000,−1])

obtained from the abstract interpretation. �

Exercise 19. For the code fragment given below, apply abstract inter-

pretation rules introduced earlier in this section in order to compute the

sequence α0, α1, . . . of abstract states. As pre-state, α0 = {p 7→ 1} can be

assumed. The possible range for the input is de�ned as [0, 10].

1 int x = input();

2 int y = x/2;

3 while ( x > 0 ) {

4 if ( y < 3 )

5 y = y + 1;

6 x = x - y;

7 }
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Using the abstract interpretation's result, please answer the following ques-

tions (and do not forget to also provide a justi�cation):

1. Does the while loop always terminate?

2. Is it ever possible to reach a state where x < 0?

�
In the remainder of this section we will justify, using the abstraction

concepts introduced in Section 7, why abstract interpretation is a sound

abstraction concept. Indeed, it will become apparent that abstract inter-

pretation induces a Boolean simulation of the concrete program, and the

interval valuations obtained in the abstract interpretation each lead to one

Boolean abstraction variable expressing \The concrete variable valuation

at this program execution point lies within the range indicated by its

interval valuation". The justi�cation will be performed using the function

from the example above, so it does not represent a comprehensive proof.

The procedure we use, however, can be easily seen to apply to abstract

interpretations of any program.

Initial condition and transition relation of the concrete system. As
usual, we start by associating the C function with its predicates specify-
ing intial state and transition relation. In addition to program variables
x, y, z,w we use p to denote the \program counter" indicating the cur-
rent line of the program execution (line numbering as indicated in the �rst
listing of Example 13).

I(p, x, y, z,w) ≡
def

p = 5∧ x ∈ [0, 100]∧ y ∈ [0, 100]∧ z ∈ [−2000,−1001]

R(p, x, y, z,w, p ′, x ′, y ′, z ′, w ′, return ′) ≡
def

(p = 5∧ p ′ = 6∧w ′ = 10∧ x ′ = x∧ y ′ = y∧ z ′ = z)∨
(p = 6∧ x > w∧w > x+ y∧ p ′ = 8∧ x ′ = x∧ y ′ = y∧ z ′ = z∧w ′ = w)∨
(p = 6∧ (x ≤ w∨w ≤ x+ y)∧ p ′ = 11∧ x ′ = x∧ y ′ = y∧ z ′ = z∧w ′ = w)∨
(p = 8∧ p ′ = 14∧w ′ = w · x+ y− 1000∧ x ′ = x∧ y ′ = y∧ z ′ = z)∨
(p = 11∧ p ′ = 14∧w ′ = x · y∧ x ′ = x∧ y ′ = y∧ z ′ = z)∨
(p = 14∧ return ′ = 1000/(z−w)∧ p ′ = 14)

Identification of abstraction variables. The next step of the justi�ca-

tion introduces one Boolean abstraction variable for every interval valuation
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obtained in the abstract interpretation for any expression of interest.

a0 = p (8.4)

a1 = w ∈ [10, 10] (8.5)

a2 = x ∈ [0, 100] (8.6)

a3 = y ∈ [0, 100] (8.7)

a4 = z ∈ [−2000,−1001] (8.8)

a5 = w ∈ [−1000, 100] (8.9)

a6 = w ∈ [0, 10000] (8.10)

a7 = w ∈ [−1000, 10000] (8.11)

a8 = (z−w) ∈ [−12000,−1] (8.12)

The intuition for selection a1, . . . , a7 is obvious: one Boolean abstrac-

tion variable for each concrete variable and associated interval valuation

encountered during abstract interpretation; ai = true indicates that the

variable is in the range speci�ed by the interval involved. Variable a8 has

been introduced because the interval valuation of (z − w) can be used to

prove that a divide-by-zero runtime error does not occur.

In the current example only a �nite number of interval valuations exist.

An abstraction constructed as the ai above only works if this number is

always �nite. For terminating programs only containing bounded loops

this is quite obvious, for non-terminating programs or programs containing

unbounded while-loops an additional argument is required: the result of

each loop execution can be recorded in an interval valuation per variable.

For two consecutive loop executions, the join of each valuation results again

in a single valuation per variable. For complete lattices this continued

join operation will result in a �xpoint which is again an element of the

lattice. Since intervals over integral numbers form a complete lattice, we

can rest assured that application of the �xpoint technique will result in one

valuation result per variable for each loop. Since program text is �nite, the

�niteness of interval valuations follows.

Predicate abstraction of initial condition and transition relation.
Using the predicate abstraction techniques introduced in Section 7, the
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intial condition and transition relation of the abstracted Kripke structure
constructed via the abstraction variables a0 . . . a8 look as follows.

[I](a0, . . . , a8) ≡def
∃ξ0, . . . , ξ4 : (a0 = ξ0 ∧ a1 = ξ4 ∈ [10, 10]∧ a2 = ξ1 ∈ [0, 100]∧

a3 = ξ2 ∈ [0, 100]∧ a4 = ξ3 ∈ [−2000,−1001]∧ a5 = ξ4 ∈ [−1000, 100]∧

a6 = ξ4 ∈ [0, 10000]∧ a7 = ξ4 ∈ [−1000, 10000]∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1])∧

(ξ0 = 5∧ ξ1 ∈ [0, 100]∧ ξ2 ∈ [0, 100]∧ ξ3 ∈ [−2000,−1001])

Dropping binding information about a1, a5, . . . , a8 not needed in the

initial state leads to the fact that

[I](a0, . . . , a8)⇒ A(I) with A(I) =def (a0 = 5∧ a2 ∧ a3 ∧ a4)

For the transition relation, predicate abstraction results in (we have
already performed term replacement of a0 for p or ξ0, respectively)

[R](a0, . . . , a8, a
′
0, . . . , a

′
8) ≡ ∃ξ1, . . . , ξ4, ξ ′

1, . . . , ξ
′
4 :

a1 = ξ4 ∈ [10, 10]∧ a2 = ξ1 ∈ [0, 100]∧

a3 = ξ2 ∈ [0, 100]∧ a4 = ξ3 ∈ [−2000,−1001]∧ a5 = ξ4 ∈ [−1000, 100]∧

a6 = ξ4 ∈ [0, 10000]∧ a7 = ξ4 ∈ [−1000, 10000]∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1]∧

a ′
1 = ξ ′

4 ∈ [10, 10]∧ a ′
2 = ξ ′

1 ∈ [0, 100]∧

a ′
3 = ξ ′

2 ∈ [0, 100]∧ a ′
4 = ξ ′

3 ∈ [−2000,−1001]∧ a ′
5 = ξ ′

4 ∈ [−1000, 100]∧

a ′
6 = ξ ′

4 ∈ [0, 10000]∧ a ′
7 = ξ ′

4 ∈ [−1000, 10000]∧ a ′
8 = (ξ ′

3 − ξ
′
4) ∈ [−12000,−1])∧

((a0 = 5∧ a ′
0 = 6∧ ξ ′

4 = 10∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3)∨

(a0 = 6∧ ξ1 > ξ4 ∧ ξ4 > ξ1 + ξ2 ∧ a
′
0 = 8∧ ξ ′

1 = ξ1 ∧ ξ
′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4)∨

(a0 = 6∧ (ξ1 ≤ ξ4 ∨ ξ4 ≤ ξ1 + ξ2)∧ a ′
0 = 11∧ ξ ′

1 = ξ1 ∧ ξ
′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4)∨

(a0 = 8∧ a ′
0 = 14∧ ξ ′

4 = ξ4 · ξ1 + ξ2 − 1000∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3)∨

(a0 = 11∧ a ′
0 = 14∧ ξ ′

4 = ξ1 · ξ2 ∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3)∨

(a0 = 14∧ return ′ = 1000/(ξ3 − ξ4)∧ a ′
0 = 14))

For the next step we use the abbreviations

~a =
def

(a1, . . . , a8)

~a ′ =
def

(a ′
1, . . . , a

′
8)

~ξ =
def

(ξ1, . . . , ξ4)
~ξ ′ =

def
(ξ ′

1, . . . , ξ
′
4)

B(~a,~ξ, ~a ′,~ξ ′) ≡
def

a1 = ξ4 ∈ [10, 10]∧ a2 = ξ1 ∈ [0, 100]∧

a3 = ξ2 ∈ [0, 100]∧ a4 = ξ3 ∈ [−2000,−1001]∧ a5 = ξ4 ∈ [−1000, 100]∧

a6 = ξ4 ∈ [0, 10000]∧ a7 = ξ4 ∈ [−1000, 10000]∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1]∧

a ′
1 = ξ ′

4 ∈ [10, 10]∧ a ′
2 = ξ ′

1 ∈ [0, 100]∧

a ′
3 = ξ ′

2 ∈ [0, 100]∧ a ′
4 = ξ ′

3 ∈ [−2000,−1001]∧ a ′
5 = ξ ′

4 ∈ [−1000, 100]∧

a ′
6 = ξ ′

4 ∈ [0, 10000]∧ a ′
7 = ξ ′

4 ∈ [−1000, 10000]∧ a ′
8 = (ξ ′

3 − ξ
′
4) ∈ [−12000,−1]
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Applying predicate approximation we get

[R](a0, . . . , a8, a
′
0, . . . , a

′
8)⇒ A(R)(a0, . . . , a8, a

′
0, . . . , a

′
8)

with

A(R)(a0, . . . , a8, a
′
0, . . . , a

′
8) ≡

((a0 = 5∧ a ′
0 = 6∧ a ′

1 ∧ a
′
2 = a2 ∧ a

′
3 = a3 ∧ a

′
4 = a4 ∧ a

′
5 ∧ a

′
6 ∧ a

′
7)∨

(a0 = 6∧ a ′
0 = 8∧

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧ ξ1 > ξ4 ∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4)∧

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧ ξ4 > ξ1 + ξ2 ∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4))∨

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧
a0 = 6∧ ξ1 ≤ ξ4 ∧ a ′

0 = 11∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4)∨

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧
a0 = 6∧ ξ4 ≤ ξ1 + ξ2 ∧ a ′

0 = 11∧ ξ ′
1 = ξ1 ∧ ξ

′
2 = ξ2 ∧ ξ

′
3 = ξ3 ∧ ξ

′
4 = ξ4)∨

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧
a0 = 8∧ a ′

0 = 14∧ ξ ′
4 = ξ4 · ξ1 + ξ2 − 1000∧ ξ ′

1 = ξ1 ∧ ξ
′
2 = ξ2 ∧ ξ

′
3 = ξ3)∨

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧
a0 = 11∧ a ′

0 = 14∧ ξ ′
4 = ξ1 · ξ2 ∧ ξ ′

1 = ξ1 ∧ ξ
′
2 = ξ2 ∧ ξ

′
3 = ξ3)∨

(∃~ξ,~ξ ′ : B(~a,~ξ, ~a ′,~ξ ′)∧ a0 = 14∧ return ′ = 1000/(ξ3 − ξ4)∧ a ′
0 = 14))

Construction of abstracted and approximated Kripke structure.

The Kripke structure resulting from the abstraction and approximation

(A(I), A(R)) of the concrete C function's initial condition and transition

relation is depicted in Fig. 8.1; it is derived from constructing all possible

solutions of (A(I), A(R)). We have adopted a 3-valued valuation of atomic

propositions for this Kripke structure, where each predicate a may be true

(a), false (not a) or undecided (a = >). This allows us to omit branches

and additional nodes in the Kripke graph if we are not interested in the

current valuation of predicates.

Construction of the final linear Kripke structure. Abstract interpre-

tation in its most simple form which is discussed in this section does not

perform any branching: by taking join operations for the resulting valua-

tions of if-, else- and while-blocks we achieve one linear abstracted compu-

tation. This process can be repeated on the level of the Kripke structure

by introducing additional \undecided"-valuations or weaker predicates for

some atomic propositions: observe that nodes n3 and n4 only di�er in the
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n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8,a1,a2,a3,a4,a5,a6,a7,a8=T n4: a0=11,a1,a2,a3,a4,a5,a6,a7,a8=T

n5: a0=13,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n6: a0=13,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

n7: a0=14,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n8: a0=14,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

Figure 8.1: Kripke structure associated with abstracted and approximated

initial condition and transition relation (A(I), A(R)).

program counter value a0. We my collapse these two nodes into a single

one by choosing a weaker predicate a0 = 8 ∨ a0 = 11, which results in a

Kripke structure as shown in Fig. 8.2.

Finally we observe that { since the truth value of a8 alone decides

about absence of devide-by-zero errors { the actual valuations of a6, a7 are

not relevant as long as a8 holds. This leads us to the �nal linear Kripke

structure shown in Fig. 8.3.
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n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8 or a0 = 11,a1,a2,a3,a4,a5,a6,a7,a8=T

n5: a0=13,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n6: a0=13,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

n7: a0=14,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n8: a0=14,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

Figure 8.2: Kripke structure of Fig. 8.1 with collapsed nodes n3 and n4.

n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8 or a0 = 11,a1,a2,a3,a4,a5,a6,a7,a8=T

n56: a0=13,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8

n8: a0=14,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8

Figure 8.3: Final linear Kripke structure which is in one-one-

correspondence with the abstract interpretation.
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Chapter 9

Real-Time Formalisms Based
on State-Transition Systems
and Shared Variables

In this section we introduce a description formalism incorporating the no-

tion of real time: Time is captured in a new model variable t̂ typed over

R+ = [0,∞). This allows us to describe time-continuous evolutions as

needed in the description of physical models. Real-time formalisms sup-

porting a notion of time in R+ are called dense-time formalisms, in con-

trast to discrete-time formalisms, where time is described by a counter

recording the number of discrete clock ticks that occurred since the start

of a computation. Variables are taken as usual from a set V which is now

partitioned into �ve disjoint subsets I,O, VL, T, {t̂} denoting input variables,

outputs, local variables, timer variables and the current time, respectively.

9.1 The Passage of Time

This section has been created for Issue 3.3.

Recall from Chapter 1 that we require that timed computations ful�l

the following realistic assumptions for timed computations

c = (t0, s0).(t1, s1). . . .
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1. Time is monotonic. This means that consecutive time stamps in a

computation never decrease.

2. Finite variability. The computation can perform only �nitely many

state changes in any �nite time interval.

3. Bounded variability. There exists global upper bounds β, δ, such

that the computation can perform at most β state changes in any

time interval of a duration less or equal to δ. This is a stronger

alternative to �nite variability: it states that the state changes inside

the computation cannot be accelerated.

4. Absence of time convergence. The sequence of ti does not converge

to a �nite time value.

5. Absence of time lock. A time lock exists if the computation is time

convergent and a computation su�x exists where no state changes

occur anymore. The system is \locked" in this state for in�nitely

many steps, while the time converges to a �nite value.

6. Non zenoness condition. In�nitely many state changes in the com-

putation require in�nite time. This means that systems cannot be

in�nitely fast. Zenoness complements time lock: a Zeno computation

is time convergent and performs in�nitely many state changes on a

computation su�x.

Analogous well-formedness conditions apply to traces of events. These

intuitive de�nitions are formalised as follows.

Definition 10 Let c = (t0, s0).(t1, s1). . . . be a computation.

1. Time is monotonic in c if and only if

∀i, j ∈ N0 � i ≤ j⇒ ti ≤ tj

2. Computation c ful�ls the �nite variability property if and only if

∀tstart, tend ∈ R≥0 � |{i ∈ N0 | ti, ti+1 ∈ [tstart, tend]∧ si 6= si+1}| <∞
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3. Computation c ful�ls the bounded variability property if and only

if

∃β ∈ N, δ ∈ R>0 � ∀tstart ≤ tend ∈ R≥0 �
tend − tstart ≤ δ⇒ |{i ∈ N0 | ti, ti+1 ∈ [tstart, tend]∧ si 6= si+1}| ≤ β

4. The computation c is time divergent if and only if limi→∞ ti =∞.

If c is not time divergent, it is called time convergent.

5. Computation c has a time lock if and only if

∃τ ∈ R≥0, ` ∈ N � lim
i→∞ ti = τ∧ ∀j ≥ ` � sj = s`

6. Computation c is a Zeno sequence if and only if

∃τ ∈ R≥0 � lim
i→∞ ti = τ∧ |{j ∈ N0 | sj 6= sj+1}| =∞

�

In the following example, we illustrate the concepts introduced in Def-

inition 10 and the di�erences between them.

Example 14. Let S = {a0, a1} be a state space with two states. The

computation

c1 = (0, a0).(1−
1

2
, a1).(1−

1

22
, a0).(1−

1

23
, a1) . . . (1−

1

2i
, ai%2) . . .

is time convergent to τ = 1, because limi→∞ 2−i = 0. Moreover, it is a

Zeno sequence, since in�nitely many state changes a0 −→ a1 −→ a0 . . . are

performed in time interval [0, 1].

In contrast to this, computation

c2 = (0, a0).(1−
1

2
, a1).(1−

1

22
, a0).(1−

1

23
, a1) . . .

(1−
1

21000
, a0).(1−

1

21001
, a0).(1−

1

21002
, a0) . . .

is time convergent and a time lock, since beyond element 1000, the state

a0 will never be left again.
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Obviously, c1 violates both the �nite variability and the bounded vari-

ability property, since in�nitely many state changes are performed in time

interval [0, 1]. Computation c2, is time convergent, but is ful�ls the

bounded variability property, and, therefore, also the �nite variability prop-

erty.

The following computation is an example of a computation that ful�ls

the �nite variability property but not the bounded variability, and it is

time-divergent.

c3 = (0, a0).(1, a1).(

2∑
j=1

1

j
, a0).(

3∑
j=1

1

j
, a1) . . . (

i∑
j=1

1

j
, ai%2) . . .

The time divergence follows from the fact that the time stamps t1, t2, . . .

in c3 represent the harmonic series

ti = 1+
1

2
+
1

3
+
1

4
+ · · ·+ 1

i
, i = 1, 2, 3,−→∞

which is known to diverge. Moreover, since the sum diverges, there can only

be �nitely many time stamps �tting into any given time interval [tstart, tend]

with tstart ≤ tend ∈ R≥0.
This computation, however, does not ful�l the bounded variability prop-

erty: given any bound β ∈ N and any time interval width δ ∈ R≥0, we �nd
a computation segment covering a time span less or equal to δ, but contain-

ingmore than β time stamps. To understand this, recall that the harmonic

function

Hn =

n∑
j=0

1

j

grows only logarithmically. In the time interval [Hm, Hm+β], computation

c3 has (β+1) computation elements with time stamps Hm, Hm+1, . . . , Hm+β.

The width of the interval is Hm+β −Hm which converges (slowly) towards

0 with m −→∞.

As an example, assume that the number of state changes occurring in

intervals with width less or equal to δ = 4 were bounded by β = 10000. This

is easily disproved by analysing the function graph of f(m) = Hm+10000 −

Hm, as depicted in Fig. 9.1. For m = 200, f(m) is already smaller than
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δ = 4 (Mathematica will tell you, it's approximately 3.929376735), but

the interval [H200, H10200] contains 10001 > β computation elements. For a

smaller δ, we just increase m: for m = 100000, for example, the interval

width Hm+10000 −Hm is only 0.09530972526. �

0 200 400 600 800 1000
m

1

2

3

4

5

6
H_ (m+ 10000) -H_m

Figure 9.1: Di�erence Hm+10000 −Hm for m ∈ (0, 1000].

9.2 Abstract Syntax of

Timed State Machines

Timed State Machines m consist of locations ` ∈ Loc(m) (also called

control states) and transitions

τ = (`, p, g, α, ` ′) ∈ Σ(m) ⊆ Loc(m)× P ×G×A× Loc(m)

connecting source and target locations ` and ` ′, respectively. Value p ∈
P = N0 denotes the priority of the transition (0 is the best priority) and is

used to enforce determinism for state machines. Transition component g ∈
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Bexpr(V) denotes the guard condition of τ which is a Boolean expression

over symbols from V. For timer symbols t ∈ T occurring in g we only allow

Boolean conditions elapsed(t, c) with constants c. Intuitively speaking,

elapsed(t, c) evaluates to true if at least c time units have passed since t's

most recent reset.

Transition component α ∈ A = P(V × Expr(V)) denotes a set of value

assignments to variables in V, according to expressions from Expr(V). For

a pair a = (v, e) ∈ A, var(a) =def v and expr(a) =def e denote the

projections on variable and expression, respectively. For timer symbols

t ∈ T only resets (t, reset) are allowed. A transition without accompanying

assignments is associated with an empty set α = ∅. Function

ω : Loc(m)→ P(Σ(m)); ` 7→ {(`, p, g, α, ` ′) ∈ Σ(m) | ` = `}

maps locations to their outgoing transitions. Each state machine m has

a speci�c start location start(m). Exactly one transition must leave

start(m), and the guard of this transition has to be true.

The parallel composition of timed state machinesm1, . . . ,mn operating

over the same set V of variables is denoted by

‖i=1,...,n mi

If more than one machine write to the same variables from VL ∪ O then

these are called shared variables. Timer variables must never be shared,

and inputs must never be written to.

Example 15. Fig. 9.2 shows an example of a simple switching mechanism

involving a timer t: The start location is marked by the black bullet.

Initially, the device controlled by this mechanism is switched o� by setting

the control output out to 0. If the switch sw is set to 1 then the device is

switched on by means of output out = 1. A timer is set, so that the device

is automatically switched o� after 100 time units. In that case, the input

switch sw has to be reset �rst, before the device can be switched on again.

Otherwise, if the switch sw is reset to 0 before the timer elapses, the device

is switched o� at once and switched on again as soon as sw = 1. �
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2

ONOFF
out = 1; reset(t);

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[elapsed(t,100)] /
out = 0;

[sw == 0]

I = { sw } O = { out } T = { t }

/ out = 0;

1

Figure 9.2: Timed state machine s for switch with timeout.

9.3 Semantics of Timed State Machines

The semantics of timed state machines is based on timed state transition

systems TSTS = (S, S0, R): The state space S consists of valuation functions

s : Loc(m) ∪ V → D satisfying s(t̂), s(t) ∈ R+ for valuation of global time

t̂ and timer variables t. As a consequence, S has uncountable cardinality.

For locations `, s(`) ∈ B, s(`) = true signifying that the state machine is

currently in this location. Initial states reside in the start location and have

current time t̂ = 0, but may be associated with arbitrary input values. Also,

local variables, outputs and timer have arbitrary values which are typically

reset during the �rst transition from the start location to its target.

Current time t̂ changes over physical time z like an ideal clock: if the

model execution starts at physical point in time z0, then the current time

always ful�ls

t̂ = z− z0

or, equivalently,
dt̂

dz
= 1
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which will occur in the invariants introduced below, which are part of the

transition relation.

Example 16. For the example from Fig. 9.2, this results in the following

initial state:

S0 = {s ∈ S | s |= I}
I ≡ start(m)∧ t̂ = 0∧ INV

INV ≡ (start(m)∨OFF∨ON∨ TIMEOUT)∧

¬(start(m)∧OFF)∧ ¬(start(m)∧ON)∧ ¬(start(m)∧ TIMEOUT))∧

¬(OFF∧ON)∧ ¬(OFF∧ TIMEOUT)∧ ¬(ON∧ TIMEOUT)∧ dt̂
dz

= 1

�
Transitions are classi�ed as

� discrete transitions and

� delay transitions,

which is the canonical approach for dense-time formalisms: Discrete tran-

sitions take place in zero time; they may change outputs, local variables,

timers and locations, while inputs and current time t̂ remain stable. Delay

transitions can only happen when no discrete transition is enabled. In that

case, the current time is advanced by a positive value, but only as far as

the point in time where the next timers elapse, because this might enable

another discrete transition. Obviously, TSTS contains uncountably many

transitions, since time may proceed in in�nitesimally small units, each unit

inducing a delay transition.

More formally, the e�ect of an action α = {a1, . . . , ak} is de�ned as

ε(α) ≡def
( ∧
a∈α∧var(a)∈V−T

var(a) ′ = expr(a)
)
∧

( ∧
a∈α∧var(a)∈T

var(a) ′ = t̂
)

A state machine transition τ = (`0, p, g, α, `1) may be triggered (or,

synonymously, it may �re) if

triggerm(`0, p, g, α, `1) ≡def `0∧g∧ (∀(`0, p, g, α, `1) ∈ ωm(`0) : p ≥ p∨¬g)
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holds. This means that for τ to �re, s must reside in location `0, τ's

guard condition has to evaluate to true and no higher-priority transition

emanating from `0 can be triggered. The e�ect of a state machine transition

τ = (`0, p, g, α, `1) that can be triggered is speci�ed as

ε(`0, p, g, α, `1) ≡def ε(α)∧ ` ′1

The write set of an action α is de�ned by the set of left-hand side variables

and timers that are changed by this action:

W(α) =def {var(a) | a ∈ α}

The write set of a transition τ = (`0, p, g, α, `1) is de�ned by the write set

of its action:

W(τ) =def W(α)

The complete transition relation of a parallel system ‖i=1,...,n si is de�ned
by

Φ ≡def ((triggerD ∧ΦD)∨ (¬triggerD ∧ΦT))∧ Inv ′

where predicate triggerD is de�ned as follows:

triggerD ≡def (
n∨
i=1

∨
τ∈Σ(si)

triggermi
(τ))

The invariant Inv states that

� every state machine may be in at most one location at time,

� every variable only takes values in its speci�ed domain, and

� the current time behaves like an ideal clock.

Inv ≡def
(∀i ∈ {1, . . . , n}, `0, `1 ∈ Loc(mi) : `0 ∧ `1 ⇒ `0 = `1)∧

(∀v ∈ V : v ∈ Dv)∧
dt̂
dz

= 1

ComponentsΦD andΦT denote the discrete and delay transition aspects

of the complete transition relation Φ, respectively: if triggerD evaluates to
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true we get the e�ect of a discrete transition, and if it evaluates to false,

a delay transition is performed. For discrete transitions we de�ne

ΦD ≡def (t̂ ′ = t̂)∧ (∀v ∈ I : v ′ = v)∧
(∀i ∈ {1, . . . , n}, τ ∈ Σ(mi) : trigger(τ)⇒ ε(τ))∧

(∀v ∈ V − I : written(v)∨ v ′ = v)

The current time and the inputs remain unchanged during a discrete transi-

tion; all transitions of state machines si that may �re are performed simul-

taneously, and variables that are not written to by any transition remain

unchanged. Formally, written(v) is de�ned as

written(v) ≡def (∃i ∈ {1, . . . , n}, τ ∈ Σ(mi) : trigger(τ)∧ v ∈W(τ))

The delay component ΦT formalises the following rules:

� The current time has to be advanced.

� All locations, local variables and outputs remain unchanged.

� The current time may be advanced at most up to the point in time

where the next timer will elapse.

� Timers which are already elapsed do not restrict the amount of time

t̂ is advanced.

ΦT ≡def (t̂ ′ > t̂)∧

(∀i ∈ {1, . . . , n}, ` ∈ Loc(mi) : `
′ ⇔ `)∧

(∀v ∈ V − I : v ′ = v)∧

(∀i ∈ {1, . . . , n}, (`0, p, g, α, `1) ∈ Σ(mi) :

(∃g ∈ Bexpr, t ∈ T, c ∈ N : g ≡ g∧ elapsed(t, c))⇒
(t̂ ′ ≤ c+ t∨ t̂ ≥ c+ t))
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Example 17. For the example from Fig. 9.2, this results in the following
transition relation:

R ≡ INV∧ INV ′ ∧ ((start(m)∧ sw ′ = sw∧ t ′ = t∧ t̂ ′ = t̂∧ out ′ = 0∧OFF ′)∨
(OFF∧ sw = 0∧ t̂ ′ > t̂∧ out ′ = out∧ t ′ = t∧OFF ′)∨
(OFF∧ sw = 1∧ sw ′ = sw∧ t̂ ′ = t̂∧ out ′ = 1∧ t ′ = t̂∧ON ′)∨
(ON∧ sw = 1∧ t̂ ′ > t̂∧ (t̂− t) < 100∧ (t̂ ′ − t) ≤ 100∧ out ′ = out∧ t ′ = t∧ON ′)∨
(ON∧ sw = 1∧ (t̂− t) ≥ 100∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧ TIMEOUT ′)∨
(ON∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧OFF ′)∨
(TIMEOUT∧ sw = 1∧ t̂ ′ > t̂∧ t ′ = t∧ out ′ = out∧ TIMEOUT ′)∨
(TIMEOUT∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = out∧ t ′ = t∧OFF ′))

�
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Exercise 20.

1. Give an intuitive natural-language explanation why R in Example 17

represents the transition relation of the example from Fig. 9.2 in a

correct way.

2. Trace back every component in predicate R to the general predicate

constructions Φ,ΦD, ΦT introduced above.

�

Example 18. We apply the concept of predicate abstraction introduced

in Section 7.6 in order to prove that the sample model displayed in Fig. 9.2

satis�es the property

Φ1 ≡ AG(¬ON∨ (t̂− t ≤ 100))

The KS from Fig. 9.2 is K with V = {sw, out, t, t̂,ON,OFF,TIMEOUT},

initial condition I as de�ned in Example 16, and transition relation as

speci�ed in Example 17.

Applying the recipe from Example 10, we proceed as follows.

1. A useful heuristic is to create an abstraction from the atomic propo-

sitions occurring in the formula to be proven. Φ1 has atoms ON

and (t̂ − t ≤ 100), so we de�ne a variable set Va = {ON, a} for the

simulation space, with abstracting expression

a ≡ (t̂− t ≤ 100)

For ON we do not need an abstracting expression, because it will be

used with the same meaning as in the original Kripke Structure.

2. The state space of the simulation is Sa = Va → B, the set of Boolean
functions over Va.

3. The simulation relation is de�ned by

H = {(s, sa) ∈ S× Sa | sa(ON) = s(ON), sa(a) = s(t̂− t ≤ 100)}

4. The initial condition Ia is constructed below, using Theorem 10 and

the associated Lemma 5.
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5. The transition relation Ra is constructed below, using Theorem 10.

6. The atomic propositions of the simulation space are

APa = {ON, a}

7. The labelling function of the simulation space is speci�ed by

∀sa ∈ Sa : La(sa) = {p ∈ APa | sa(p)}

Using Theorem 10, we calculate the initial condition as follows (we write ss

short for start(s) and TO short for TIMEOUT). This calculation is based

on the original initial condition of the concrete system from Fig. 9.2, as

elaborated in Example 16.

Ia ≡ ∃ss, sw, out,OFF,TO, t, t̂ : I ∧ a = (t̂− t ≤ 100)
≡ ∃ss, sw, out,OFF,TO, t, t̂ : ss∧ t̂ = 0∧ INV∧ a = (t̂− t ≤ 100)

Since t̂, t have domain R+, (t̂ − t ≤ 100) must hold in any initial state of

K; this implies

Ia ≡ ¬ON∧ a

Now we calculate Ra, using again Theorem 16 and the formula for R

143



developed in Example 17.

Ra ≡ ∃ss, sw, out,OFF,TO, t, t̂, ss ′, sw ′, out ′,OFF ′,TO ′, t ′, t̂ ′ :(
R∧ a = (t̂− t ≤ 100)∧ a ′ = (t̂ ′ − t ′ ≤ 100)

)
≡ ∃ss, sw, out,OFF,TO, t, t̂, ss ′, sw ′, out ′,OFF ′,TO ′, t ′, t̂ ′ :(

INV∧ INV ′ ∧ a = (t̂− t ≤ 100)∧ a ′ = (t̂ ′ − t ′ ≤ 100)∧(
(ss∧ sw ′ = sw∧ t ′ = t∧ t̂ ′ = t̂∧ out ′ = 0∧OFF ′)∨

(OFF∧ sw = 0∧ t̂ ′ > t̂∧ out ′ = out∧ t ′ = t∧OFF ′)∨

(OFF∧ sw = 1∧ sw ′ = sw∧ t̂ ′ = t̂∧ out ′ = 1∧ t ′ = t̂∧ON ′)∨

(ON∧ sw = 1∧ t̂ ′ > t̂∧ (t̂− t) < 100∧ (t̂ ′ − t) ≤ 100∧ out ′ = out∧ t ′ = t∧ON ′)∨

(ON∧ sw = 1∧ (t̂− t) ≥ 100∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧ TO ′)∨

(ON∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧OFF ′)∨

(TO∧ sw = 1∧ t̂ ′ > t̂∧ t ′ = t∧ out ′ = out∧ TO ′)∨

(TO∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = out∧ t ′ = t∧OFF ′)
))

≡ (¬ON∧ a∧ ¬ON ′ ∧ a ′)∨

(¬ON∧ ¬ON ′ ∧ ¬a ′)∨

(¬ON∧ON ′ ∧ a ′)∨

(ON∧ON ′ ∧ a ′)∨

(ON∧ ¬ON ′)

In this calculation we have used several simpli�cation rules for propositional

formulas; most importantly

1. If p(~x) is a proposition with free variables in ~x = (x1, . . . , xn) (a

\vector" of one or more free variables), and q is a proposition with

free variables outside {x1, . . . , xn}, then

∃~x : (p(~x)∧ q) ≡ (∃~x : p(~x))∧ q

2. ((a∧ b)∨ (a∧ ¬b)) ≡ a

The transition relation of the simulation KS is shown in Fig. 9.3. It is

obvious that Φ1. �

Example 19. In the same context as in Example 18, we will now show

that the sample model displayed in Fig. 9.2 satis�es the property

A(G(sw)⇒ F(ON∧ (t̂− t) > 50))
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Initial states are drawn as boxes.

Figure 9.3: Transition graph of the simulation KS speci�ed in Example 18.

We handle sw as a Boolean variable so that (sw = 1) ≡ sw. Proceeding in
analogy to the previous example, we construct the simulation Ka as shown

below. As in the previous example, we use short-hand ss for the predicate

start(s). Here it will turn out that in order to prove the assertion, we need

ss as additional variable in the simulation space, because otherwise it is

impossible to prove the assertion.

1. Va = {ss, sw,ON, b}, where ss, sw,ON are used in Ka just as in the

concrete model, and

b ≡ ((t̂− t) > 50)

is used to abstract the Boolean variable b.

2. The state space of the simulation is Sa = Va → B, the set of Boolean
functions over Va.

3. The simulation relation is de�ned by

H = {(s, sa) ∈ S× Sa | sa(sw) = s(sw),

sa(ss) = s(ss), sa(ON) = s(ON), sa(b) = s(t̂− t > 50)}
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4. The initial condition Ia is constructed below, using Theorem 10.

5. The transition relation Ra is constructed below, using Theorem 10.

6. The atomic propositions of the simulation space are

APa = {sw,ON, b}

7. The labelling function of the simulation space is speci�ed by

∀sa ∈ Sa : La(sa) = {p ∈ APa | sa(p)}

The initial condition is calculated as follows.

Ia ≡ ∃ss, out,OFF,TO, t, t̂ : I ∧ b = (t̂− t > 50)

≡ ∃out,OFF,TO, t, t̂ : ss∧ t̂ = 0∧ INV∧ b = (t̂− t > 50)

≡ ss∧ ¬ON∧ ¬b

146



The transition relation is calculated as follows.

Ra ≡ ∃out,OFF,TO, t, t̂, out ′,OFF ′,TO ′, t ′, t̂ ′ :(
R∧ b = (t̂− t > 50)∧ b ′ = (t̂ ′ − t ′ > 50)

)
≡ ∃out,OFF,TO, t, t̂, out ′,OFF ′,TO ′, t ′, t̂ ′ :(

INV∧ INV ′ ∧ b = (t̂− t > 50)∧ b ′ = (t̂ ′ − t ′ > 50)∧(
(ss∧ sw ′ = sw∧ t ′ = t∧ t̂ ′ = t̂∧ out ′ = 0∧OFF ′)∨

(OFF∧ ¬sw∧ t̂ ′ > t̂∧ out ′ = out∧ t ′ = t∧OFF ′)∨

(OFF∧ sw∧ sw ′ = sw∧ t̂ ′ = t̂∧ out ′ = 1∧ t ′ = t̂∧ON ′)∨

(ON∧ sw∧ t̂ ′ > t̂∧ (t̂− t) < 100∧ (t̂ ′ − t) ≤ 100∧ out ′ = out∧ t ′ = t∧ON ′)∨

(ON∧ sw∧ (t̂− t) ≥ 100∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧ TO ′)∨

(ON∧ ¬sw∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ t ′ = t∧OFF ′)∨

(TO∧ sw∧ t̂ ′ > t̂∧ t ′ = t∧ out ′ = out∧ TO ′)∨

(TO∧ ¬sw∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = out∧ t ′ = t∧OFF ′)
))

≡ (ss∧ ¬ON∧ sw ′ = sw∧ b ′ = b∧ ¬ss ′ ∧ ¬ON ′)∨

(¬ss∧ ¬ON∧ ¬sw∧ (¬b∨ (b∧ b ′))∧ ¬ss ′ ∧ ¬ON ′)∨

(¬ss∧ ¬ON∧ sw∧ sw ′ ∧ ¬b ′ ∧ ¬ss ′ ∧ON)∨

(¬ss∧ON∧ sw∧ (¬b∨ (b∧ b ′))∧ ¬ss ′ ∧ON ′)∨

(¬ss∧ON∧ ¬sw∧ ¬sw ′ ∧ b ′ = b∧ ¬ss ′ ∧ ¬ON ′)∨

(¬ss∧ON∧ sw∧ b∧ b ′ ∧ ¬ss ′ ∧ ¬ON ′)∨

(¬ss∧ ¬ON∧ sw∧ b∧ b ′ ∧ ¬ss ′ ∧ ¬ON ′)∨

(¬ss∧ ¬ON∧ ¬sw∧ ¬sw ′ ∧ b ′ = b∧ ¬ss ′ ∧ ¬ON ′)

In Figure 9.4, the transition graph of the simulation KS is shown. To

prove the assertion, it is necessary to refer to the invariant dt̂
dz

= 1: this

implies that the node labelled by {sw,ON} cannot have a path performing

an in�nite number of self loops, because the side condition ¬b ≡ t̂− t ≤ 50
can only hold for a �nite time interval. With this in mind, all in�nite paths

satisfying Gsw must pass through the state with label {sw,ON, b}. �

9.4 Discussion

Modelling formalisms where all parallel components �re transitions simul-

taneously in zero time, as soon as their trigger conditions are ful�lled are

called synchronous ; it is also said that they implement the true paral-
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Initial states are drawn as boxes.

Figure 9.4: Transition graph of the simulation KS speci�ed in Example 19.
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lelism paradigm. They are appropriate for modelling multi-core systems

or distributed systems where di�erent tasks can perform computation steps

in a truly simultaneous way. Since parallelism is basically expressed by log-

ical conjunction, the model deadlocks as soon as racing conditions occur:

If one action or several actions executed by simultaneous transitions try to

write di�erent values to the same variable, say α = {(x, 5), (x, 6)}, this leads

to a logical contradiction, such as x ′ = 5 ∧ x ′ = 6. As a consequence, the

transition relation predicate has no solution, and the system is blocked. As

a consequence, models containing racing conditions are not allowed.

In contrast to true parallelism, formalisms using interleaving semantics

do not block in presence of racing conditions: These semantics stipulate

that no two events { say e1 =def x := 5; , e2 =def x := 6; may happen

simultaneously, but are always causally related. So either e1 happens before

e2 or vice versa, and you get the result of the event that has been executed

last. This paradigm corresponds to quasi-parallel execution of events. It

is only applicable if it can be assured that events are atomic. This is not

the case, for example, if assignments to wide integers or 
oats are made,

which need two memory bus transfers for one assignment: as consequence,

two \interleaved" assignments may lead to a result where the upper word

contains the value of the �rst assignment while the lower word contains the

value of the second assignment or the other way round. If these situations

have to be taken into account, it is better to use synchronous semantics and

disallow racing conditions, because the atomicity assumption of interleaving

semantics is not justi�ed.

The transition relation speci�ed above is non-compositional in the

sense that it is not just de�ned by the conjunction of local transition re-

lations for isolated state machines, but additional predicates specify the

conditions when variables remain unchanged. This is the price to pay for

being allowed to use shared variables in VL ∪ O, which can be written to

by more than one state machine.

The most important dense-time formalisms with interleaving semantics

is called Timed Automata [5, Chapter 17]. In contrast to the Timed State

Machines investigated in this chapter, Timed Automata (TA) have the

following distinguishing properties, apart from the fact that they are based
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on interleaving semantics.

� Synchronisation events for concurrent TA

� Atomic operations involving multiple assignments

� Non-urgency. Transitions without synchronisation events, whose

guard conditions are enabled, do not need to perform the transition

immediately. Instead, a TA can \linger" in a control state as long as

a state invariant still evaluates to true.

� Nondeterminism. Several transitions leaving a control state may be

enabled at the same time. A nondeterministic choice is performed

which one (if any) �res. There is no prioritisiation.

9.5 Clock Abstraction

In order to perform �nite-state model checking of timed state machine prop-

erties we introduce clock variables, applying the well-known abstraction

techniques introduced in Section 7. Given a timed state machine s with

timers ti ∈ T and current time t̂ the auxiliary variables

xi(t̂, ti) =def (t̂− ti), ti ∈ T

are called clock variables; let C denote the set of all these xi. Observe that,

since t̂ is an ideal clock, xi satis�es

dxi

dz
= 1

where z denotes physical time.

Now we take AUX to be the set of all these clock variables together

with all original variables used in s with exception of the timers, that is,

AUX =def C ∪ (V − T)

Let ∼ denote the equivalence relation induced by AUX according to the

factorisation principle described in Section 7.2. Then, if K denotes the
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Kripke structure associated with s, it is easy to see that K/∼ is bisimilar to

K.

Since the original expressions involving timers ti and model execution

time t̂ were assignments ti = t̂ and conditions (t̂− ti) ≥ c, the only opera-

tions of interest on clock variables xi are assignments xi = 0 and conditions

of the form xi ≥ c; the latter are called atomic clock constraints. The

set ACC(C) denotes the set of all atomic clock constraints. Just as timer

conditions (t̂− ti) ≥ c may be combined by conjunction, atomic clock con-

straints can be connected by ∧. If σ is a state of K/∼ then the valuation of

(atomic and non atomic) clock constraints g is de�ned in the obvious way

by

σ |= x < c i� σ(x) < c

σ |= x ≤ c i� σ(x) ≤ c
σ |= x > c i� σ(x) > c

σ |= x ≥ c i� σ(x) ≥ c
σ |= ¬g i� σ 6|= g
σ |= g∧ g ′ i� σ |= g and σ |= g ′

σ |= g∨ g ′ i� σ |= g or σ |= g ′

With these valuation rules at hand, a labelling function

LC : S→ P(ACC)

can be de�ned which maps every state σ to the set of atomic clock con-

straints valid in σ.

Example 20. The timed state machine shown in Fig. 9.2 and described

in Example 17 can be modelled with clocks instead of timer variables as

shown in Fig. 9.5: instead of timer variable t ∈ T we introduce a clock x.

The reset(t) command is transformed into a reset of the clock to zero. The

elapsed(t,c) guard condition is changed into a guard x ≥ c. The initial

condition and transition relation for the new model is easily derived from

the original predicates shown in Example 17:
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2

ONOFF
out = 1; x=0;

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[x>=100] /
out = 0;

[sw == 0]

I = { sw } O = { out } C = { x }

/ out = 0;

1

Figure 9.5: Timed state machine s with clock instead of timer variable.

S0/∼ = {s ∈ S/∼ | s |= I/∼}

I/∼ ≡ start(s)∧ t̂ = 0∧ INV/∼
INV/∼ ≡ (start(s)∨OFF∨ON∨ TIMEOUT)∧

¬(start(s)∧OFF)∧ ¬(start(s)∧ON)∧ ¬(start(s)∧ TIMEOUT))∧

¬(OFF∧ON)∧ ¬(OFF∧ TIMEOUT)∧ ¬(ON∧ TIMEOUT)∧
dt̂
dz

= 1∧ dx
dz

= 1

R/∼ ≡ INV/∼ ∧ INV/ ′∼ ∧ ((start(s)∧ sw ′ = sw∧ x ′ = x∧ t̂ ′ = t̂∧ out ′ = 0∧OFF ′)∨
(OFF∧ sw = 0∧ t̂ ′ > t̂∧ out ′ = out∧ x ′ = x+ t̂ ′ − t̂∧OFF ′)∨
(OFF∧ sw = 1∧ sw ′ = sw∧ t̂ ′ = t̂∧ out ′ = 1∧ x ′ = x∧ON ′)∨
(ON∧ sw = 1∧ t̂ ′ > t̂∧ x ′ = x+ t̂ ′ − t̂∧ x < 100∧ x ′ ≤ 100∧ out ′ = out∧ON ′)∨
(ON∧ sw = 1∧ x ≥ 100∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ x ′ = x∧ TIMEOUT ′)∨
(ON∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = 0∧ x ′ = x∧OFF ′)∨
(TIMEOUT∧ sw = 1∧ t̂ ′ > t̂∧ x ′ = x+ t̂ ′ − t̂∧ out ′ = out∧ TIMEOUT ′)∨
(TIMEOUT∧ sw = 0∧ t̂ ′ = t̂∧ sw ′ = sw∧ out ′ = out∧ t ′ = t∧OFF ′))

Note that in the de�nition of R/∼ we could drop the conjuncts x
′ = x+ t̂ ′− t̂

because this is already implied by dt̂
dz

= 1 ∧ dx
dz

= 1 which is part of the

invariant. �

152



9.6 Property Specifications for Timed State

Machines

As variants of CTL have been introduced to describe properties of reac-

tive systems without timing aspects, we will now de�ne TCTLX (Timed

CTL With Next Operator) for property speci�cation of timed state ma-

chines. Observe that TCTLX has been derived from TCTL which was in-

troduced for reasoning about timed automata [1]. Since timed automata are

non-deterministic and allow non-urgent execution of discrete transitions, a

Next-operator has no meaning in this context, because uncountably many

delays may occur in most situations before a discrete transition �res. In

contrast to this, TCTLX has a well-de�ned meaning for the Next-operator:

Xφ ≡def the next transition is a discrete one and its post-state satis�es φ

Just as in TCTL, TCTLX de�nes timing properties by means of a timed

variant of the Until-operator:

φUJψ

asserts that property ψ will be ful�lled within t ∈ J time units, where t

is taken from some interval J ⊆ R≥0, and until then φ holds. Any time

interval J ⊆ R≥0 with open or closed boundaries is admissible; in particular

unbounded restrictions like J = [u,∞), u ≥ 0 is allowed. Timed variants of

the Globally and Finally operators are de�ned as syntactic abbreviations

of constructs involving the timed Until-operator:

FJφ ≡def trueUJφ

EGJφ ≡def ¬AFJ¬φ

AGJφ ≡def ¬EFJ¬φ

Observe that these de�nitions are quite intuitive: AGJφ, for example,

asserts that φ holds on every path at least for the time period t ∈ J.
More formally, TCTLX syntax is de�ned as follows.

TCTLX-formula ::= φ

φ ::= p | g | ¬φ | φ∨ φ | φ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ∨ψ | ψ∧ψ | X φ | FJ φ | GJ φ | φ UJ φ
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In this syntax de�nition, p ∈ AP denotes an \ordinary" atomic proposition,

and g ∈ ACC(C) an atomic clock constraint.

Given a system model M of concurrent timed state machines whose

initial condition is de�ned by predicate I and whose transition relation is

given by Φ as introduced above, the semantics of a TCTLX formula is

de�ned in Fig. 9.6. All paths π referenced in this de�nition are assumed to

be time-divergent. If

π = σ0.σ1.σ2 . . .

then di, i ≥ 0 are de�ned as the delays between consecutive states, that is,

di =def (σi+1(t̂) − σi(t̂))

For d ∈ R≥0 a time shift σ+ d is de�ned on states σ by setting

(σ+ d)(v) =def


σ(v) if v ∈ V − (C ∪ {t̂})

σ(t̂) + d if v = t̂

σ(v) + d if v ∈ C

9.7 Property Checking of Concurrent Timed

State Machines

The fundamental idea for TCTLX property checking time state machines

has been adopted from TCTL property checking of Timed Automata [1, 5].

We follow, however, the general abstraction approach for Kripke Structures

introduced in Section 7 and show that our usual construction technique is

applicable to use classical model checking on timed state machines:

� A �rst abstraction is introduced by \forgetting" about all atomic

propositions of the concrete Kripke structure referring to explicit

model execution time t̂ and con�ne ourselves to atomic clock con-

straints only.

� Since both TCTLX formulas and timed state machine guard condi-

tions refer to atomic clock constraints only, every property expressed

in TCTLX can be veri�ed on this �rst abstraction of the original

Kripke structure.
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M,s |= p ≡ p ∈ L(s)
M,s |= g ≡ p ∈ LC(s)
M,s |= ¬φ ≡ M,s 6|= φ
M, s |= φ1 ∨ φ2 ≡ M,s |= φ1 or M,s |= φ2
M,s |= φ1 ∧ φ2 ≡ M,s |= φ1 and M,s |= φ2
M,s |= E ψ ≡ there is a time-divergent path π from s such that M,π |= ψ

M, s |= A ψ ≡ on every time-divergent path π from s holds M,π |= ψ

M,π |= φ ≡ M,π(0) |= φ

M,π |= ¬ψ ≡ M,π 6|= ψ
M,π |= ψ1 ∨ψ2 ≡ M,π |= ψ1 or M,π |= ψ2
M,π |= ψ1 ∧ψ2 ≡ M,π |= ψ1 and M,π |= ψ2
M,π |= X ψ ≡ M,π(0) |= triggerD and M,π1 |= ψ

M,π |= ψ1U
Jψ2 ≡ (1) there exists i ≥ 0, d ∈ R≥0 such that d ∈ [0, di],

d+ Σi−1k=0dk ∈ J and M, (π(i) + d).πi+1 |= ψ2
and

(2) for all 0 ≤ j < i, for all d ′ ∈ [0, dj] satisfying

d ′+Σj−1k=0dk ≤ d+Σi−1k=0dk M, (π(j)+d ′).πj+1 |= ψ1∨ψ2

Figure 9.6: Semantics of TCTLX formulas.
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� The originally uncountable state space is abstracted to a countable

state space by collapsing all concrete system states whose clock valu-

ations lie in the same clock region (a concept to be introduced in the

next section) into a single equivalence class.

� By collapsing all clock regions referring to clock values no longer

\relevant" for the veri�cation goal under consideration, the countable

collection of clock regions is reduced to a �nite one.

� The �nite collection of remaining \relevant" clock regions is speci�ed

by a �nite number of abstractions ai = ei(x1, . . . , xn) as introduced

in Section 7.

� On the resulting �nite Kripke Structure CTL property checking may

be performed with the algorithms introduced in Section 4.

� It is shown that TCTLX formulas over the original system can be

expressed as CTL formulas over the �nite abstration.

� It is shown that the abstracted Kripke Structure is bi-similar to the

original one. Therefore every CTL formula (an not only ACTL prop-

erties) which holds for the abstracted system hold for the original

one.

We introduce the concepts for TCTLX property checking of timed state

machines by means of Example 21.

Example 21. The control mechanism from Fig. 9.5 is extended to a

concurrent controller as depicted in Fig. 9.7. The original control state

machine from Fig.9.5 is still present as state machine s1, but has been

modi�ed in the following way:

� The time scale has been changed so that the timeout occurs a time

1 instead of 100. This has only been done to reduce the number of

clock regions which are introduced below.

� Whenever the machine is switched o� due to the timeout x >= 1 used

as trigger in the transition l1→l2, a counter is increment in order
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to record the number of timeouts which had to be handled since the

system has been activated.

� As soon as an internal shutdown command off = 1; is given by

state machine s2, state machine s1 performs a transition into control

state shutdown, stops the machine by setting out = 0; and remains

passive.

State machine s1 has been augmented by a new state machine s2 which

resets a clock y as soon as the switch sw has been activated for the �rst time.

After two time units have elapsed, machine s2 shuts down the controller

by setting off = 1;.

Observe that the number of transitions l1→l0 is unbounded because

the amount of time spending in location l1 before switching sw manually

back to 0 may be in�nitesimally small. For the transition l1→l2 to occur,

however, one time unit has to pass. We wish to prove via model checking

whether our intuition is right that the counter ctr can never become greater

than 2. A closer look shows that even the value 2 may never be reached:

Incrementing ctr to 2 requires 2 transitions from l1 to l2, each transition

requiring s1 to linger in l1 for 1 time unit. Transitions l2 → l0 → l1

require a value change 0 → 1 for input sw, and this requires at least one

delay transition of duration ε > 0. As a consequence s1 needs more than

2 time units to increment the counter to 2, while s2 sets the shutdown

signal exactly after 2 time units have passed. Formally speaking, we wish

to check the TCTLX formula

AG(ctr < 2)

�

9.8 Clock Regions

Clock regions are constructed to identify vectors of clock valuations, each

vector component for one clock, for which the system will behave in an

equivalent way. The construction \recipe" for clock regions is as follows.
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l0 l1

l2

m0 m1

I={sw} O={out} V_L={ctr,off} C = { x,y }

[sw==1]/out=1;x=0;

[sw==1]/y=0;

/out=0;ctr=0;

[sw==0]/out=0;

[x >=1]/
out=0;ctr=ctr+1;

m2

[y>=2]/off=1;

/off=0;

s1 s2

shutdown

[sw==0]

[off==1]
/out=0;

[off==1]
/out=0;

[off==1]/out=0;

Figure 9.7: Two concurrent timed state machines for controlling a machine

via interface out with switch-o� clock and a �nal-shutdown clock.
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Step 1. For each clock x ∈ C, let cx ∈ N the largest integer c occurring

in an atomic clock constraint x ≥ c, x > c, x ≤ c, x < c, x = c, either in a

guard condition or in the TCTLX property.

Step 2. For each clock x ∈ C, de�ne elementary regions by the following

atomic clock constraints.

x = 0

x ∈ (0, 1)

x = 1

x ∈ (1, 2)

. . .

x ∈ (cx − 1, cx)

x = cx
x ∈ (cx,∞)

This de�nes 2 · (cx + 1) clock constraints, and we use function

α : C× N0 6−→ ACC

as abbreviation for these constraints. For example, if cx = 5, α(x, n) is

de�ned for n = 0, 1, . . . , 9, and α(x, 7) ≡ x ∈ (3, 4). More general,

α(x, n) =def

{
x = n div 2 n mod 2 = 0

x ∈ (n div 2, (n div 2) + 1) n mod 2 = 1

Step 4. For di�erent clocks whose current valuation is inside some open

interval of length 1, it is necessary to know the ordering of their fractional

parts frac(x), because the clock whose valuation has the largest fractional

part will be the next to meet an integer threshold x ≥ c, so that a discrete
transition might become enabled. Let

β : {0, . . . , |C|− 1} −→ C

a permutation signifying the predicate

frac(β(0)) ≤ frac(β(1)) ≤ frac(β(|C|− 1))
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Since the valuations of some clocks may have the same fractional part we

need another function

γ : {1, . . . , |C|− 1} −→ B

signifying whether frac(β(i− 1)) ω frac(β(i)) holds with ω = ′< ′ (γ(i) =

1) or ω = ′= ′ (γ(i) = 0). Let

ord(β, γ)

denote the predicate stating the order of fractional parts of all clocks ac-

cording to a given β, γ.

Step 5. A clock region is a conjunction∧
x∈C

α(x, nx)∧ ord(β, γ)

such that each (x, nx) is in the domain of α and β, γ are de�ned as explained

in Step 4.

9.9 Abstraction by Clock Regions

Given the full collection of constraints de�ning clock regions as described in

the section above we can introduce abstractions using all atomic constraints

created during this process.

Example 22. The clock regions associated with Example 21 induce the

following abstraction functions (observe that cx = 1 and cy = 2):

a0 = (x = 0)

a1 = (x ∈ (0, 1))

a2 = (x = 1)

a3 = (x ∈ (1,∞))

b0 = (y = 0)

b1 = (y ∈ (0, 1))

b2 = (y = 1)

b3 = (y ∈ (1, 2))

b4 = (y = 2)

b5 = (y ∈ (2,∞))

f0 = (frac(x) < frac(y))

f1 = (frac(x) = frac(y))

f2 = (frac(y) < frac(x))

160



Applying the usual construction of initial condition and transition rela-

tion (I, R) for the concrete system and abstracting to ([I], [R]) as explained

in Section 7, yields the abstracted �nite Kripke Structure depicted in Fig.

9.8. Evaluation of all graph nodes of the abstracted Kripke Structure im-

mediately shows that the desired property AG(ctr < 2) holds. �
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n1:  start(s1)  start(s2)  sw=T
ctr=T  off=T  out=T

a0=...=a3=b0=...=b5=f0=...=f2=T

n2.1:  l0  m0  sw=0
ctr=0  off=0  out=0

a0=...=a3=b0=...=b5=f0=...=f2=T

n2.2:  l0  m0  sw=1
ctr=0  off=0  out=0

a0=...=a3=b0=...=b5=f0=...=f2=T

n3:  l1  m1  sw=1
ctr=0  off=0  out=1

a0  b0  f1

n4.1:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b1  f1

n4.2:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b1  f1

n5.1:  l1  m1  sw=1
ctr=0  off=0  out=1

a2  b2  f1

n5.2:  l1  m1  sw=0
ctr=0  off=0  out=1

a2  b2  f1

n5.3:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b1  f1

n6.1:  l2  m1  sw=1
ctr=1  off=0  out=0

a2  b2  f1

n6.2:  l0  m1  sw=0
ctr=0  off=0  out=0

a2  b2  f1

n6.3:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b1  f1

n6.4:  l0  m1  sw=1
ctr=0  off=0  out=0

a2  b2  f1

n7.1:  l2  m1  sw=0
ctr=1  off=0  out=0

a3  b3  f1

n7.2:  l2  m1  sw=1
ctr=1  off=0  out=0

a3  b3  f1

n7.3:  l0  m1  sw=0
ctr=0  off=0  out=0

a3  b3  f1

n7.4:  l0  m1  sw=1
ctr=0  off=0  out=0

a3  b3  f1

n7.5:  l1  m1  sw=1
ctr=0  off=0  out=1

a0  b1  f0

n7.6:  l1  m1  sw=1
ctr=0  off=0  out=1

a0  b2  f1

n8.1:  l0  m1  sw=0
ctr=1  off=0  out=0

a3  b3  f1

n8.2:  l2  m1  sw=0
ctr=1  off=0  out=0

a3  b4  f1

n8.3:  l2  m1  sw=1
ctr=1  off=0  out=0

a3  b4  f1

n8.4:  l0  m1  sw=0
ctr=0  off=0  out=0

a3  b4  f1

n8.5:  l0  m1  sw=1
ctr=0  off=0  out=0

a3  b4  f1

n8.6:  l1  m1  sw=1
ctr=0  off=0  out=1

a0  b3  f0

n8.7:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b1  f0

n8.8:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b1  f0

n8.9:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b2  f2

n8.10:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b2  f2

n8.11:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b3  f1

n8.12:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b3  f1

n9.1:  l0  m1  sw=1
ctr=1  off=0  out=0

a3  b3  f1

n9.2:  l0  m1  sw=0
ctr=1  off=0  out=0

a3  b4  f1

n9.3:  l0  m1  sw=1
ctr=1  off=0  out=0

a3  b4  f1

n9.4:  l=T  m2  sw=T
ctr=1  off=1  out=T

a0=...=a3=T  b4  f0=...=f2=T

n9.5:  l=T  m2  sw=T
ctr=0  off=1  out=T

a0=...=a3=T  b4  f0=...=f2=T

n9.6:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b3  f0

n9.7:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b3  f0

n9.8:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b4  f2

n9.9:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b4  f2

n9.10:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b1  f0

n9.11:  l1  m1  sw=0
ctr=0  off=0  out=1

a2  b3  f0

n9.12:  l1  m1  sw=1
ctr=0  off=0  out=1

a2  b3  f0

n9.13:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b3  f2

n9.14:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b3  f2

n9.15:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b3  f1

n9.16:  l1  m1  sw=0
ctr=0  off=0  out=1

a2  b4  f1

n9.17:  l1  m1  sw=1
ctr=0  off=0  out=1

a2  b4  f1

n10.1:  l1  m1  sw=1
ctr=1  off=0  out=1

a0  b3  f0

n10.2:  sd  m2  sw=T
ctr=1  off=1  out=T

a0=...=a3=T  b0=...=b5=T  f0=...=f2=T

n10.3:  sd  m2  sw=T
ctr=0  off=1  out=T

a0=...=a3=T  b0=...=b5=T  f0=...=f2=T

n10.4:  l0  m1  sw=0
ctr=0  off=0  out=0

a0  b3  f0

n10.5:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b1  f0

n10.6:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b2  f2

n10.7:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b2  f2

n10.8:  l0  m1  sw=0
ctr=0  off=0  out=0

a2  b3  f0

n10.9:  l1  m1  sw=0
ctr=0  off=0  out=1

a3  b3  f0

n10.10:  l1  m1  sw=1
ctr=0  off=0  out=1

a3  b3  f0

n10.11:  l1  m1  sw=0
ctr=0  off=0  out=1

a3  b4  f2

n10.12:  l1  m1  sw=1
ctr=0  off=0  out=1

a3  b4  f2

n10.13:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b3  f2

n10.14:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b3  f1

n10.15:  l0  m1  sw=0
ctr=0  off=0  out=0

a2  b4  f1

n10.16:  l0  m1  sw=1
ctr=0  off=0  out=0

a2  b4  f1

n11.1:  l1  m1  sw=0
ctr=1  off=0  out=1

a1  b3  f0

n11.2:  l1  m1  sw=1
ctr=1  off=0  out=1

a1  b3  f0

n11.3:  l1  m1  sw=0
ctr=1  off=0  out=1

a1  b4  f2

n11.4:  l1  m1  sw=1
ctr=1  off=0  out=1

a1  b4  f2

n11.5:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b3  f0

n11.6:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b3  f0

n11.7:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b4  f2

n11.8:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b4  f2

n11.9:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b3  f2

n11.10:  l0  m1  sw=1
ctr=0  off=0  out=0

a2  b3  f0

n11.11:  l0  m1  sw=0
ctr=0  off=0  out=0

a3  b3  f0

n11.12:  l0  m1  sw=1
ctr=0  off=0  out=0

a3  b3  f0

n11.13:  l0  m1  sw=0
ctr=0  off=0  out=0

a3  b4  f2

n11.14:  l0  m1  sw=1
ctr=0  off=0  out=0

a3  b4  f2

n11.15:  l1  m1  sw=0
ctr=0  off=0  out=1

a3  b4  f2

n11.16:  l1  m1  sw=1
ctr=0  off=0  out=1

a3  b4  f2

n12.1:  l0  m1  sw=0
ctr=1  off=0  out=0

a1  b3  f0

n12.2:  l1  m1  sw=0
ctr=1  off=0  out=1

a1  b4  f2

n12.3:  l1  m1  sw=1
ctr=1  off=0  out=1

a1  b4  f2

n12.4:  l0  m1  sw=0
ctr=0  off=0  out=0

a1  b4  f2

n12.5:  l0  m1  sw=1
ctr=0  off=0  out=0

a1  b4  f2

n12.6:  l1  m1  sw=1
ctr=0  off=0  out=1

a0  b3  f0

n12.7:  l0  m1  sw=0
ctr=0  off=0  out=0

a3  b4  f0

n12.8:  l0  m1  sw=1
ctr=0  off=0  out=0

a3  b4  f0

n13.1:  l0  m1  sw=1
ctr=1  off=0  out=0

a1  b3  f0

n13.2:  l0  m1  sw=0
ctr=1  off=0  out=0

a1  b4  f2

n13.3:  l0  m1  sw=1
ctr=1  off=0  out=0

a1  b4  f2

n13.4:  l1  m1  sw=0
ctr=0  off=0  out=1

a1  b4  f2

n13.5:  l1  m1  sw=1
ctr=0  off=0  out=1

a1  b4  f2

Figure 9.8: Abstracted Kripke Structure for system from Example 21. (Best

viewed with PDF reader, magni�cation.)
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Appendix A

Structural Induction

In this section the principle of structural induction is introduced. The

material is taken from [10, pp. 8].

Definition 11 (Inductive Definition of Sets) Let U be a set called

universe and B ⊆ U, called the base set. Let K a set of relations

r ⊆ Un × U, where n ∈ N depends on r. K is called the constructor

set and each r ∈ K a constructor. A set A ⊆ U is called inductively

de�ned by B and K, if A is the smallest subset of U satisfying

1. B ⊆ A

2. If a1, . . . , an ∈ A and ((a1, . . . , an), a) ∈ r for some constructor

r ∈ K, then a ∈ A.

Theorem 13 (Principle of Structural Induction) let A ⊆ U be in-

ductively de�ned by base set B and constructor set K, and P(x) a prop-

erty on elements of x ∈ A. Suppose that

1. Induction basis. P(x) holds for all x ∈ B.

2. Induction step. If P(ai), i = 1, . . . , n holds for a1, . . . , an ∈ A (in-

duction hypothesis) and ((a1, . . . , an), a) ∈ r for some constructor

r ∈ K, then P(a) also holds.

Then P(a) holds for all a ∈ A. �
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Appendix B

Lattices, Galois Connections,
and Kripke Structures

In this Chapter we introduce lattices and Galois connections �rst as ab-

stract concepts, independent on their application to Kripke Structures,

model checking, and test automation. The de�nitions and results recapped

here are based on the detailed exposition on lattices and order presented

in [7].

B.1 Lattices

Recall that a binary relation ≤ on a set L is called a (partial) order if ≤
is re
exive, transitive and anti-symmetric. An element y ∈ L is called an

upper bound of X ⊆ L if x ≤ y holds for all x ∈ X. The lower bound of

a set is de�ned dually. An upper bound y ′ of X is called a least upper

bound of X and denoted by y ′ =
∨
X if y ′ ≤ y holds for all upper bounds

y of X. Dually, the greatest lower bound
∧
X of a set X is de�ned, that is,

z ≤ ∧X ≤ x for all lower bounds z of X and for all x ∈ X.
An ordered set (L,≤) is called a complete lattice, if

∧
X and

∨
X exist

as elements of L for all subsets X ⊆ L. Lattice L has a largest element (or

top) denoted by > =
∨
L and a smallest element (or bottom) denoted by

⊥ =
∧
L. Least upper bounds and greatest lower bounds induce binary

operations ∨,∧ : L× L→ L by de�ning x∨ y =
∨
{x, y} (the join of x and
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y) and x∧ y =
∧
{x, y} (the meet of x and y), respectively. If the join and

meet are well-de�ned for an ordered set (L,≤) but ∨X,∧X do not exist

for all X ⊆ L then (L,≤) is called an (incomplete) lattice.

Mappings φ : (L1,≤1) → (L2,≤2) between ordered sets are called

monotonic if x ≤1 y implies φ(x) ≤2 φ(y) for all x, y ∈ L. Mappings

φ : (L1,≤1) → (L2,≤2) between lattices are called homomorphisms if

they respect meets and joins, that is, φ(x ∨1 y) = φ(x) ∨2 φ(y) and

φ(x ∧1 y) = φ(x) ∧2 φ(y) for all x, y ∈ (L1,≤1). Since x ≤1 y implies

x∨1 y = y and x∧1 y = x, homomorphisms are monotonic. Lattice homo-

morphisms map > to > and ⊥ to ⊥.
Example 23.

1. For every set M the power set lattice is de�ned by (P(M),⊆). The
join is de�ned bym∨m ′ =def m∪m ′, the meet bym∧m ′ =def m∩m ′.
Top and bottom elements are > =M, ⊥ = ∅, respectively.

2. For every setM we can introduce a nearly trivial orderingv by adding

two new elements >,⊥ 6∈M and de�ning a lattice (M∪{>,⊥},v) such
that all m 6= m ′ ∈M are incomparable and ∀m ∈M : ⊥ v m v >.

3. Applying the above construction to Booleans B = {false, true} re-

sults in the lattice (L(B),v) with L(B) =def {⊥, false, true,>},
⊥ v false v >,⊥ v true v > and true, false incomparable. The

top element > has the intuitive interpretation \undecided { maybe

true or false".

4. (Q,≤) is an incomplete lattice: Take any in�nite set S ⊆ Q whose

elements are converging towards a transcendent number, say
√
2, from

below. Then
∨
S 6∈ Q.

5. The lattice of intervals over reals including ±∞ is de�ned as (IR,⊆
) with [a, a] ∧ [b, b] =def [a, a] ∩ [b, b] and [a, a] ∨ [b, b] =def

[min{a, b},max{a, b}]. The join of [a, a] and [b, b] is also called

the interval hull of [a, a] and [b, b]. The maximal element is

> = [−∞,+∞], and ⊥ = [ ] = ∅.
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6. Interval lattices may be introduced over integral numbers from Z or N
and over rational numbers Q in analogy to (5). Interval lattices over

Z and N are complete. The interval lattice over Q is not complete,

because an in�nite sequence of intervals may have a supremum which

is an interval of (IR,⊆), but is not an interval ofQ, since its boundaries
are irrational numbers.

7. Let Pred be a set of �rst order predicates over a given set V of typed

variable symbols. For ϕ,ψ ∈ Pred, de�ne
[ϕ⇒ ψ] ≡ ∀dv ∈ Dv : ϕ[dv/v|v ∈ V]⇒ ψ[dv/v|v ∈ V]

[ϕ⇒ ψ] indicates that ϕ implies ψ for every admissible valuation of

free variables (observe that some v ∈ V might not occur in ϕ or ψ or

both propositions), that is, ϕ ⇒ ψ is a tautology. Then (Pred,⇒)

is a lattice with join ∨ (logical or) and meet ∧ (logical and), top-

element true and bottom element false. For �nite sets P ⊆ Pred
the least upper bound is the disjunction∨

ϕ∈P

ϕ

and the greatest lower bound is the conjunction∧
ϕ∈P

ϕ

because obviously

∀ψ ∈ P :
[
ψ⇒ ∨

ϕ∈P

ϕ
]

and
[ ∧
ϕ∈P

ϕ⇒ ψ
]

�

Example 24. We show for the implication lattice (Item 7 of the previous

example) that
∨
ϕ∈Pϕ is indeed a lowest upper bound of a �nite set P of

predicates. To this end, let ξ ∈ Pred be another upper bound of P, that is,

∀ψ ∈ P : [ψ⇒ ξ]

Then this can be equivalently re-written as

[
∨
ϕ∈P

ϕ⇒ ξ]

which proves the lowest upper bound property for
∨
ϕ∈Pϕ. �
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B.2 Galois Connections

AGalois connection (GC) between (L1,≤1), (L2,≤2) is a tuple of mappings

F : (L1,≤1) → (L2,≤2) (called lower adjoint) and F∗ : (L2,≤2) → (L1,≤1)
(called upper adjoint) such that

F(a) ≤2 b⇔ a ≤1 F∗(b) for all a ∈ L1, b ∈ L2

This de�ning characteristic implies additional properties [7] which are

listed in the following lemma.

Lemma 7 Let F : (L1,≤1) → (L2,≤2), F∗ : (L2,≤2) → (L1,≤1) be a GC.

Then the following properties are ful�lled by F and F∗.

1. ∀a ∈ L1 : a ≤1 F∗(F(a))

2. ∀b ∈ L2 : F(F∗(b)) ≤2 b

3. F and F∗ are monotonic.

4. F preserves joins: ∀p1, p2 ∈ L1 : F(p1 ∨ p2) = F(p1)∨ F(P2).

5. F∗ preserves meets: ∀q1, q2 ∈ L2 : F∗(q1 ∧ q2) = F∗(q1)∧ F∗(q2).

6. Given F, if (L1,≤1) is complete, the left mapping F∗ is fully deter-

mined by

∀b ∈ L2 : F∗(b) =
∨

{a ∈ L1 | F(a) ≤2 b}

7. Given F∗, if (L2,≤2) is complete, the right mapping F is fully de-

termined by

∀a ∈ L1 : F(a) =
∧

{b ∈ L2 | a ≤1 F∗(b)}

Proof. Proof of property 1. Set b = F(a) ∈ L2. Now we derive step by
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step

F(a) ≤2 F(a) [≤2 is re
exive]⇒ F(a) ≤2 b
[De�nition of b]⇒ a ≤1 F∗(b)
[De�ning property of GCs]⇒ a ≤1 F∗(F(a))
[De�nition of b]

Proof of property 2. Set a = F∗(b) ∈ L1. Then

F∗(b) ≤1 F∗(b) [≤1 is re
exive]⇒ a ≤1 F∗(b)
[De�nition of a]⇒ F(a) ≤2 b
[De�ning property of GCs]⇒ F(F∗(b)) ≤2 b
[De�nition of a]

Proof of property 3. Let a1, a2 ∈ L1. Then

a1 ≤1 a2 ⇒ a1 ≤1 F∗F(a2)
[Property 1 implies a2 ≤1 F∗F(a2) and ≤1 is transitive]⇒ F(a1) ≤2 F(a2)
[De�ning property of GCs with b = F(a2)]

This proves that F is monotonic. Now let b1, b2 ∈ L2. Then

b1 ≤2 b2 ⇒ FF∗(b1) ≤2 b2
[Property 2 implies FF∗(b1) ≤2 b1 and ≤2 is transitive]⇒ F∗(b1) ≤1 F∗(b2)
[De�ning property of GCs with a = F∗(b1)]
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This proves that F∗ is monotonic.

Proof of property 4. By de�nition of the join function, we have p1 ≤1
p1 ∨ p2 and p2 ≤1 p1 ∨ p2. Monotonicity of F (Property 3) implies

F(p1) ≤2 F(p1 ∨ p2)∧ F(p2) ≤2 F(p1 ∨ p2)

Therefore F(p1 ∨ p2) is an upper bound of F(p1) and of F(p2), so the least

upper bound of F(p1) and of F(p2) is less or equal to F(p1∨p2) This implies

F(p1)∨ F(p2) ≤2 F(p1 ∨ p2).
Now we show that F(p1 ∨ p2) ≤2 F(p1) ∨ F(p2) holds, too. Since ≤2 is

anti-symmetric, this implies F(p1∨p2) = F(p1)∨F(p2). To this end, assume

that z ∈ L2 is an arbitrary upper bound of {F(p1), F(p2)}. Then

F(p1) ≤2 z∧ F(p2) ≤2 z ⇒ p1 ≤1 F∗(z)∧ p2 ≤1 F∗(z)
[De�ning property of GCs]⇒ p1 ∨ p2 ≤1 F∗(z)
[p1 ∨ p2 is least upper bound of {p1, p2} ]⇒ F(p1 ∨ p2) ≤2 z
[De�ning property of GCs]⇒ F(p1 ∨ p2) ≤2 F(p1)∨ F(p2)
[z was an arbitrary upper bound, so we can

select z = F(p1)∨ F(p2)]

Proof of property 5. By de�nition of the meet function, we have q1 ∧2

q2 ≤2 q1 and q1 ∧2 q2 ≤2 q2. Monotonicity of F∗ (Property 3) implies

F∗(q1 ∧2 q2) ≤1 F∗(q1) and F∗(q1 ∧2 q2) ≤1 F∗(q2)

Therefore F∗(q1 ∧2 q2) is a lower bound of F∗(q1) and of F∗(q2), so the

greatest lower bound of F∗(q1) and of F∗(q2) is greater or equal to F
∗(q1∧2

q2) This implies F∗(q1 ∧2 q2) ≤1 F∗(q1)∧1 F
∗(q2).

Now we show that F∗(q1)∧1 F
∗(q2) ≤1 F∗(q1∧2 q2) holds, too. Since ≤1

is anti-symmetric, this implies F∗(q1∧2 q2) = F
∗(q1)∧1 F

∗(q2). To this end,
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assume that w ∈ L1 is an arbitrary lower bound of {F∗(q1), F
∗(q2)}. Then

w ≤1 F∗(q1)∧w ≤1 F∗(q2) ⇒ F(w) ≤2 q1 ∧ F(w) ≤2 q2
[De�ning property of GCs]⇒ F(w) ≤2 q1 ∧2 q2

[F(w) is a lower bound of {q1, q2} and

q1 ∧2 q2 is the greatest lower bound]⇒ w ≤2 F∗(q1 ∧2 q2)

[De�ning property of GCs]⇒ F∗(q1)∧1 F
∗(q2) ≤2 F∗(q1 ∧2 q2)

[w is a lower bound of {F∗(q1), F
∗(q2)} and

F∗(q1)∧1 F
∗(q2) is the greatest lower bound]

Proof of property 6. Since (L1,≤1) is a complete lattice, the greatest

lower bound
∨
{a ∈ L1 | F(a) ≤2 b} is an element of L1, and this holds for

arbitrary b ∈ L2. Therefore the expression

∀b ∈ L2 : G(b) =
∨

{a ∈ L1 | F(a) ≤2 b}

introduces a well-de�ned function. To show that G = F∗, we observe that

trivially, F∗(b) ≤1 F∗(b), and therefore F∗(b) ∈ {a ∈ L1 | a ≤1 F∗(b)} which
implies F∗(b) ≤1

∨
{a ∈ L1 | a ≤1 F∗(b)} =

∨
{a ∈ L1 | F(a) ≤2 b} = G(b).

Conversely, we calculate

G(b) =
∨

{a ∈ L1 | F(a) ≤2 b}
[De�nition of G]

=
∨

{a ∈ L1 | a ≤1 F∗(b)}
[De�ning property of GCs]

≤1 F∗(b)

[Property of supremum]

This proves that G(b) = F∗(b). Since b had been an arbitrary element of

L2, G = F∗ follows.
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Proof of property 7. Since (L2,≤2) is a complete lattice, the function

∀a ∈ L1 : H(a) =
∧

{b ∈ L2 | a ≤1 F∗(b)}
is well-de�ned, and it remains to show that F = H. Given a ∈ L1,

F(a) ≤2 F(a) implies F(a) ∈ {b ∈ L2 | F(a) ≤2 b}, and therefore∧
{b ∈ L2 | F(a) ≤2 b} ≤2 F(a) which implies H(a) =

∧
{b ∈ L2 | a ≤1

F∗(b)} =
∧
{b ∈ L2 | F(a) ≤2 b} ≤2 F(a). Conversely,

H(a) =
∧

{b ∈ L2 | a ≤1 F∗(b)}
[De�nition of H]

=
∧

{b ∈ L2 | F(a) ≤2 b}
[De�ning property of GCs]

≥2 F(a)

[Property of in�mum]

�

Example 25. Let F : P(R) → IR, F∗ : IR → P(R) be the GC between the

power set lattice of real numbers and the lattice of intervals over the real

numbers. Then (recall that the join function in IR is equal to the interval

hull t)
F({1, 4, 6} ∪ {2, 3.5, 4}) = F({1, 2, 3.5, 4, 6})

= [1, 6]

= [1, 6] t [2, 4]

= F({1, 4, 6}) t F({2, 3.5, 4})
as expected according to Lemma 7 (4). However, when calculating the

meet of these sets (recall that the meet function u in IR is equal to the set

intersection) results in

F({1, 4, 6} ∩ {2, 3.5, 4}) = F({4})

= [4, 4]

6= [2, 4]

= [1, 6] u [2, 4]

= F({1, 4, 6}) u F({2, 3.5, 4})
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�

Any surjective mapping f : X → Y induces a natural GC between its

associated power set lattices (P(X),⊆)
F∗←−
−→
F

(P(Y),⊆) by de�ning

F : P(X)→ P(Y); F(A) = {f(a) | a ∈ A} (B.1)

and using property 5 above to construct

F∗ : P(Y)→ P(X); F∗(B) =
⋃

{A ∈ P(X) | F(A) ⊆ B}

which is simpli�ed to

F∗(B) = {a ∈ X | f(a) ∈ B} (B.2)

Lemma 8 For any surjective mappings f : X→ Y, g : Y → Z, h : X→ Z

with h = gf, the induced natural GCs satisfy

H = GF,H∗ = F∗G∗

Proof. Let U ⊆ X. GF(U) = G({f(u) | u ∈ U}) = {g(f(u)) | u ∈ U} =
{h(u) | u ∈ U} = H(U). Now let V ⊆ Z. F∗G∗(V) = {x ∈ X | f(x) ∈
G∗(V)} = {x ∈ X | gf(x) ∈ V} = {x ∈ X | h(x) ∈ V} = H∗(V). �

The following technical property of GC between power set lattices will be

needed later for characterising simulation relations.

Lemma 9 Any GC (P(X),⊆)
F∗←−
−→
F

(P(Y),⊆) between power set lattices

maps singleton sets to singleton sets.

Proof. Let A = {a} ∈ P(X) a singleton set and suppose that F(A) = B ∈
P(Y) with |B| > 1. Then we can �nd a proper subset ∅ 6= B ′ ⊂ B of B.

Suppose that there existed an A ′ ∈ P(X) such that F(A ′) = B ′. Then

A ′ 6= ∅, because otherwise G(A ′) = ∅, since G is a homomorphism, and

this contradicted B ′ 6= ∅. The lattice homomorphism properties imply

further that F(A∩A ′) = F(A)∩ F(A ′) = B∩B ′ = B ′. Since A is a singleton
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set we either have A ∩A ′ = ∅ or A ∩A ′ = A. In the �rst case this would

imply F(A ∩ A ′) = F(∅) = ∅, a contradiction to F(A ∩ A ′) = B ′ 6= ∅. In

the second case A ∩A ′ = A we calculate F(A ∩A ′) = F(A) = B, which is a

contradiction to F(A∩A ′) = B ′ 6= B. From these contradictions we conclude

that there exists no A ′ ∈ P(X) such that F(A ′) = B ′. As a consequence,

F∗(B ′) = ∅ for any proper subset B ′ ⊂ B.
According to our assumption |B| > 1, we can write B = B1 ∪ B2 such

that B1, B2 6= ∅ ∧ B1, B2 6= B ∧ B1 6= B2. Then we conclude using the

characteristic GC property that A ⊆ F∗(B) = F∗(B1) ∪ F∗(B2) = ∅.
As a consequence, the original assumption |B| > 1 leads to a contradic-

tion, and this proves the theorem. �

Exercise 21. Construct a GC between the power set lattice over R and

the interval lattice over R. Using this example, explain intuitively what it

means that the left-hand side lattice (domain of the lower adjoint) contains

more �ne-grained information than the right-hand side lattice (domain of

the upper adjoint), so that it is justi�ed to call the right-hand side lattice

an abstraction of the left-hand side lattice. �

B.3 Kripke Structures and

Galois Connections

A KS K = (S, S0, R, L,AP) is associated with two power set lattices in a

natural way.

� The set of states S induces (P(S),⊆).

� The atomic propositions AP induce (L(AP),⊆) with1 L(AP) =

P(L(S)).
An element e of L(AP) is a set of sets of atomic propositions: by de�nition,

we can �nd states s1, . . . , sn such that e = {L(s1), . . . , L(sn)}

The labelling function L : S→ L(S); s 7→ L(s) induces the natural GC

(P(S),⊆)
L∗←−
−→
L

(L(AP),⊆)

1L(S) denotes the image of the labelling function, that is, L(S) = {L(s) | s ∈ S}
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as described above, so for U ⊆ S and Z1, . . . , Zk ∈ L(S)

L : P(S)→ L(AP)
L(U) = {L(s) | s ∈ U}
L∗ : L(AP)→ P(S)
L∗({Z1, . . . , Zk}) =

⋃k
i=1{s ∈ S | L(s) = Zi}

Note that with a slight abuse of notation, the lower adjoint of this GC

is again denoted by L.

Remarks. Lattice (L(AP),⊆) is isomorphic to the lattice (B(AP),⇒) of

Boolean propositions over atomic propositions from AP = {p1, . . . , p|AP|},

where all formulas that do not have a model s : V → D in S are identi�ed

with ⊥ = false. Every formula ϕ ∈ B(AP) can be represented in disjunc-

tive normal form (DNF) as ϕ =
∨k
i=1(ε

i
1(p1) ∧ · · · ∧ εi|AP|(p|AP|)), where k

is the number of minterms needed for representing ϕ in DNF, and each

(ε1i (p1)∧ · · ·∧ ε|AP|i (p|AP|)) denotes such a minterm. The p` are the atomic

propositions in AP, and εi`(p`) is equal to p` or its complement ¬p`. Each

minterm can be encoded by a label Z = L(s) for some s ∈ S, such that

εi`(p`) = p` if p ∈ Z and εi`(p`) = ¬p` if p` ∈ AP−Z. State s is a model for

ϕ, since minterm number i of ϕ evaluates to true in s. The complete set

of models for ϕ is the set of states L∗({Z1, . . . , Zk}), where each Zi encodes

the minterm (εi1(p1)∧ · · ·∧ εi|AP|(p|AP|)). Lattice (L(AP),⊆) is also isomor-

phic to a sub-lattice of the power set lattice (P(2|AP|),⊆) = (22
|AP|
,⊆). The

isomorphism maps each singleton set {Z} ∈ L(AP) to {z}, where the ith bit

z(i) of bit vector z ∈ 2|AP| equals 1 if and only if pi ∈ Z.
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Appendix C

Data Abstraction

C.1 Abstractions and Refinements of Kripke

Structures Without Change of Variables

Let us now consider two KS with identical state space, initial states, and

transition relation, but with di�erent sets of atomic propositions.

Definition 12 KS K = (S, S0, R, L,AP) is called a re�nement of K ′ =

(S, S0, R, L
′, AP ′), and K ′ an abstraction of K, if and only if the function

g : L(S)→ L ′(S); g(L(s)) = L ′(s)

is well-de�ned.

Observe that g is well-de�ned if and only if L(s) = L(r) implies L ′(s) =

L ′(r) for all s, r ∈ S. Hence, if K is a re�nement of K ′, this implies that for

any s ∈ S: {r ∈ S | L(r) = L(s)} ⊆ {r ∈ S | L ′(r) = L ′(s)}. Moreover, if g is

well-de�ned, it is also surjective by construction, and gL = L ′.

The following lemma shows that the re�nement property speci�ed in

De�nition 12 is equivalent to the existence of a GC completing the com-

mutative triangle diagram shown in Figure C.1.

Lemma 10 Let K = (S, S0, R, L,AP) and K ′ = (S, S0, R, L
′, AP ′) be KS

with natural GCs

P(S)
L∗←−
−→
L

L(AP) and P(S)
L ′∗←−
−→
L ′
L(AP ′)
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P(S) L(AP 0)

L(AP )

L0

L0⇤

LL⇤
G G⇤

Figure C.1: GC L(AP)
G∗←−
−→
G

L(AP ′) completing the commutative triangle.

as introduced above. Then the following statements are equivalent.

1. K is a re�nement of K ′.

2. There exists a GC

L(AP)
G∗←−
−→
G

L(AP ′)

satisfying L ′ = GL and L ′∗ = L∗G∗.

Proof. Let K be a re�nement of K ′ with associated function g according

to De�nition 12. By De�nition 12, g is surjective. Moreover, the labelling

functions L : S → L(S) and L ′ : S → L(S ′) are surjective. By the speci�ca-

tion of g given in De�nition 12, gL = L ′. Choose L(AP)
G∗←−
−→
G

L(AP ′) to be the
natural GC associated with g. Then we can apply Lemma 8 to conclude

that L ′ = GL and L ′∗ = L∗G∗.

Now assume that an arbitrary GC L(AP)
G∗←−
−→
G

L(AP ′) ful�ls L ′ = GL and
L ′∗ = L∗G∗. De�ne

g : L(S)→ L ′(S);

g(L(s)) = L ′(s)⇔ G({L(s)}) = {L ′(s)}
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It remains to show that G({L(s)}) = {L ′(s)} for all s ∈ S. To this end, we

calculate

{L ′(s)} = L ′({s}) [Property of GC P(S)
L ′∗←−
−→
L ′
L(AP ′)]

= G(L({s})) [Assumption L ′ = GL]

= G({L(s)}) [De�nition of L]

This shows that g is well-de�ned and that the GC ful�lling assumption 2

of the lemma is in fact the natural GC associated with g. This completes

the proof of the lemma. �
A simple form of re�nement for an KS consists in successively adding

atomic propositions with free variables in V.

Lemma 11 Given a KS K ′ = (S, S0, R
′, L ′, AP ′), Let AP = AP ′ ∪ {p}

such that p is a new atomic proposition with free variables from V

which is not contained in AP. Then K = (S, S0, R
′, L,AP) re�nes K ′ =

(S, S0, R
′, L ′, AP ′).

Proof. Function

g : L(S)→ L ′(S); g(L(s)) = L ′(s)

is well-de�ned, because L ′(s) = L(s) \ {p} for all s ∈ S. �

C.2 Refinements of Kripke Structures With

Change of Variables

Let us now consider the more general case where two KS with di�erent

state spaces are related to each other:

� K = (S, S0, R, L,AP) with S = V → D, such that AP consists of atomic

propositions over free variables from V.

� K ′ = (S ′, S ′0, R
′, L ′, AP ′) with S ′ = V ′ → D ′, such that AP ′ consists of

atomic propositions over free variables from V ′.
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P(S)

L(AP 0)

L(AP )

L0

L0⇤

L

L⇤

GG⇤H

Img(H)

H⇤

Figure C.2: GC L(AP)
G∗←−
−→
G

L(AP ′) completing the commutative rectangle.

Definition 13 (Simulation) With the notation introduced above, we

say that K ′ is a simulation of K, or K is a re�nement of K ′, and write

K 4 K ′, if and only if there exists a relation H ⊆ S× S ′ and a mapping

g : L(S)→ L ′(S ′), such the following conditions hold.

1. ∀s ∈ S0 : ∃s ′ ∈ S ′0 : H(s, s ′)

2. ∀(s1, s ′1) ∈ H, s2 ∈ S : R(s1, s2)⇒ ∃s ′2 ∈ S ′ : R ′(s ′1, s ′2)∧H(s2, s ′2)
3. ∀(s, s ′) ∈ H : g(L(s)) = L ′(s ′)

Lemma 12 If K is simulated by K ′ with simulation relation H and all

elements of the state space S are reachable, then H is total on S in the

sense that

∀s ∈ S : ∃s ′ ∈ S ′ : H(s, s ′)

Proof. Let s ∈ S. Since s is reachable, there exists a trace π ∈ S∗
and i ≥ 0 such that π(0) ∈ S0 and π(i) = s and R(π(j), π(j + 1)) for

j = 0, . . . , i − 1. From simulation condition (i) in De�nition 13 we know

that there exists a π ′(0) ∈ S ′0 such that H(π(0), π ′(0)). Applying simulation
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condition (ii) successively to π(0), π(1), . . . , π(i) we conclude that there

exists states π ′(0), π ′(1), . . . , π ′(i) such that H(π(j), π ′(j)) for j = 0, . . . , i.

This shows H(s, π ′(i)) and completes the proof. �
A simulation relation H ⊆ S×S ′ induces a function between the power

set lattices. This function is again denoted by H and de�ned by

H : P(S)→ P(S ′); X 7→ {s ′ ∈ S ′ | ∃s ∈ X : H(s, s ′)}

Let

Img(H) = {X ′ ∈ P(S ′) | ∃X ∈ P(S) : H(X) = X ′} ⊆ P(S ′)

denote the image of the function H. The dual function H∗ is de�ned by

H∗ : Img(H)→ P(S); X ′ 7→ {s ∈ S | ∃s ′ ∈ X ′ : H(s, s ′)}

In analogy to Fig. C.1, simulations introduce a commuting diagram of

Galois connections, as shown in Fig. C.2.

Lemma 13 Let K = (S, S0, R, L,AP) K
′ = (S ′, S ′0, R

′, L ′, AP ′) be KS with

natural GCs

P(S)
L∗←−
−→
L

L(AP) and P(S)
L ′∗←−
−→
L ′
L(AP ′)

as introduced above, such that all states in S are reachable. Then the

following statements are equivalent.

1. K is simulated by K ′ with simulation relation H and mapping

g : L(S)→ L ′(S ′) as given in De�nition 13.

2. There exists a relation H ⊆ S × S ′ satisfying (i) and (ii) from

De�nition 13 and a GC

L(AP)
G∗←−
−→
G

L(AP ′)

such that the rectangle presented in Fig. C.2 commutes in the

sense that

(a) GL = L ′H
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(b) H∗L ′∗ = L∗G∗

Proof. Suppose that (i) holds. Let L(AP)
G∗←−
−→
G

L(AP ′) be the natural GC
associated with g. Given X ∈ P(S), we calculate

GL(X) = G({L(s) | s ∈ X})
= {g(L(s)) | s ∈ X}
= {L ′(s ′) | s ′ ∈ H(X)}
= L ′(H(X))

This proves property (a). Now let Z ′ = {L ′(s ′1), . . . , L
′(s ′n)} ∈ L ′(AP ′), and

suppose that H(s1, s
′
1), . . . , H(sn, s

′
n). Then

H∗L ′∗(Z ′) = H∗L ′∗({L ′(s ′1), . . . , L
′(s ′n)})

= H∗({s ′ ∈ S ′ | L ′(s ′) ∈ {L ′(s ′1), . . . , L
′(s ′n)}})

= H∗({s ′ ∈ S ′ | L ′(s ′) ∈ {g(L(s1)), . . . , g(L(sn))}})

= {s ∈ S | ∃s ′ ∈ S ′ : H(s, s ′)∧ g(L(s)) = L ′(s ′)∧
L ′(s ′) ∈ {g(L(s1)), . . . , g(L(sn))}}

= {s ∈ S | g(L(s)) ∈ {g(L(s1)), . . . , g(L(sn))}}

= {s ∈ S | L(s) ∈ G∗({g(L(s1)), . . . , g(L(sn))})}
= {s ∈ S | L(s) ∈ G∗(Z ′)})}
= L∗G∗(Z ′)

This proves property (b).

Now suppose that (ii) holds. De�ne

g : L(S)→ L ′(S ′); g(L(s)) = Z ′ if and only if G({L(s)}) = {Z ′}

Then g is well-de�ned because G is well-de�ned and maps singleton sets to

singleton sets (Lemma 9). To prove that g ful�ls the requirement (iii) for

a simulation according to De�nition 13, we prove that H(s, s ′1) ∧ H(s, s
′
2)
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implies L ′(s ′1) = L
′(s ′2). To this end, we calculate

L ′({s ′ ∈ S ′ | H(s, s ′)}) = L ′H({s})

= GL({s})

= G({L(s)})

= {g(L(s))}

This completes the proof. �

Exercise 22. In the proof of Lemma 13, annotate each equality (like

GL(X) = G({L(s) | s ∈ X}) = . . . ) with the reason why this equality holds.

�

C.3 Translation of Temporal Formulas

Between Kripke Structures and

Their Simulations

The commutativity of the diagram from Fig. C.2 allows us to translate

temporal logic formulas over K to formulas over K ′ and vice versa in a

natural way. Given a temporal logic formula ϕ over K, use the following

recursive translation algorithm F.

1. F(true) = true, F(false) = false

2. If ϕ is a state formula that does not contain any temporal operators

or path quanti�ers, then F(ϕ) = G(DNF(ϕ))

3. If ϕ = Aψ then F(ϕ) = AF(ψ).

4. If ϕ = Eψ then F(ϕ) = EF(ψ).

5. If ϕ = Fψ then F(ϕ) = FF(ψ).

6. If ϕ = Gψ then F(ϕ) = GF(ψ).

7. If ϕ = Xψ then F(ϕ) = XF(ψ).
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8. If ϕ = ϕ1Uϕ2 then F(ϕ) = F(ϕ1)UF(ϕ2).

9. If ϕ = ϕ1 ∨ϕ2 then F(ϕ) = F(ϕ1)∨ F(ϕ2).

10. If ϕ = ϕ1 ∧ϕ2 then F(ϕ) = F(ϕ1)∧ F(ϕ2).

11. If ϕ = ¬ψ then F(ϕ) = ¬F(ψ).

Rule 2 means that ϕ is �rst transformed into disjunctive normal form, and

then each of its minterms is represented by the corresponding set of atomic

propositions that occur with positive sign in the minterm. The ϕ can be

expressed as an element of L(AP), so that it can be transformed by G into

an element of L ′(AP ′), which can in turn be replaced by a formula ϕ ′ in

DNF.

When translating temporal formulas from K ′ to K, we proceed in an

analogous fashion with the following algorithm F ′.

Observe that being able to translate formulas between K and K ′ and

vice versa does not necessarily imply that F(ϕ) holds in K ′, if ϕ holds in K

and vice versa. This is further clari�ed by the theorem below.

1. F ′(true) = true, F ′(false) = false

2. If ϕ is a state formula that does not contain any temporal operators

or path quanti�ers, then F ′(ϕ) = G∗(DNF(ϕ))

3. If ϕ = Aψ then F ′(ϕ) = AF ′(ψ).

4. If ϕ = Eψ then F ′(ϕ) = EF ′(ψ).

5. If ϕ = Fψ then F ′(ϕ) = FF ′(ψ).

6. If ϕ = Gψ then F ′(ϕ) = GF ′(ψ).

7. If ϕ = Xψ then F ′(ϕ) = XF ′(ψ).

8. If ϕ = ϕ1Uϕ2 then F
′(ϕ) = F ′(ϕ1)UF

′(ϕ2).

9. If ϕ = ϕ1 ∨ϕ2 then F
′(ϕ) = F ′(ϕ1)∨ F

′(ϕ2).

10. If ϕ = ϕ1 ∧ϕ2 then F
′(ϕ) = F ′(ϕ1)∧ F

′(ϕ2).

11. If ϕ = ¬ψ then F ′(ϕ) = ¬F ′(ψ).
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tl = green

l0

tl = red

l1 l2

l3

tl = yellow

tl = yellow

Figure C.3: Kripke structure of tra�c light controller from Example 26.

Example 26. Consider the Kripke Structure depicted in Fig. C.3, which

is associated with a speci�cation model of a tra�c light controller. Formal-

ising this as a KS results in

K = (S, S0, R, L,AP)

V = {c, tl}

S = {`i : V → D | i = 0, 1, 2, 3}

`0 = {c 7→ 0, tl 7→ red}

`1 = {c 7→ 1, tl 7→ yellow}

`2 = {c 7→ 2, tl 7→ green}

`3 = {c 7→ 3, tl 7→ yellow}

S0 = {`0}

D = {0, 1, 2, 3} ∪ {red, yellow, green}

R = {(`0, `1), (`1, `2), (`2, `3), (`3, `0)}

AP = {tl = red, tl = yellow, tl = green}

L = {`0 7→ {tl = red}, `1 7→ {tl = yellow},

`2 7→ {tl = green}, `3 7→ {tl = yellow}}

As is well known to every law-abiding citizen, we always stop our cars
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on red and on yellow. Therefore, if we are only interested in knowing

when cars are in a halt-state in front of the tra�c light, it makes sense to

introduce an abstracted KS as the one depicted in Figure C.4. Formally,

this is described by

K ′ = (S ′, S ′0, R
′, L ′, AP ′)

S ′ = {mi : V
′ → D ′ | i = 0, 1}

S ′0 = {m0}

V ′ = {stops}

D ′ = B = {0, 1}

R ′ = {(m0,m0), (m0,m1), (m1,m0)}

AP ′ = {stops}

L ′ = {m0 7→ {stops},m1 7→ ∅}

In order to show that K ′ simulates K according to De�nition 13 we

proceed as follows. As simulation relation we choose

H = {(`0,m0), (`1,m0), (`3,m0), (`2,m1), }

and de�ne the mapping g by

g : L(S)→ L ′(S ′); {tl = red} 7→ {stops}, {tl = yellow} 7→ {stops}, {tl = green} 7→ ∅

It is easy to check that H, g ful�l the conditions (i | iii) of De�nition 13.

Now suppose we wish to prove that EF(tl = green) holds for the Kripke

structure of the original model in Fig. C.3. The assertion can be readily

expressed on abstract level using the algorithm F given above:

F(EF(tl = green)) = EF¬stops

Formula EF(¬stops) obviously holds on abstract level, since there exists a

path in Fig. C.4 that starts in m0 and visits m1. Similarly, the concrete

condition AF(tl = red ∨ tl = yellow) can be expressed in an abstract way

as

F(AF(tl = red∨ tl = yellow)) = AFstops
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m0

stops

m1

not stops

Figure C.4: Abstracted Kripke structure induced by auxiliary variable

stops in Example 26.

It is easy to see that it holds on abstract level.

In these special cases, the assertions also hold on concrete level, but this

is not always the case: On abstracted level we can also prove the formula

EG(stops) which has the concrete complement

F ′(EG(stops)) = EG(tl = red ∨ tl = yellow)

The latter formula does obviously not hold in the concrete model.

Conversely, the concrete model satis�es AF(tl = green), while the cor-

responding formula

F(AF(tl = green)) = AF(¬stop)

is not ful�lled on abstract level. �

Exercise 23. In [5] the concept of simulations is de�ned as follows.

Definition 14 (Simulation according to [5]) Given two Kripke struc-

tures K = (S, S0, R, L), K
′ = (S ′, S ′0, R

′, L ′) such that K refers to atomic

propositions AP and K ′ refers to atomic propositions AP ′ and AP ′ ⊆
AP. The relation H ⊆ S × S ′ is called a simulation, if the following

conditions hold for all (s, s ′) ∈ H:

1. L(s) ∩AP ′ = L ′(s ′)
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2. ∀s1 ∈ S : R(s, s1)⇒ ∃s ′1 ∈ S ′ : R ′(s ′, s ′1)∧H(s1, s ′1)
We write K 4 K ′ (K is simulated by K ′) if such a simulation H exists

and

∀s0 ∈ S0 : ∃s ′0 ∈ S ′0 : H(s0, s ′0)
�

1. Explain informally why the de�nition from [5] is less general than

our De�nition 13 for the case that S, S ′ contain variable valuations

s : V → D, s ′ : V ′ → D ′, respectively. (Hint: think of the nature of

the atomic propositions, if states are variable valuations.)

2. Prove that if K is simulated by K ′ according to De�nition 14, it is

also simulated by K ′ in the sense of our De�nition 13.

�

C.4 Property Preservation for

ACTL∗ Formulas

Definition 15 Let K 4 K ′ with simulation relation H ⊂ S × S ′ and
H(s, s ′). Suppose π is a path in K starting at s and π ′ a path starting

at s ′ in K ′. We say that π and π ′ correspond to each other if

∀i ≥ 0 : H(π(i), π ′(i))

�

Lemma 14 Let K 4 K ′ with simulation relation H ⊂ S×S ′ and H(s, s ′).
Then for every path π in K starting at s there is a corresponding path

π ′ in K ′ starting at s ′.

Proof. Since π is a path starting at s,

π(0) = s∧ (∀i ≥ 0 : R(π(i), π(i+ 1)))
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follows. Since s = π(0) and H(s, s ′), this implies H(π(0), s ′). Applying

condition (ii) of De�nition 13 successively on π(0), π(1), π(2), . . . this yields

the existence of states π ′(i) ∈ S ′, i ≥ 0, such that

π ′(0) = s ′ ∧ (∀i ≥ 0 : R ′(π ′(i), π ′(i+ 1))∧H(π(i+ 1), π ′(i+ 1))),

so π ′ is a path in K ′, and it corresponds to π by construction. �

Lemma 15 Assume K 4 K ′ according to De�nition 13. Let π, π ′ be

corresponding paths in K and K ′, respectively, emanating from s = π(0)

and s ′ = π ′(0) with H(s, s ′). Let ψ ′ be a CTL∗ path formula without

path quanti�ers, such that π ′ |= ψ ′. Then π |= F ′(ψ ′).

Proof. The proof is performed by structural induction over the formula

ψ ′. Since ψ ′ is a path formula not containing any path quanti�ers, we

can assume that it is represented in positive normal form, as speci�ed for

LTL formulas in Section 3.1. As a consequence, it su�ces to perform the

structural induction over ∨,∧,X,U,W.

Step 1. Let ψ ′ be a proposition in negation normal form, that is, a state

formula without path operators and without path quanti�ers, where nega-

tion only occurs in front of atomic propositions. Then π ′ |= ψ ′ is equivalent

to s ′ |= ψ. This implies that L ′({s ′})⇒ ψ ′. Since H(s, s ′), Lemma 13 yields

L({s}) ⇒ G∗(DNF(ψ ′)) = F ′(ψ ′). As a consequence, s |= F ′(ψ ′), and,

since F ′(ψ ′) is also a state formula without path operators, this implies

π |= F ′(ψ ′).

Step 2. Suppose that ψ ′0 is any path formula, such that F ′(ψ ′0) holds on

any path π if ψ ′0 holds on a corresponding path π ′. Suppose additionally

that Xψ ′0 is ful�lled on π ′. This means that π ′1 |= ψ ′0. Since we are dealing

with corresponding paths, H(π(1), π ′(1)) is ful�lled, and also π1 and π ′1

are corresponding paths. Applying the premise about ψ ′0, we can conclude

that π1 |= F ′(ψ ′0). Therefore π |= XF ′(ψ ′0) = F
′(Xψ ′0).

Step 3. Suppose that ψ ′0, ψ
′
1 are any path formulas, such that F ′(ψ ′i), i =

0, 1 holds on any path π if ψ ′i, i = 0, 1 holds on a corresponding path π ′.

Suppose additionally that ψ ′0Uψ
′
1 is ful�lled on π ′. This is equivalent to

∃i ≥ 0 :
(
π ′i |= ψ ′1 ∧ (∀0 ≤ j < i : π ′j |= ψ ′0)

)
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Since all πi, π ′i and πj, π ′j are corresponding paths, our assumptions imply

∃i ≥ 0 :
(
πi |= F ′(ψ ′1)∧ (∀0 ≤ j < i : πj |= F ′(ψ ′0))

)
and this is equivalent to π |= F ′(ψ ′0)UF

′(ψ ′1) = F
′(ψ ′0Uψ

′
1).

In analogy, one shows the induction steps for W,∧,∨, and this com-

pletes the proof. �

Theorem 14 Assume K 4 K ′ according to De�nition 13. Then for

every ACTL∗ formula φ ′ with atomic propositions in AP ′

(K ′ |= φ ′) implies (K |= F ′(φ ′))

Proof. The proof is performed by structural induction over the usage

of the A-quanti�er. We show a slightly stronger property than the one

required according to the theorem:

∀(s, s ′) ∈ H :
(
s ′ |= φ ′ ⇒ s |= F ′(φ ′)

)
Step 1. Suppose that φ ′ = Aφ ′0, such that φ ′0 is a quanti�er-free path

formula, that is, it does not contain the A quanti�er again. Suppose that

φ ′ = Aφ ′0 is ful�lled in s ′ ∈ S ′. Assume that s is related to s ′ by H(s, s ′).

Take any path π starting in π(0) = s, and let π ′ be a corresponding path

starting in s ′. Since φ ′ = Aφ ′0 and is ful�lled in s ′, we conclude that

π ′ |= φ0. According to our premise, φ0 does not contain A, so it is a path

formula. Then Lemma 15 implies that π |= F ′(φ ′0). Since π was an arbitrary

path starting in s, this implies s |= AF ′(φ ′0) = F
′(Aφ ′0).

Step 2. Suppose that φ ′0 is an ACTL
∗ formula such that s ′ |= φ ′0 implies

s |= F ′(φ ′0) for any s, s
′ related by H. Suppose further that s ′ |= AXφ ′0.

This is equivalent to π ′ |= Xφ ′0 on every path emanating from s ′, which is

in turn equivalent to

π ′1 |= φ ′0 (∗)
Now take an arbitrary path π starting in s and let π ′ be a corresponding

path starting in s ′. This π ′ also ful�ls (*), and, since π1, π ′1 are correspond-

ing paths as well, π1 |= F ′(φ ′0) follows according to the assumptions. This

implies s |= AXF ′(φ ′0) = F
′(AXφ ′0).
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In analogy, the structural induction is completed for AW, AU, ∨, and

∧. This completes the proof. �

Exercise 24. Add the missing proof steps for the structural induction in

the proof of Lemma 15. �

Exercise 25. Add the missing proof steps for the structural induction in

the proof of Theorem 14. �

C.5 Construction of Simulations by

Predicate Abstraction

In the previous sections we have introduced the de�nition of simulations

and shown their most important property, the preservation of ACTL formu-

las in the sense of Theorem 14. In the present section we investigate how

simulations can be systematically constructed, so that it is not required

to perform a proof of the properties of De�nition 13. This construction

principle is called predicate abstraction.

Let E denote the set of well-typed expressions over variable symbols

from V, such as x < y + z for x, y, z ∈ V and Dx = Dy = Dz = N and

D(x<y+z) = B. In general, we denote expressions over variables v1, . . . , vk ∈
V by e(v1, . . . , vk), and the type of such an expression e is denoted by De.

Given a KS K = (S, S0, R, L,AP) with state space S ⊆ V → D and a

set of well-typed expressions e1, . . . , en. Assuming that AP = {v = d | v ∈
V, d ∈ Dv} and therefore ∀s ∈ S : L(s) = {v = s(v) | v ∈ V}, we can

systematically construct a new KS K ′ = (S ′, S ′0, R
′, L ′, AP ′) as follows.

1. De�ne V ′ = {z1, . . . , zn}, where zi 6∈ V and n is the number of selected

expressions ei.

2. De�ne S ′ = {s ′ : V ′ → D ′ | ∀zi ∈ V ′ : s(zi) ∈ Dei} with D =
⋃n
i=1Dei .

3. De�ne relation H ⊆ S× S ′ by

H = {(s, s ′) ∈ S× S ′ | ∀zi ∈ V ′ : s ′(zi) = s(ei)}
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4. De�ne the initial state space by

S ′0 = {s ′ ∈ S ′ | ∃s ∈ S0 : H(s, s ′)}

5. De�ne the transition relation R ′ by

R ′ = {(s ′1, s
′
2) ∈ S ′ × S ′ | ∃(s1, s2) : R(s1, s2)∧H(s1, s ′1)∧H(s2, s ′2)}

6. De�ne the atomic propositions AP ′ by

AP ′ = {zi = ci | zi ∈ V ′, ci ∈ Dei}

7. De�ne the labelling function L ′ in the natural way by

∀s ′ ∈ S ′ : L ′(s ′) = {p ∈ AP ′ | s ′(p)}

Theorem 15 Given K and well-typed expressions e1, . . . , en, the KS K
′

constructed as speci�ed above simulates K with simulation relation H.

Proof. By construction, H and K ′ ful�l properties (i) and (ii) of De�ni-

tion 13. It remains to show that the function

g : L(S)→ L ′(S); g(L(s)) = L ′(s ′) if and only if H(s, s ′)

is well-de�ned. To this end, suppose that L(s) = L(r) for some s, r ∈ S.
According to our assumptions about K, this means that ∀v ∈ V : s(v) =

r(v). As a consequence, s(ei) = r(ei) for i = 1, . . . , n. Now the construction

of H implies that H(s, s ′) and H(r, s ′) with s ′(zi) = s(ei) = r(ei) for i =

1, . . . , n. This means that s and r are abstracted to the same state s ′, and

therefore g is well-de�ned. �

Theorem 16 Given K,K ′ as introduced above, suppose that K has ini-

tial condition I, and that its transition relation R can be represented

in propositional form by R. Then the associated propositions of K ′ are
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given by

I ′ ≡ ∃ξ1 ∈ Dv1 , . . . , ξm ∈ Dvm : I[ξi/vi | i = 1, . . . ,m]∧
n∧
j=1

zj = ej[ξi/vi | i = 1, . . . ,m]

R ′ ≡ ∃ξ1, ξ ′1 ∈ Dv1 , . . . , ξm, ξ
′
m ∈ Dvm : R[ξi/vi, ξ ′i/v ′i | i = 1, . . . ,m]∧

n∧
j=1

zj = ej[ξi/vi | i = 1, . . . ,m]∧

n∧
j=1

z ′j = ej[ξ
′
i/vi | i = 1, . . . ,m]

Proof. Initial condition. By condition 4 of the construction recipe for

K ′ speci�ed above, the initial states of K ′ are given by

S ′0 = {s ′ ∈ S ′ | ∃s ∈ S0 : H(s, s ′)}

Using the propositional representation of S0, this can be re-written as

S ′0 = {s ′ ∈ S ′ | ∃s ∈ S : s |= I ∧H(s, s ′)}
= {s ′ ∈ S ′ | (∃s ∈ S : I[s(v)/v | v ∈ V ])∧H(s, s ′)}
= {s ′ ∈ S ′ | ∃s ∈ S, ξ1 ∈ Dv1 , . . . ξm ∈ Dvm :

I[ξi/vi | i = 1, . . . ,m]∧

m∧
i=1

s(vi) = ξi ∧H(s, s
′)}

= {s ′ ∈ S ′ | ∃s ∈ S, ξ1 ∈ Dv1 , . . . ξm ∈ Dvm :

I[ξi/vi | i = 1, . . . ,m]∧

m∧
i=1

s(vi) = ξi ∧

n∧
j=1

s ′(zj) = s(ej)}

= {s ′ ∈ S ′ | ∃ξ1 ∈ Dv1 , . . . ξm ∈ Dvm :

I[ξi/vi | i = 1, . . . ,m]∧

n∧
j=1

s ′(zj) = ej[ξi/vi | i = 1, . . . ,m]}

= {s ′ ∈ S ′ |
(
∃ξ1 ∈ Dv1 , . . . ξm ∈ Dvm : I[ξi/vi | i = 1, . . . ,m]∧
n∧
j=1

zj = ej[ξi/vi | i = 1, . . . ,m]
)
[s ′(zk)/zk | k = 1, . . . , n]}

= {s ′ ∈ S ′ | I ′[s ′(zj)/zj | j = 1, . . . , n]}
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This proves that I ′ is a propositional representation of the initial condition

of K ′.

Transition Relation. This is shown in analogy to the proof above (see

Exercise 20). �

Exercise 26. Prove the correctness of predicate R ′ in Theorem 16.

�
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Example 27. We illustrate the construction principle for simulations

and the application of Theorem 16, using again the tra�c light controller

example introduced above. First we describe the initial state and transi-

tion relation of the concrete tra�c light system in propositional form (see

notation in the example above):

I ≡ c = 0∧ tl = red

R ≡ (c = 0∧ tl = red∧ c ′ = 1∧ tl ′ = yellow)∨

(c = 1∧ tl = yellow∧ c ′ = 2∧ tl ′ = green)∨

(c = 2∧ tl = green∧ c ′ = 3∧ tl ′ = yellow)∨

(c = 3∧ tl = yellow∧ c ′ = 0∧ tl ′ = red)

To construct the simulation according to the recipe above, we de�ne

one Boolean expression

e1 = (tl = red∨ tl = yellow)

Step 1. De�ne V ′ = {stops}.

Step 2. De�ne S ′ = {mi : V
′ → B | i = 0, 1 ∧mi(stops) = 1 − i}. (Recall

that we identify Boolean values false, true with 0,1.)

Step 3. De�ne the simulation relation by

H = {(s,m) ∈ S× S ′ | m(stops) = (s(tl) = red∨ s(tl) = yellow)}

Step 4. Calculate the initial state as �rst order expression by application

of Theorem 16.

I ′ ≡ ∃ξ0 ∈ {0, 1, 2, 3}, ξ1 ∈ {red, yellow, green} :

I[ξ0/c, ξ1/tl]∧ stops = e1[ξ0/c, ξ1/tl]

≡ ∃ξ0 ∈ {0, 1, 2, 3}, ξ1 ∈ {red, yellow, green} :

ξ0 = 0∧ ξ1 = red∧ stops = (ξ1 = red∨ ξ1 = yellow)

≡ (stops = true)
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Now calculate the transition relation as �rst order expression by appli-

cation of Theorem 16.

R ′ ≡ ∃ξ0, ξ ′0 ∈ {0, 1, 2, 3}, ξ1, ξ
′
1 ∈ {red, yellow, green} :

R[ξ0/c, ξ1/tl, ξ ′0/c ′, ξ ′1/tl ′]∧
stops = e1[ξ0/c, ξ1/tl]∧ stops ′ = e1[ξ

′
0/c

′, ξ ′1/tl
′]

≡ ∃ξ0, ξ ′0 ∈ {0, 1, 2, 3}, ξ1, ξ
′
1 ∈ {red, yellow, green} :(

(ξ0 = 0∧ ξ1 = red∧ ξ ′0 = 1∧ ξ
′
1 = yellow)∨

(ξ0 = 1∧ ξ1 = yellow∧ ξ ′0 = 2∧ ξ
′
1 = green)∨

(ξ0 = 2∧ ξ1 = green∧ ξ ′0 = 3∧ ξ
′
1 = yellow)∨

(ξ0 = 3∧ ξ1 = yellow∧ ξ ′0 = 0∧ ξ
′
1 = red)

)
∧(

stops = (ξ1 = red∨ ξ1 = yellow)∧

stops ′ = (ξ ′1 = red∨ ξ ′1 = yellow)
)

≡ ∃ξ0, ξ ′0 ∈ {0, 1, 2, 3}, ξ1, ξ
′
1 ∈ {red, yellow, green} :(

(ξ0 = 0∧ ξ1 = red∧ ξ ′0 = 1∧ ξ
′
1 = yellow∧

stops = (ξ1 = red∨ ξ1 = yellow)∧

stops ′ = (ξ ′1 = red∨ ξ ′1 = yellow))
)
∨

(ξ0 = 1∧ ξ1 = yellow∧ ξ ′0 = 2∧ ξ
′
1 = green∧

stops = (ξ1 = red∨ ξ1 = yellow)∧

stops ′ = (ξ ′1 = red∨ ξ ′1 = yellow))
)
∨

(ξ0 = 2∧ ξ1 = green∧ ξ ′0 = 3∧ ξ
′
1 = yellow∧

stops = (ξ1 = red∨ ξ1 = yellow)∧

stops ′ = (ξ ′1 = red∨ ξ ′1 = yellow))
)
∨

(ξ0 = 3∧ ξ1 = yellow∧ ξ ′0 = 0∧ ξ
′
1 = red∧

stops = (ξ1 = red∨ ξ1 = yellow)∧

stops ′ = (ξ ′1 = red∨ ξ ′1 = yellow))
)

≡ (stops∧ stops ′)∨ (stops∧ ¬stops ′)∨ (¬stops∧ stops ′)

Obviously this initial condition and transition relation of the simulation

corresponds to the transition graph shown in Figure C.4. �
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