
Test Automation

Foundations and Applications of

Model-based Testing
Lecture Notes

Jan Peleska and Wen-ling Huang
{peleska,huang}@uni-bremen.de

Issue 5.2
2021-11-03

Note. These lecture notes are still under development, so it is advisable to
check for updates.

All rights reserved c© 2016 Jan Peleska and Wen-ling Huang

Change History

Issue Date Change description

5.2 2021-11-03 Add Lemma 3.2 about characterisation set.

Change bars mark the differences with respect to Issue 5.0.
5.1 2021-02-09 Small fixes in Chapter 12 regarding compile options. New chap-

ter 14 on code coverage analysis to support fuzz testing.

Change bars mark the differences with respect to Issue 5.0.
5.0 2021-02-01 Preface extended regarding the scope of these lecture notes. More

on test objectives and test types in Part I. New Part IV on fuzz
testing.

Change bars mark the differences with respect to Issue 4.0.
4.0 2019-07-01 Missing primes added in formula for γ in Section 7.7.4. New

section on state counting principle.
3.9 2019-06-24 Fixed typo in Definition 7.2.
3.8 2019-05-27 Small improvements in the H-Method proof and related defini-

tions.
3.7 2019-05-20 Removed exercise on W-method implementation in Java (Sec-

tion 4.6). New Section 4.7 presenting the H-Method.
3.6 2019-05-06 Fixed proof of Theorem 4.4. Changed pre-requisites of Theo-

rem 4.5. Added discussion of minimisation.
3.5 2019-04-29 New Section 4.4 on test oracles and complete testing assumption.

Revised Section 4.5 on product complete testing theory based on
product automata construction.

3.4 2019-04-12 Updated description of fsm-generator in Section B.3.
3.3 2019-04-08 New version of Exercise 2. This now requires to specify the input

equivalence classes explicitly, and to choose random values from
each class.

i

3.2 2017-04-26 Fixed error in the description of the Pk-table algorithm, Part B
in Section 3.3.2.

First version of the new Appendix B introducing the FSM Library.
Preface extended w.r.t. Appendix B.

Since Appendix B is new, it has not been marked by change bars.
Otherwise, change bars mark the differences with respect to Is-
sue 3.1.

3.1 2017-02-01 (1) Theorem 4.9 added showing that the Wp-Method never pro-
duces more test cases than the W-Method. (2) Removed the pre-
liminary section 4.6.2 on FSM testing for reduction. This sec-
tion will be included in a later revision. (3) Exchanged the term
propositional logic against first order logic where appropriate. (4)
Updated versions of chapters 8, 9, and 10, based on final version
of [32]. (5) Improved statement and proof of Theorem 4.1.

Change bars mark the differences with respect to Issue 2.11.
2.11 2017-01-09 (1) New Exercise. (2) Small improvements in Chapter 5. (3)

Removed definition of synchronous product from Chapter 6, since
this is no longer needed. (3) Small improvements in Chapter 7.

Change bars mark the differences with respect to Issue 2.10.
2.10 2016-11-14 New proof using abstract test cases for Theorem 4.3 (complete-

ness of the T-Method). Simplified proof of Lemma 4.2. Added
explanation about test cases to Theorem.

Change bars mark the differences with respect to Issue 2.9.
2.9 2016-11-02 New Exercise 4 in Section 4.3.

Change bars mark the differences with respect to Issue 2.8.
2.8 2016-10-26 Re-worked the CSM description in Exercise 1. New Exercise 2 in

Section 3.2.

Change bars mark the differences with respect to Issue 2.7.
2.7 2016-10-24 Added abstract notion of FSM test cases in Chapter 4.

Change bars mark the differences with respect to Issue 2.6.
2.6 2016-10-19 Added first exercise in Chapter 1

Change bars mark the differences with respect to Issue 2.5.
2.5 2016-10-17 (1) New Chapter 1 on basic definitions related to testing. (2)

Change of test case definition in Section 2.4.

Change bars mark the differences with respect to Issue 2.4.
2.4 2016-08-04 First version made available on the web. Copyright notice in-

serted. Otherwise no changes with respect to Issue 2.3.

ii

2.3 2016-04-21 Fixed error in formula and improved presentation of IECP calcu-
lation in Section 7.7.

Change bars mark the differences with respect to Issue 2.2.
2.2 2016-03-15 Updates in Section 7.7.6: the representation of Φf described in

Issue 2.1 is only valid for deterministic RIOSTS. The new version
is adequate for the nondeterministic case.

Change bars mark the differences with respect to Issue 2.1.
2.1 2016-02-02 Final manuscript version for winter semester 2015/2016.

(0) Completed Appendix A (1) Moved appendix behind bibliog-
raphy. (3) Fixes in the table of Example 11. (4) Fixed g0,2 in
Example 14. (5) Use notation ηi instead if βi in Examples 10 and
11, because βi is used later on with another meaning. (6) Added
a preface.

Change bars mark the differences with respect to Issue 2.0.
2.0 2016-01-31 Pre-final manuscript version for winter semester 2015/2016.

(1) Added example showing the tree generated by the minimal hit-
ting set algorithm introduced in Appendix A. (2) New Section 7.7
describing an algorithm for constructing input equivalence classes
and the model map from RIOSTS to FSMs. (3) Added example
showing that the Wp-Method cannot be used for proving reduc-
tion added in Section4.8.1. (4) Explanation for Step 9 of the
Wp-Method (calculation of Wp2) added.

Change bars mark the differences with respect to Issue 1.9.

1.9 2016-01-26 (1) Improvements in Section 3.7 on characterisation set and state
identification sets for NFSMs.

Change bars mark the differences with respect to Issue 1.8.

1.8 2016-01-25 (0) Section on DFSM characterisation sets moved to Section 3.4
in introductory FSM chapter. (1) New Section 3.7 on character-
isation set and state identification sets for NFSMs. (2) New Ap-
pendix A describing simple algorithm for calculation of minimal
hitting sets (needed for calculation of state identification sets). (3)
Extended discussion about testing deterministic implementations
against nondeterministic models.

Change bars mark the differences with respect to Issue 1.7.

iii

1.7 2016-01-18 (0) New Section on testing nondeterministic FSMs with respect
to reduction. (1) New Section 3.5 on transformation of FSMs to
observable ones. (2) New Section 3.6 on minimisation of NFSMs.
(3) New part on equivalence class partition testing (no change bars
here, since everything is new). (4) New Section 2.6 on translation
of testing theories.

Change bars mark the differences with respect to Issue 1.6.
1.6 2015-12-05 (0) Completed the description of DFSM minimisation in Sec-

tion 3.3. (1) Definition of A-equivalence and k-equivalence added
in Section 3.2. (2) New Section 4.8, introducing the nondetermin-
istic version of the Wp-Method. (3) Exercise 3 (implementation
of the W-Method) added.

Change bars mark the differences with respect to Issue 1.5.
1.5 2015-11-16 (1) Added example for W-Method in Section 4.6. (2) Added Sec-

tion 3.3 on minimisation of DFSMs. (3) Completed Section 3.4
on characterisation sets.

Change bars mark the differences with respect to Issue 1.4.
1.4, 1.3 2015-11-09 (1) Added explanation about output alphabets in Section 3.2.

(2) New Section 4.5 about testing theory derived from product
automata. (3) New Section 4.6 describing the W-Method.

Change bars mark the differences with respect to Issue 1.2.
1.2 2015-10-23 (1) Several typos were fixed in Chapter 4, paragraph ‘Test cases’.

(2) Proof of Theorem 4.3 added.

Change bars mark the differences with respect to Issue 1.1.
1.1 2015-10-19 (0) Typos fixed in all sections. (1) Chapter 3: FSM homomor-

phism defined. Section 3.8: fault injection functions defined. (2)
Chapter 4: FSM test cases introduced. State Cover and Transi-
tion Cover defined. T-Method described.

Change bars mark the differences with respect to Issue 1.0.
1.0 2015-10-09 First edition

iv

Preface

Test automation has many different facets, emphasising different aspects
that should be automated during test campaigns. In the early years of
test automation (applied in industry from about 1990 on), the focus was
on automating the execution of test procedures, formerly written as textual
“recipes”, which were now realised as executable computer programs (test
scripts). Since then, automation methods have been elaborated for every
conceivable aspect of testing, from test case identification, test data calcula-
tion, test procedure generation to automated evaluation of observed against
expected results (so-called test oracles) and automated compilation of trace-
ability data relating test cases, procedures, and results to the requires they
verify.

In these lecture notes, we focus on two different approaches to test au-
tomation, model-based testing and fuzz testing.

Model-based testing (MBT) is a testing methodology where the expected
behaviour of the system under test (SUT) is represented by a reference model,
so that “relevant” test cases can be derived from this model. MBT is suit-
able for testing software and systems consisting of (networks of) controllers
with their embedded software and firmware. It is typically applied to ver-
ify whether a software or system under test fulfils the (mostly functional)
requirements represented by the model.

Fuzz testing (or simply fuzzing) is currently one of the most important
variants of random software testing. It uses random data, in particular “un-
expected” or invalid data as inputs to the software under test and tries to
provoke failures like crashes, memory boundary violations, memory leaks, or
assertion failures. So, in contrast to MBT, fuzzing aims at exposing vulnera-
bilities of a software component. Therefore, fuzzing complements MBT, but
is not an alternative to the model-based approach.

Systematic testing is based on testing theories asserting that specific kinds

v

of tests are capable of finding specific kinds of errors. Testing theories are
of considerable interest, because the test suites associated with each theory
have a well-defined test strength. As a consequence, they are more easily
justified in the context of safety-critical systems, where the trustworthiness
of test suites has to be demonstrated.

These lecture notes are structured into four main parts and several ap-
pendixes.

• In Part I, testing theories are introduced in general terms, independent
on any concrete modelling formalisms.

• In Part II, well-known material about testing against finite state ma-
chine (FSM) models is presented.

• In Part III, new material on complete equivalence class testing theories
is presented. It is based on variants of Kripke Structures as semantic
models. It turns out that the complete FSM testing theories intro-
duced in Part II induce complete equivalence class testing theories for
a semantic sub-domain of Kripke Structures.

• In Part IV, the practical application of fuzzing in software testing is
described.

• In Appendix B, an open source library is introduced, where many of the
algorithms described in Part II have been implemented. The library is
called the FSM Library (fsmlib-cpp). The FSM Library also provides
a simple test harness for executing test suites generated from FSMs
against C-functions.

vi

Contents

I Introduction and Background 1

1 Testing – Basic Definitions 2
1.1 Basic Terms . 2
1.2 Variants of Test Purposes . 15
1.3 Test Levels . 16

2 Testing Theories 17
2.1 Model-based Testing . 17
2.2 Programs are Models . 17
2.3 Fault Models . 18
2.4 Test Cases . 18
2.5 Test Suites and Complete Testing Theories 19
2.6 Translation of Testing Theories 19
2.7 Testability Hypothesis . 22
2.8 Uniformity Hypothesis and Regularity Hypothesis 22

II Testing Finite State Machines 24

3 Finite State Machines 25
3.1 FSM Definition . 25
3.2 Basic Properties of FSMs . 26
3.3 Minimisation of DFSMs . 33

3.3.1 Transition Table Representation of DFSMs 33
3.3.2 DFSM Minimisation With Pk Tables 35

3.4 Characterisation Sets for DFSMs 40
3.5 Transformation to Observable FSMs 43
3.6 Minimisation of Nondeterministic FSMs 48

vii

3.7 Characterisation Set and State Identification Sets of NFSMs . 54
3.7.1 Characterisation set and State Identification Sets for

NFSMs . 54
3.7.2 Algorithm 1. Calculation of W 55
3.7.3 Algorithm 2. Finding Minimal State Identification Sets 57

3.8 Classification of FSM Fault Models 60

4 Testing Theories for FSM 64
4.1 FSM Test Cases . 64
4.2 State Cover and Transition Cover 69
4.3 The T-Method . 69
4.4 Test Oracles for Checking I/O-Equivalence and Reduction . . 80
4.5 A Complete Testing Theory Derived From Product Automata 81
4.6 The W-Method . 86
4.7 The H-Method . 93

4.7.1 Motivation . 93
4.7.2 Definitions related to the H-Method 95
4.7.3 H-Method Theorems 96

4.8 FSM Testing Theories for Nondeterministic Systems 99
4.8.1 A Nondeterministic Variant of the Wp-Method 99
4.8.2 Testing Nondeterministic FSMs for Reduction Using

the State Counting Method 105

III Equivalence Class Partition Testing 116

5 Introduction to Equivalence Class Partition Testing 117
5.1 Objectives . 117
5.2 Three Types of Equivalence Classes 118
5.3 Formal Background . 119
5.4 Main Results . 120
5.5 Proof Strategy and Overview 121

6 State Transition Systems and Kripke Structures 125

7 The Model Map 132
7.1 Set Partitions . 132
7.2 State Equivalence Class Partitions 133

viii

7.3 Input Equivalence Class Partitions 134
7.4 The Transition Index Function 136
7.5 State Machine Abstraction of Equivalence Class Partitions . . 138
7.6 RIOSTS Sub-domains and Associated Model Maps – Proof of

SC1 . 142
7.7 Practical Calculation of the Model Map 143

7.7.1 Objectives . 143
7.7.2 DNF transformation 144
7.7.3 Identification of quiescent states 145
7.7.4 Rewriting the representation 146
7.7.5 Final RIOSTS Transition Relation 147
7.7.6 IECP Identification . 151

8 Test Case Map – From FSM Test Cases to RIOSTS Test
Cases 155
8.1 RIOSTS Test Cases . 155
8.2 The Test Case Map . 156

9 Proof of the Satisfaction Condition SC2 158

10 Complete Testing Theories for RIOSTS 161
10.1 Overview . 161
10.2 Theory Translation Theorem – From FSM Theories to

RIOSTS Theories . 162
10.3 Deterministic Reference Model and Deterministic Implemen-

tation . 163
10.4 Nondeterministic Reference Model and Nondeterministic Im-

plementation . 165
10.5 Nondeterministic Reference Model and Deterministic Imple-

mentation . 169
10.6 Weaker Test Strategies: Single Output Fault 170
10.7 Complexity Considerations . 171

11 Related Work 172

IV Fuzz Testing 176

12 Fuzz Testing 177

ix

12.1 Objectives . 177
12.2 LLVM libFuzzer – Capabilities 177
12.3 libFuzzer – Interface to the SUT 178
12.4 Creating a Fuzzer Program With Clang 180
12.5 Executing a Fuzzer Program Created With Clang 182

12.5.1 Simple Execution . 182
12.5.2 Replay Run to Found Bug 183
12.5.3 Using a Corpus . 185
12.5.4 Useful Call Parameters 185
12.5.5 Parallelisation for Finding Multiple Errors 186
12.5.6 Parallelisation for Speeding up Error Detection 187

13 Property-Based Fuzz Testing 189
13.1 Property-Based Software Testing 189
13.2 Pre-Conditions and Post-Conditions 190
13.3 Invariants . 193

14 Coverage Analysis 195
14.1 Objectives and Limitations of Coverage Analysis 195
14.2 Compile options for Fuzzing With Code Coverage Profiling . . 196

Bibliography 200

A Algorithms for Solving the Minimal Hitting Set Problem 209
A.1 Problem Statement . 209
A.2 A Simple Complete Algorithm for Determining Minimal Hit-

ting Sets With Minimal Cardinality 210
A.3 The MHS Problem Re-Formulated as a Minimal SAT Model

Problem . 214

B Introduction to the FSM Library 216
B.1 Overview . 216
B.2 Download and Installation . 216
B.3 Test Generation Support . 217
B.4 FSM Model Input Formats . 219

B.4.1 Model Input in CSV-Format 219
B.4.2 Model Input in Low-level FSM Format 221
B.4.3 RTT-MBT-FSM: Model Input in Graphical Format . . 224

x

B.5 Test Execution Support . 227
B.6 Example: Garage Door Controller 229

B.6.1 Problem Description 229
B.6.2 GDC System Under Test 234
B.6.3 Test Generation . 234
B.6.4 Creating the SUT Wrapper 236
B.6.5 Test Execution . 237

B.7 FSM Library Classes and Methods Overview 238

xi

List of Figures

2.1 Commuting diagrams reflecting the satisfaction condition. . . 20

3.1 Equivalent minimal FSMs from Example 1 with |Q| > |Q ′|. . . 32
3.2 DFSM to be minimised (example based on [21, pp. 55]). . . . 34
3.3 Minimised DFSM associated with DFSM in Fig. 3.2. 40
3.4 Nondeterministic and non-observable FSM for Example 2. . . 46
3.5 Nondeterministic observable FSM equivalent to the FSM in

Fig. 3.4. 47
3.6 Nondeterministic, observable, unminimised FSM. 50
3.7 Nondeterministic, observable, minimised FSM equivalent to

the one depicted in Fig. 3.6. 53
3.8 Nondeterministic, observable, minimal FSM used in Example 3. 60

4.1 Reference model M1 . 86
4.2 SUT model M2 . 86
4.3 Single transition fault . 93
4.4 Comparison of various complete FSM-based test methods,

from [15]. 94
4.5 M1 – reference model. 102
4.6 M2 . 102
4.7 M3 . 103
4.8 Nondeterministic FSM M0 (example taken from [26]). 108
4.9 Nondeterministic FSM M1 – identical to M0, but with start

state 1 instead of 0. 109
4.10 Intersection M0 ∩ M1 contains a (in fact, is a) completely

defined sub-machine. Therefore state 0 and 1 of M0 are not
r-distinguishable. 110

4.11 State 3 of M0 is definitely reachable. 111
4.12 State 2 of M0 is definitely reachable. 112

xii

4.13 State separator for states 0 and 2 in M0. 113
4.14 State separator for states 0 and 3 in M0. 114
4.15 State separator for states 2 and 3 in M0. 115

6.1 Transition diagram of RIOSTS S from Example 1. Boxes
specify sets of quiescent states, ovals transient states. 129

7.1 FSM induced by S and (A, I) from Example 7 and 8. 139

10.1 Erroneous implementation S ′ of the alarm indication system
shown in Fig. 6.1. 167

14.1 Code coverage achieved by replay of crash file for bug from
line 16 of UUT getMin(). 199

14.2 Code coverage achieved by an additional fuzz test lasting one
minute. 199

A.1 First part of tree constructed by the algorithm above for solv-
ing the minimal hitting set problem from Example 22. 212

A.2 Second part of tree constructed by the algorithm above for
solving the minimal hitting set problem from Example 22. . . 213

B.1 Tabular format for modelling DFSMs. 221
B.2 RTT-MBT-FSM Tool bar for operations on the canvas. 226
B.3 Test harness interacting with software under test by means of

an SUT wrapper. 228
B.4 Garage door controller and its operational environment. 230
B.5 Behaviour of the garage door controller, modelled by a DFSM. 231
B.6 Minimised DFSM, equivalent to the GDC model from Fig. B.5.232

xiii

Part I

Introduction and Background

1

Chapter 1

Testing – Basic Definitions

1.1 Basic Terms

In this chapter, some basic notions about testing are summarised in glossary
style; they will be discussed in more detail in the chapters to follow. A
rather comprehensive set of test-related definitions can be found, for example,
in [64], and in the international standard [35, 36, 37, 38].

Dynamic testing. These lecture notes are about dynamic testing : the
system under test (SUT) is executed and receives inputs from the testing
environment which then monitors the associated outputs of the SUT and
checks them against specifications of the expected behaviour. Dynamic test-
ing can be performed on host computers differing from the real operational
environment of the SUT or on target computers with the real operational
hardware, including real hardware interfaces between SUT and environment.

Static analysis. The term static analysis or static testing is used when
the SUT code is analysed instead of executed. Just as in dynamic testing,
static analysis has specific objectives to uncover certain types of software
errors. Unlike dynamic testing on target computers, however, static analysis
cannot uncover errors caused by inappropriate HW/SW integration, such as
registers with insufficient length to perform the required calculations without
overflows. 1

1If trustworthy models of the underlying HW exist, static analysis becomes also capable
of detecting HW/SW integration errors. This is currently an important research field, but

2

System under test (SUT). The system to be tested – software or hard-
ware – is denoted by system under test (SUT). Alternative terms that are
also used in standards and in the testing literature are

• unit under test (UUT) if the SUT is a software unit like a function,
procedure, or method,

• implementation under test (IUT), synonymous to SUT, and

• test item, also synonymous to SUT.

Test case. Following [35], a test case is a set of test case preconditions,
inputs (including actions, where applicable), and expected results, developed
to drive the execution of a test item to meet test objectives, including cor-
rect implementation, error identification, checking quality, and other valued
information.

Test suite. A collection of test cases to be executed against a given SUT
is called a test suite.

Test strength. The strength of a test suite is its capability to uncover
errors inside the SUT.

Fault injections (mutations). One approach to determine the strength
of a test suite is to inject faults into a copy of the SUT. For software testing,
this is fairly simple: the program statements are mutated in certain places.
The test strength of the suite is then measured by the number of mutations
uncovered in at least one test case execution divided by the overall number
of created mutations. This fraction is called the mutation score.

For testing integrated HW/SW systems, the situation is more complex,
since certain erroneous HW behaviour cannot be simulated by software resid-
ing on the HW. Therefore, corrupted versions of the HW need to be produced
in order to be able to test whether the SUT can cope adequately with this
behaviour, or the HW has to be corrupted during test execution. This variant
of testing is called intrusive because it modifies the SUT hardware.

cannot be expected to become an accepted best practise in industry in the near future.

3

Test procedure. Following [70], a test procedure consists of step-by-step
instructions for how each test case is to be set up and executed, how the test
results are evaluated, and the test environment to be used.

For automated testing, test procedures are usually realised as executable
programs, containing algorithms to establish the pre-conditions, create the
test inputs, and check the expected results associated with one or more test
cases.

Test oracles. In dynamic testing, the test environment components de-
ciding whether the SUT reactions comply to the expected results associated
with a test case are called checkers or test oracles. The verdicts stated by
test oracles are on a per-test-case basis

• PASS – the SUT has reacted to the input data associated with a test
case as expected

• FAIL – the SUT reactions have violated the expected results specifica-
tion associated with the test case

• INCONCLUSIVE – the test procedure executing the test case has en-
countered a runtime error, or the precondition of the test case could
not be realised during the test execution. Therefore the test case could
not be properly tested – it’s neither PASS nor FAIL.

Test harness. In automated software testing, the software component ex-
ecuting a test procedure is called test harness2, because it “puts a harnesses”
on the SUT by forcing specific test data to be provided to its input interfaces
and checks every reaction on the SUT’s output interfaces. Typically, a test
harness provides the following services.

1. Activation of the SUT (function call, object instantiation and method
call, thread activation, process activation, . . .).

2. Provision of input data on the SUT’s software interfaces (input param-
eters, shared memory, global variables, files, sockets, . . .).

3. Monitoring of SUT reactions (data written to output parameters, re-
turn values, . . .) and check against expected results.

4. Documentation of the test results.
2harness = Zaumzeug in German

4

Stubs and mock objects. In automated software testing, the SUT may
call sub-functions f that are not considered to be a part of the SUT, but
part of the test environment. For these functions, the test harness needs to
specify the return values, output parameters and writes to global variable
performed by these sub-functions, in order to check whether the SUT reacts
correctly for any conceivable results of the sub-function. We say that the
real sub-function f is replaced by a stub: another function with the same
signature as f but with a behaviour which is controlled by the test harness.

In object-oriented software testing, the situation is more complex, since
the SUT may call methods on objects that have been passed as parameters
or reside in object attributes or static class attributes. As a consequence, the
test harness needs to provide objects that can be controlled by the harness.
These are called mock objects.

Model-based testing. Model-based testing (MBT) can be implemented
using different approaches; this is also expressed in the current definition of
MBT presented in Wikipedia3.

Model-based testing is an application of model-based design for
designing and optionally also executing artifacts to perform soft-
ware testing or system testing. Models can be used to represent
the desired behavior of a System Under Test (SUT), or to repre-
sent testing strategies and a test environment.

In these lecture notes, we follow the variant where formal models represent
the desired behaviour of the SUT, because this promises the maximal return
of investment for the effort to be spent on test model development.

• Test cases can be automatically identified in the model.

• If the model contains links to the original requirements (this is sys-
tematically supported, for example, by the SysML modelling lan-
guage [48]), test cases can be automatically traced back to the require-
ments they help to verify.

• Since the model is associated with a formal semantics, test cases can
be represented by means of logical formulas representing reachability
goals, and concrete test data can be calculated by means of constraint
solvers.

3https://en.wikipedia.org/wiki/Model-based testing, 2016-07-11

5

• Using model-to-text transformations, executable test procedures, in-
cluding test oracles, can be generated in an automated way.

• Comprehensive traceability data linking test results, procedures, test
cases, and requirements can be automatically compiled.

Requirements tracing. One of the main objectives of testing is to cover
a set of given requirements specifying the expected SUT behaviour. It is
therefore necessary to trace each test case back to the set of requirements
it helps to verify. The relationship between requirements is n : m. One
requirement may be tested by several test cases, and one test case may help
to verify several requirements.

Exercise 1. The European Train Control System ETCS relies on the
existence of an onboard controller in train engines, the European Vital Com-
puter EVC. Its functionality and basic architectural features are described
in the public ETCS system specification [17]. One functional category of
the EVC covers aspects of speed and distance monitoring, to accomplish
the “. . . supervision of the speed of the train versus its position, in order
to assure that the train remains within the given speed and distance lim-
its.” [68, 3.13.1.1]. Speed and distance monitoring is decomposed into three
sub-functions [68, 3.13.10.1.2], where only one out of these three is active at
a point in time. Ceiling speed monitoring (CSM) supervises the observance
of the maximal speed allowed according to the current most restrictive speed
profile (MRSP). CSM is active while the train does not approach a target
(train station, level crossing, or any other point that must be reached with
predefined speed). The other variants of speed monitoring are not considered
here; they are applied in situations when the train has to “brake to a target”
or approaches the end of its movement authority.

In this exercise, a C++ class implementing the control functions of the
CSM is developed and tested in an intuitive way. In subsequent chapters,
we will come back to this class and test it more systematically, applying the
methods which are introduced in these lecture notes.

The CSM manages the internal states NORMAL, OVERSPEED, WARNING,
SVC BRAKE INTERVENTION, and EMER BRAKE INTERVENTION which are pro-
cessed as follows.

1. State NORMAL is used while the actual train speed v is less or equal
to the maximal speed vMax allowed. The status is indicated by value

6

OK on the display output d to the train engine driver. The brakes are
released.

From NORMAL, transitions into the following internal states are per-
formed.

• To OVERSPEED, when condition

vMax < v ≤ vMax+ dW(vMax)

holds, where the threshold function dW(vMax) is specified below.

• To WARNING, when condition

vMax+ dW(vMax) < v ≤ vMax+ dSI(vMax)

holds, where the threshold function dSI(vMax) is specified below.

• To SVC BRAKE INTERVENTION, when condition

vMax+ dSI(vMax) < v ≤ vMax+ dEI(vMax)

holds, where the threshold function dEI(vMax) is specified below.

• To EMER BRAKE INTERVENTION, when condition

vMax+ dEI(vMax) < v

holds.

2. State OVERSPEED is used to indicate a negligible violation of the speed
limit. The status is indicated by value OVR on the display output d to
the train engine driver. The brakes are released.

From OVERSPEED, transitions into the following internal states are per-
formed.

• To NORMAL, when condition

v ≤ vMax

holds.

7

• To WARNING, when condition

vMax+ dW(vMax) < v ≤ vMax+ dSI(vMax)

holds.

• To SVC BRAKE INTERVENTION, when condition

vMax+ dSI(vMax) < v ≤ vMax+ dEI(vMax)

holds.

• To EMER BRAKE INTERVENTION, when condition

vMax+ dEI(vMax) < v

holds.

Note that the conditions to reach another state from OVERSPEED are
the same as the jump conditions specified for NORMAL.

3. State WARNING is used when another warning level is needed, since the
train is overspeeding even more. The status is indicated by value WRN

on the display output d to the train engine driver. The brakes are
released.

From WARNING, transitions into the following internal states are per-
formed.

• To NORMAL, when condition

v ≤ vMax

holds.

• To SVC BRAKE INTERVENTION, when condition

vMax+ dSI(vMax) < v ≤ vMax+ dEI(vMax)

holds.

• To EMER BRAKE INTERVENTION, when condition

vMax+ dEI(vMax) < v

holds.

8

4. State SVC BRAKE INTERVENTION is used brake the train until normal
speed is reached again, using the service brakes only. The status is
indicated by value SI on the display output d to the train engine driver.
The service brakes are triggered, the emergency brakes are released.

From SVC BRAKE INTERVENTION, transitions into the following internal
states are performed.

• To NORMAL, when condition

v ≤ vMax

holds.

• To EMER BRAKE INTERVENTION, when condition

vMax+ dEI(vMax) < v

holds.

5. State EMER BRAKE INTERVENTION is used to brake the train using both
service brakes and emergency brakes. The status is indicated by value
SI on the display output d to the train engine driver. Both service
brakes and emergency brakes are triggered.

From EMER BRAKE INTERVENTION, transitions into the following internal
states are performed.

• To NORMAL, when condition

v = 0∨ (v ≤ vMax∧ c)

holds. This means that

– either the train has come to a standstill (v = 0), or

– v ≤ vMax, and the country the train is travelling in allows
for releasing the emergency and service brakes already if this
holds. This situation is marked by a country flag c.

The threshold function dW(vMax), dSI(vMax), and dEI(vMax) used to
guard the transitions between states are defined as follows [68, 3.13.9.2.3].

dW(vMax) =
4 if vMax ≤ 110
1
3
+ 1

30
· vMax if 110 < vMax ≤ 140

5 if 140 < vMax

(1.1)

9

dSI(vMax) =
5.5 if vMax ≤ 110
0.55+ 0.045 · vMax if 110 < vMax ≤ 210
10 if 210 < vMax

(1.2)

dEI(vMax) =
7.5 if vMax ≤ 110
−0.75+ 0.075 · vMax if 110 < vMax ≤ 210
15 if 210 < vMax

(1.3)

The header file of the class to be programmed is given in the listing
CSM.hpp below. The main control function of the CSM is public method
doCSM(). It gets the following inputs.

1. Variable v contains the current train speed provided by the environ-
ment.

2. Variable vMax contains the MRSP value, that is, the maximal train
speed currently allowed.

3. The country flag c is true if after having entered the emergency brake
state, the CSM may release the brakes already if the current speed is
again below the maximal speed allowed. Otherwise, if c evaluates to
false, the train must come to a standstill (v = 0), before the brakes
may be released again.

The control function doCSM() sets the following outputs.

1. Variable svcBrake triggers the service brake if set by the method to 1,
otherwise the value is 0.

2. Variable emerBrake triggers the emergency brake if set by the method
to 1, otherwise the value is 0.

3. Variable d sets the display for the train engine driver. While in state
NORMAL, the display should show OK. When state OVERSPEED is entered,
the display must be set to OVR. When entering state WARNING, the
display must show WRN. When in states SVC BRAKE INTERVENTION or
EMER BRAKE INTERVENTION, the display must show IV.

Your tasks for this exercise are as follows.

10

1. Program the class implementation in a file CSM.cpp.

2. Program a main.cpp file that tests the CSM implementation as follows.

(a) You may create and destroy the CSM instances several times if
suitable for your test suite.

(b) Call the doCSM() method with selected values and check whether
the associated outputs are correct. Do this by using the checking
and logging function listed below.

(c) Identify each call to doCSM() by a test case identifier.

(d) Structure the text above into a list of atomic requirements.

(e) Create a table which documents which test cases contribute to
testing a given requirement (see examples in the main.cpp listing
below).

�

1 //
2 // CSM. hpp
3 // CSM
4 //
5 // Created by Jan Pe leska on 2016−10−18.
6 // Copyright (c) 2016 Jan Pe leska . A l l r i g h t s r e s e r v e d .
7 //
8
9 #ifndef CSM hpp

10 #define CSM hpp
11
12 #include <s t d i o . h>
13
14
15 /∗∗
16 ∗ Class f o r the C e i l i n g Speed Monitor (CSM)
17 ∗/
18 class CSM {
19
20 public :
21
22 typedef enum {
23 OK,
24 OVR,
25 WRN,
26 IV

11

27 } d i s p l a y t ;
28
29 private :
30
31 typedef enum {
32 NORMAL,
33 OVERSPEED,
34 WARNING,
35 SVC BRAKE INTERVENTION, /∗∗ s e r v i c e brake i n t e r v e n t i o n ∗/
36 EMER BRAKE INTERVENTION /∗∗ emergency brake i n t e r v e n t i o n ∗/
37 } c s m s t a t e t ;
38
39 c s m s t a t e t s t a t e ;
40
41 /∗∗ C a l c u l a t e t h r e s h o l d v a l u e f o r t r a n s i t i o n i n t o s t a t e WARNING ∗/
42 f loat dW(f loat vMax) ;
43
44 /∗∗ C a l c u l a t e t h r e s h o l d v a l u e f o r t r a n s i t i o n i n t o s t a t e
45 ∗ SVC BRAKE INTERVENTION
46 ∗/
47 f loat dSI (f loat vMax) ;
48
49 /∗∗ C a l c u l a t e t h r e s h o l d v a l u e f o r t r a n s i t i o n i n t o s t a t e
50 ∗ EMER BRAKE INTERVENTION
51 ∗/
52 f loat dEI (f loat vMax) ;
53
54 /∗∗ Process i n p u t s in s t a t e NORMAL ∗/
55 c s m s t a t e t processN (f loat v , f loat vMax , bool c ,
56 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
57
58 /∗∗ Process i n p u t s in s t a t e OVERSPEED ∗/
59 c s m s t a t e t processO (f loat v , f loat vMax , bool c ,
60 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
61
62 /∗∗ Process i n p u t s in s t a t e WARNING ∗/
63 c s m s t a t e t processW (f loat v , f loat vMax , bool c ,
64 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
65
66 /∗∗ Process i n p u t s in s t a t e SVC BRAKE INTERVENTION ∗/
67 c s m s t a t e t proces sS (f loat v , f loat vMax , bool c ,
68 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
69
70 /∗∗ Process i n p u t s in s t a t e EMER BRAKE INTERVENTION ∗/
71 c s m s t a t e t processE (f loat v , f loat vMax , bool c ,

12

72 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
73
74 public :
75
76 /∗∗ Constructor ∗/
77 CSM() ;
78
79 /∗∗
80 ∗ Perform one s t e p o f the c e i l i n g speed monitoring
81 ∗ @param [in] v current t r a i n speed
82 ∗ @param [in] vMax curren t maximal speed a l l o w e d
83 ∗ @param [in] c country f l a g − see CSM d e s c r i p t i o n
84 ∗ @param [out] svcBrake output to s e r v i c e brake in range
85 ∗ 0 (do not t r i g g e r the s e r v i c e brake)
86 ∗ 1 (t r i g g e r the s e r v i c e brake)
87 ∗ @param [out] emerBrake output to emergency brake in range
88 ∗ 0 (do not t r i g g e r the emergency brake)
89 ∗ 1 (t r i g g e r the emergency brake)
90 ∗ @param [out] d d i s p l a y command
91 ∗/
92 void doCSM(f loat v , f loat vMax , bool c ,
93 int& svcBrake , int& emerBrake , d i s p l a y t& d) ;
94
95 /∗∗ Reset CSM i n s t a n c e to i t s i n i t i a l s t a t e NORMAL ∗/
96 void r e s e t () ;
97
98 } ;
99

100 #endif /∗ CSM hpp ∗/

1 //
2 // main . cpp
3 // CSM
4 //
5 // Created by Jan Pe leska on 2016−10−18.
6 // Copyright (c) 2016 Jan Pe leska . A l l r i g h t s r e s e r v e d .
7 //
8
9 #include <iostream>

10 #include <s t r i ng>
11
12 #include ”CSM. hpp”
13
14 /∗
15 Requirements s p e c i f i c a t i o n
16

13

17 REQ−N−001 In s t a t e NORMAL the message OK i s d i s p l a y e d on output d
18 REQ−N−002 In s t a t e NORMAL, a t r a n s i t i o n to OVERSPEED i s performed ,
19 i f vMax < v <= vMax + dW(vMax)
20 REQ−N−003 In s t a t e NORMAL, a t r a n s i t i o n to WARNING i s performed , i f
21 vMax + dW(vMax) < v < vMax + dSI (vMax)
22 . . .
23 ∗/
24
25 /∗ Requirements t r a c i n g
26
27 REQ−N−001: TC−N−001, TC−N−002, . . .
28 REQ−N−002: TC−N−003, . . .
29 . . .
30 ∗/
31
32
33 void assertAndLog (bool cnd , std : : s t r i n g testCase ,
34 int svcBrake , int emerBrake , CSM: : d i s p l a y t d) {
35 std : : s t r i n g v e r d i c t ;
36
37 v e r d i c t = (cnd) ? ”PASS” : ”FAIL” ;
38
39 std : : cout << t e s tCase << ” : ” << v e r d i c t
40 << ” svcBrake = ” << svcBrake << ” emerBrake = ” << emerBrake
41 << ” d = ” << d << std : : endl ;
42 }
43
44 int main (int argc , const char ∗ argv []) {
45
46 int svcBrake ;
47 int emerBrake ;
48 CSM: : d i s p l a y t d ;
49
50 CSM csm ;
51
52 // Run t e s t cases
53 csm .doCSM(0 . 0 , 0 . 0 , false , svcBrake , emerBrake , d) ;
54 assertAndLog (svcBrake == 0 and emerBrake == 0 and d == CSM: :OK,
55 ”TC−N−001” , svcBrake , emerBrake , d) ;
56
57 csm .doCSM(5 0 0 . 0 , 5 0 0 . 0 , false , svcBrake , emerBrake , d) ;
58 assertAndLog (svcBrake == 0 and emerBrake == 0 and d == CSM: :OK,
59 ”TC−N−002” , svcBrake , emerBrake , d) ;
60
61 csm .doCSM(5 0 0 . 0 1 , 5 0 0 . 0 , false , svcBrake , emerBrake , d) ;

14

62 assertAndLog (svcBrake == 0 and emerBrake == 0 and d == CSM: :OVR,
63 ”TC−N−003” , svcBrake , emerBrake , d) ;
64 . . .
65 }

1.2 Variants of Test Purposes

Testing is usually performed with a specific purpose in mind. There are dif-
ferent purposes to perform tests, and these influence the underlying methods
and techniques applied for generating test cases, test data, and for specifying
expected results.

Functional testing executes test cases to verify whether the required be-
haviour of the SUT has been implemented correctly.

Vulnerability testing is performed to uncover errors in the SUT, regard-
less of whether they reveal functional, structural, or non-functional discrep-
ancies.

Robustness testing checks whether the SUT can cope with erroneous
environment behaviour.

Stress testing is used to verify whether the SUT can cope with the max-
imal work load.

Avalanche testing is performed to check whether the SUT can recover
properly after a temporary overload.

Error guessing uses test cases where the test engineers expect vulnerabil-
ities in the SUT.

Scenario testing (end-to-end testing) verifies whether complete ser-
vices expected by the end users are performed correctly by the SUT. Exe-
cuting a scenario typically involves the execution of a chain of test cases of
functional and robustness tests.

15

1.3 Test Levels

Testing is usually performed on different levels associated with different views
on the SUT.

Unit testing “sees” the individual functions, procedures, methods, classes,
objects of a SUT and tests each of those separately by using stubs and mock
objects as explained above.

Software integration testing verifies the correct cooperation between
several functions, procedures, methods and the correct interaction between
objects of several classes, threads and processes.

This immediately suggests to perform software integration tests on dif-
ferent levels:

1. Interacting functions/procedures of the same library or methods of the
same class.

2. Interacting libraries or objects instantiated from different classes.

3. Interacting threads.

4. Interacting processes.

Hardware/software integration testing verifies the correctness of one
integrated HW/SW system (i.e. one controller with its software).

System integration testing verifies the correct cooperation between sev-
eral integrated components that are part of the complete system.

System testing verifies the correctness of the complete system, typically
executed in its real operational environment.

16

Chapter 2

Testing Theories

2.1 Model-based Testing

In model-based testing (MBT), the behaviour of the system under test (SUT)
is compared to that of a reference model, using a so-called conformance re-
lation.

Informally speaking, a testing theory states that under certain hypotheses,
test suites derived from a given reference model will uncover all failures of a
certain type. Moreover, it is obvious that these test suites should never reject
a system under test (SUT) that conforms to the reference model. These in-
formal notions can be formalised as described in the following section. While
this formalisation is rather abstract, it will be illustrated in the chapters to
follow.

2.2 Programs are Models

The notion of models used in this document is quite general. We only re-
quire the existence of an abstract syntax (which models are well-formed?)
and behavioural semantics (which state transitions can be performed, which
sequences of inputs and outputs can be observed?). In particular, computer
programs are also considered as models, because they represent abstractions
of low-level actions – think, for example, of the microcode executed by a
CPU.

17

2.3 Fault Models

Given a signature Sig of models, a fault model F(M,≤, Dom) specifies a
reference model M ∈ Sig, a conformance relation ≤ ⊆ Sig × Sig between
models, and a fault domain Dom ⊆ Sig.

The notion of signatures comes from the field of model theory [11], where
it has been observed that certain categories of objects, say, models fulfilling
a certain specification, depend on the symbols used in this context, for ex-
ample, the free variables referenced in the specification. A signature fixes
the symbol set, and changing this set corresponds to translating models and
specifications from one signature into another.

Our definition of fault models generalises the one originally presented in
[56], where it had been introduced in the context of finite state machines.

2.4 Test Cases

Given a signature Sig, we introduce the set TC(Sig) of test cases for Sig in
a very abstract way, by just requiring the existence of

• a total relation pass ⊆ Sig× TC(Sig) and

• a function # : tc(Sig)→ N ∪ {∞}

Intuitively speaking, a test case is just an object that lets us decide whether
a model of the signature “passes the object” or not, and whether the test
execution will be finite. In the chapters to follow we will see that test cases
can be represented in different ways, for example, as sets of observations, or
as executable entities interacting concurrently with the SUT.

For (M,U) ∈ pass, the infix notation M pass U is used, and interpreted
as ‘Model M passes the test case U’. The function # associates a length
with each test case. For practical applications, #(U) is set to the maximal
number of test steps to be executed when test U is run against some SUT.
From a theoretical perspective, it is also interesting to consider test cases of
infinite length (#(U) =∞).

18

2.5 Test Suites and Complete

Testing Theories

A test suite TS ⊆ TC(Sig) denotes a set of test cases. A model M passes
the test suite TS, also written as M pass TS, if and only if M pass U for all
U ∈ TS. A test suite TS is finite if it contains finitely many test cases, and
every test case U ∈ TS is finite in the sense that #(U) ∈ N.

Definition 2.1 A test suite TS is called complete with respect to fault model
F(M,≤, Dom), if and only if the following properties hold.

1. If a member of the fault domain conforms to the reference model, it
passes the test suite, that is,

∀M ′ ∈ Dom :M ′ ≤M⇒ (∀U ∈ TS :M ′ pass U)

This property is called soundness of the test suite.

2. If a member of the fault domain passes the test suite, it conforms to
the reference model, that is,

∀M ′ ∈ Dom : (∀U ∈ TS :M ′ pass U)⇒M ′ ≤M

This property is called exhaustiveness.
�

A complete testing theory is a mapping TS : F → P(TC(Sig)) from a
set F of fault models to test suites, such that the test suites TS(F) are
complete for all fault models F = F(M,≤, Dom) ∈ F. A testing theory
TS : F→ P(TC(Sig)) is finite if and only of F(F) is a finite test suite for all
F ∈ F.

2.6 Translation of Testing Theories

Let Sig1 and Sig2 be two signatures with conformance relations ≤1 and ≤2,
and test case relations pass

1
and pass

2
, respectively. A function T : Sig1 →

Sig2 defined on a sub-domain Sig1 ⊆ Sig1 is called a model map, and a
function T ∗ : TC(Sig2) → TC(Sig1) is called a test case map. Note that
models and test cases are mapped in opposite directions (see Fig. 2.1).

19

Definition 2.2 (Satisfaction Condition) The pair (T, T ∗) fulfils the sat-
isfaction condition if and only if the following conditions SC1 and SC2 are
fulfilled.

SC1 The model map is compatible with the conformance relations under
consideration, in the sense that

∀S,S ′ ∈ Sig1 : S ′ ≤1 S ⇔ T(S ′) ≤2 T(S),
so the left-hand side diagram in Fig. 2.1 commutes due to the fact that
T ;≤2=≤1; T .1

SC2 Model map and test case map preserve the pass-relationship in the sense
that

∀S ∈ Sig1, U ∈ TC(Sig2) : T(S) pass
2
U⇔ S pass

1
T ∗(U),

so the right-hand side diagram in Fig. 2.1 commutes, due to the fact
that pass

1
= T ; pass

2
; T ∗.

�

T T T T ⇤

1

2

pass
1

pass
2

T ;2 = 1; T pass
1

= T ; pass
2
; T ⇤

T ⇤(TC(Sig2))

TC(Sig2)

Sig1Sig1 Sig1

T (Sig1) T (Sig1)T (Sig1)

Figure 2.1: Commuting diagrams reflecting the satisfaction condition.

Given a pair (T, T ∗) fulfilling the satisfaction condition, this allows to
translate complete testing theories existing in Sig2 to likewise complete test-
ing theories in (sub-domains of) Sig1.

1Operator “;” denotes the relational composition defined for functions or relations
f ⊆ A × B, g ⊆ B × C by f;g = {(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ f ∧ (b, c) ∈ g}. Note
that f;g is evaluated from left to right (like composition of code fragments), as opposed
to right-to-left evaluation which is usually denoted by g ◦ f.

20

Theorem 2.1 Suppose that TS2 : F2 → P(TC(Sig2)) is a sound (exhaustive,
complete) testing theory. Define

F1 = {(S,≤1, Dom1) ∈ F(Sig1,≤1) |
∃Dom2 ⊆ Sig2 : T(Dom1) ⊆ Dom2 ∧ (T(S),≤2, Dom2) ∈ F2}.

Then TS1 : F1 → P(TC(Sig1)) defined by TS1(S,≤1, Dom1) =
T ∗(TS2(T(S),≤2, Dom2)), such that T(Dom1) ⊆ Dom2, is a sound (ex-
haustive, complete) testing theory.

Proof. Suppose TS2 is sound (exhaustive). Let F1 = (S,≤1, Dom1) ∈ F1
and F2 = (T(S),≤2, Dom2) ∈ F2 be any fault models in F1 and F2 re-
spectively, satisfying TS1(F1) = T ∗(TS2(F2)). Let S ′ ∈ Dom1. Then
T(S ′) ∈ Dom2, and

S ′ ≤1 S ⇔ T(S ′) ≤2 T(S) [satisfaction condition SC1]⇒ ∀U ∈ TS2(F2) : T(S ′) pass
2
U [TS2 is sound]

(⇐) [TS2 is exhaustive]⇔ ∀U ∈ TS2(F2) : S ′ pass
1
T ∗(U) [satisfaction condition SC2]⇔ S ′ pass

1
T ∗(TS2(F2))⇔ S ′ pass

1
TS1(F1) [TS1(F1) = T ∗(TS2(F2))]

Hence TS1(F1) is a sound (exhaustive) test suite for any fault model F1 ∈ F1.
Consequently, TS1 is sound (exhaustive). Completeness is the combination
of soundness and exhaustiveness, so this proves the theorem. �

Summarising, the existence of a model map and a test case map (T, T ∗)
fulfilling the satisfaction condition allows us to translate every complete,
sound, or exhaustive testing theory elaborated for Sig2 to a complete, sound
or exhaustive testing theory in Sig1 by simply translating complete Sig2-
test suites via T ∗ to Sig1-test suites. The crucial point is the construction of
(T, T ∗) for the signatures under consideration, and the proof of the satisfaction
condition. We will apply this strategy in the subsequent sections to signatures
of FSMs playing the role of Sig2, which allows us to translate existing FSM
testing theories to signatures Sig1 representing variants of RIOSTSs.

21

2.7 Testability Hypothesis

The testability hypothesis states that the true behaviour of the SUT is equiva-
lent to one of the models in the fault domain. The validity of this assumption
ensures that complete test suites will really uncover all SUT errors of a given
type. In particular, the hypothesis states that the modelling formalism used
is adequate to represent all “interesting” behaviours of the SUT. For exam-
ple, if the SUT can only be considered as correct if it also meets some timing
constraints, then a modelling formalism abstracting from time is inadequate,
and the true behaviour of the SUT will never be inside the fault domain.

When performing white-box software tests where the complete program
code can be analysed, the testability hypothesis can often be checked by
means of static analysis. When performing black-box tests, in particular,
against integrated hardware/software systems, however, it is often impossible
to ensure its validity. This motivates why the verification of safety-critical
systems can never be completed by black-box testing methods only.

2.8 Uniformity Hypothesis and Regularity

Hypothesis

From a practical perspective, test suites should be finite, and each test case
should terminate after a finite number of steps. Therefore testing theories
are often established by proving the validity of two further hypotheses.

The uniformity hypothesis deals with the problem that data domains – for
example, the inputs to the SUT – are physically or conceptually infinite, so
that it is impossible to enumerate all possible values in a test suite. The hy-
pothesis assumes the possibility to partition the domains under consideration
into finitely many sub-domains D, so that it suffices to test a single represen-
tative from each sub-domain in order to conclude that the SUT would pass
the infinite number of tests exercising all elements of the complete domain.
The name of the hypothesis has been chosen because it assumes that the
SUT behaves uniformly for all elements of a sub-domain D.

The regularity hypothesis deals with the problem of test cases with infinite
lengths. It assumes that passing all cases of a maximal finite length (this
length has to be specified by the testing theory) implies that all test cases –
whether finite or infinite – will be passed.

22

The uniformity and regularity hypothesis have been originally introduced
in [20].

23

Part II

Testing Finite State Machines

24

Chapter 3

Finite State Machines

In this chapter, we introduce definitions and notations for finite state ma-
chines (FSMs) that have been introduced in contributions on FSM testing,
such as [54, 55, 59, 26]. A very comprehensive description of FSMs with
many interesting results can be found in [66].

3.1 FSM Definition

Definition 3.1 A Finite State Machine (FSM) is a tuple M =
(Q,q, ΣI, ΣO, h) with state space Q, input alphabet ΣI, output alphabet ΣO,
where Q,ΣI, ΣO are finite and nonempty sets. q ∈ Q denotes the initial state.
h ⊆ Q × ΣI × ΣO ×Q is the transition relation. If (q, x, y, q ′) ∈ h, we say
that there is a transition from q to q ′ with input x and output y. The set
of state machines over a given input alphabet ΣI and output alphabet ΣO is
called an FSM signature and denoted by FSM(ΣI, ΣO). �

Observe that there are two variants how FSMs can be defined:

1. The definition given above introduces the FSM variant known as Mealy
Automata and is typically used for modelling reactive control systems
that accept inputs and – depending on the current state and the input
value – produce outputs and transit to a target state.

2. In the context of language theory, FSMs usually have a single alphabet,
where each element corresponds to a symbol accepted or rejected in
the given state. Termination states are typically explicitly defined as a
subset of Q.

25

If a Mealy automaton M = (Q,q, ΣI, ΣO, h) according to Definition 3.1
is given, an FSM M ′ conforming to the second variant can be constructed
by means of alphabet abstraction:

1. The alphabet of M ′ is Σ = ΣI×ΣO, that is, every input/output pair is
considered as a single label which is contained in the alphabet Σ.

2. The transition relation h ′ ⊆ Q× Σ×Q of M ′ is defined by

∀q, q ′ ∈ Q, z ∈ Σ :
(
(q, z, q ′) ∈ h ′ ⇔

(∃a ∈ ΣI, b ∈ ΣO : z = (a, b)∧ (q, a, b, q ′) ∈ h)
)

3. The set of termination states is identified explicitly by

QTerm = {q ∈ Q | ∀a ∈ ΣI, b ∈ ΣO, q ′ ∈ Q : (q, a, b, q ′) 6∈ h}

3.2 Basic Properties of FSMs

We use both set notation (q, x, y, q ′) ∈ h and Boolean notation h(q, x, y, q ′)
for specifying that (q, x, y, q ′) is a transition in h. We call x a defined in-
put in state q, if there is a transition from q with input x. If every in-
put of ΣI is defined in every state, M is completely specified. FSM M is
called a deterministic FSM (DFSM), if for any state q and defined input x,
h(q, x, y, q ′)∧ h(q, x, y ′, q ′′) implies (y, q ′) = (y, q ′′). Intuitively speaking,
a specific input applied to a specific state uniquely determines both post-state
and associated output. If M is not deterministic, it is called a nondetermin-
istic FSM (NFSM). If there is no emanating transition for q ∈ Q, this state
is called a deadlock state, and M terminates in q. The set of deadlock states
is denoted by deadlock(Q) ⊆ Q. The set of states that do not deadlock is
denoted by DF(Q) = {q ∈ Q | ∃(q ′, x, y, q ′′) ∈ h : q ′ = q}.

The transition relation h can be extended in a natural way to input traces:
let x be an input trace and y an output trace. Then (q, x, y, q ′) ∈ h, if and
only if there is a transition sequence from q to q ′ with input trace x and
output trace y. If q is the initial state q, such a transition sequence is called
an execution of M. Executions are written in the notation

q0
x1/y1
−−−→ q1

x2/y2
−−−→ . . .

xk/yk
−−−→ qk

with q0 = q, h(qi−1, xi, yi, qi) for i = 1, . . . , k, and x = x1 . . . xk and y =
y1 . . . yk.

26

We use notation q2 ∈ q1-after-x if there exists an output trace y,
such that (q1, x,y, q2) ∈ h. Notation q2 ∈ q1-after-x/y indicates that
(q1, x,y, q2) ∈ h. If q1-after-x contains only a single element, the set no-
tation is dropped, and we write q2 = q1-after-x. Analogously, notation
q2 = q1-after-x/y is used.

The empty trace is denoted by ε, and (q, ε, ε, q) ∈ h, for any state q.
A language of an FSM M is the set consisting of all possible input/output
traces in M; we use notation LM(q) = {x/y | ∃q ′ ∈ Q : h(q, x, y, q ′)} for
q ∈ Q, and L(M) = LM(q). By FSM(ΣI, ΣO) we denote the signature of all
FSMs with input alphabet ΣI and output alphabet ΣO.

If M1 ∈ FSM(ΣI, ΣO1
), it is not guaranteed that every output y ∈ ΣO1

will be used in some transition. Therefore, if M2 ∈ FSM(ΣI, ΣO2
), we can

still compare their behaviour by setting ΣO = ΣO1
∪ ΣO2

and noting that
M1,M2 ∈ FSM(ΣI, ΣO). Intuitively speaking, we can always assume that
the FSMs under consideration operate on the same output alphabet.

Exercise 2. Consider again Exercise 1. Since the ceiling speed monitor
CSM described there operates on floating point values as inputs, it will be
infeasible to test every possible input vector from every possible internal
state.

A typical intuitive way to reduce the number of inputs to be considered
is to build input equivalence classes. Such a class is a subset of the input
domain where it can be assumed that the SUT will process all inputs from
this class in the same way, so that “one input of this class is just as good as
any other from the same class”, when it comes to detecting faults. Therefore
it suffices to select one or a small number of representatives from each class,
to be used as test input data in a test suite.

In this exercise, this form of “discretisation” of a system with input do-
mains that are too large is applied in an intuitive, heuristic way. We will
see in Part III of these lecture notes that input equivalence classes can be
determined in a systematic way, so that even complete test suites can be
generated for fault models with practically relevant fault domains.

The objective for this exercise is to create a discrete DFSM model
M = (S, q, ΣI, ΣO, h) for the CSM, where the input alphabet contains repre-
sentatives from input equivalence classes that have been intuitively identified.

The state space S of this DFSM is S = {0, 1, 2, 3, 4}, where 0 corresponds
to internal state NORMAL, 1 to OVERSPEED and so on, such tat 4 corresponds
to EMER BRAKE INTERVENTION. The initial state is q = 0.

27

The output alphabet is of the form ΣO = {0, 1, 2, 3, 4}, where these integer
codes correspond to the following output vectors.

output code svcBrake emerBrake d
0 0 0 OK

1 0 0 OVR

2 0 0 WRN

3 1 0 SI

4 1 1 SI

The input alphabet ΣI = {0, 1, 2, 3, . . . } needs to be constructed in such a
way that that each x ∈ ΣI corresponds to an input equivalence class. Each
class restricts the values for v, vMax, and c. For example,

classi = {(v, vMax, c) | v ∈ (vMax+ dW(vMax), vMax+ dSI(vMax)]∧

vMax ∈ (110, 140]∧ c}

could be such an equivalence class, but you need to justify for each class
why it is appropriate. Identify at least 5 classes class0, . . . , class4, so that the
input alphabet corresponds to classes as follows.

input code class
0 class0
1 class1
2 class2
3 class3
4 class4

.

With these alphabet definitions, the DFSM’s transition relation can be
represented in tabular form.

• The table’s first column lists the input codes.

• The table’s first row lists the internal states.

• A table entry in the field for input n and state q contains the expression
y/q ′, if and only if the CSM, when in internal state q and when getting
input n, transits to state q ′ while producing output y.

28

The resulting transition table should look like this, depending on your input
equivalence class definitions.

input \ state 0 1 2 3 4

0 0/0 0/0 0/0 0/0 0/0
2 1/1 1/1 2/2 3/3 4/4

.
7 0/0 0/0 0/0 0/0 4/4

.

For the test execution, change the test harness (main program of the test) in
such a way that each time an input represented by some class classI is to be
selected, the test harness selects a random value from classI. �

Conformance Relations Two FSM M1,M2 are I/O-equivalent (M1 ∼

M2) if and only if their languages coincide, i.e. L(M1) = L(M2). FSM M1

is a reduction of M2 (M1 � M2), if and only if L(M1) ⊆ L(M2). I/O-
equivalence is also called trace equivalence by some authors, see, e.g. [45].

For a set of input tracesA ⊆ Σ∗I , two states s1, s2 are A-equivalent (written

s1
A
∼ s2), if all input sequences from A, when applied to s1 and s2, lead to the

same sets of outputs. More formally,

s1
A
∼ s2 ≡

(
∀x ∈ A,y ∈ Σ∗O : x/y ∈ L(s1)⇔ x/y ∈ L(s2)

)
Let ΣkI denote all input traces of length k ≥ 0. For k = 0, Σ0I = {ε}, where

ε denotes the empty trace. It is easy to see that for k > 0, s1
ΣkI
∼ s2 implies

s1
Σk−1
I
∼ s2. We abbreviate s1

ΣkI
∼ s2 with s1

k
∼ s2 and call this k-equivalence.

I/O-equivalence obviously coincides with Σ∗-equivalence.

Isomorphisms FSM homomorphisms map states to states and alphabets
to alphabets, such that these mappings respect the transition relations. In
the special case of two FSMs Mi = (Qi, qi, ΣI, ΣO, hi), i = 1, 2 over the same
input/output alphabets, a bijective function f : Q1 → Q2 induces an (FSM)
isomorphism M1 →M2, if and only if

1. f(q1) = q2

2. ∀q, q ′ ∈ Q1, x ∈ ΣI, y ∈ ΣO : h1(q, x, y, q
′)⇔ h2(f(q), x, y, f(q

′))

29

It is easy to see that the existence of an isomorphism implies I/O-equivalence
between M1 and M2, since the stronger result ∀q ∈ Q1 : L(q) = L(f(q))
holds.

Homomorphisms More generally, a homomorphism between FSMs M =
(Q,q, ΣI, ΣO, h) and M ′ = (Q ′, q ′, Σ ′I, Σ

′
O, h

′) is a triple (ζ, ξ, η) of functions
ζ : Q→ Q ′, ξ : ΣI → Σ ′I, and η : ΣO → Σ ′O, such that these functions respect
the transition relations h, h ′ in the following sense.

∀q ∈ Q, x ∈ ΣI :
{(y ′, w ′) ∈ Σ ′O ×Q ′ | h ′(ζ(z), ξ(x), y ′w ′)} =

{(y ′, w ′) ∈ Σ ′O ×Q ′ | ∃y ∈ ΣO, w ∈ Q :

h(z, x, y,w)∧ η(y) = y ′ ∧ ζ(w) = w ′}

Parallel Composition by Intersection FSM can be composed in par-
allel by synchronising over common input/output events: let FSMs Mi =
(Qi, qi, ΣI, ΣO, hi), i = 1, 2 be defined over the same input/output alpha-
bets. Then the intersection of M1,M2 (also called the product of M1,M2) is
specified by

M1 ∩M2 = (Q1 ×Q2, (q1, q2), ΣI, ΣO, h)

where the transition relation is specified by

h((q1, q2), x, y, (q
′
1, q

′
2))⇔ h1(q1, x, y, q

′
1)∧ h2(q2, x, y, q

′
2)

By construction, L(M1 ∩M2) = L(M1) ∩ L(M2). Every execution

(q1, q2)
x1/y1
−−−→ (q11, q

1
2)

x2/y2
−−−→ . . .

xk/yk
−−−→ (qk1, q

k
2)

of M1 ∩M2 is composed of executions

q1
x1/y1
−−−→ q11

x2/y2
−−−→ . . .

xk/yk
−−−→ qk1 ofM1 and q2

x1/y1
−−−→ q12

x2/y2
−−−→ . . .

xk/yk
−−−→ qk2 ofM2

Minimality and Observability An FSM is minimal, if all of its states
are reachable and each pair of different states q, q ′ produce different lan-
guages, that is, L(q) = L(q ′) ⇒ q = q ′. An FSM M is called ob-
servable, if for any states q, q1, q2, input x ∈ ΣI, and output y ∈ ΣO,

30

(q, x, y, q1), (q, x, y, q2) ∈ h implies q1 = q2. This means that in case of
nondeterministic transitions being triggered by input x in some state q, the
transition that has actually been taken can be determined by means of the
output observed. Deterministic FSMs are observable. Every FSM is equiv-
alent to an observable FSM [66]. An algorithm for transforming general
NFSM into equivalent observable ones is given in [45, Appendix II]. For
any (q, x, y, q ′) ∈ h, since observability guarantees that q ′ is uniquely de-
termined by q, x, and y, we denote the state q ′ also by q-after-x/y. An
I/O-trace is a finite sequence x/y = (x1, y1) . . . (xk, yk) of input-output pairs
with x = x1 . . . xk ∈ Σ∗I and y = y1 . . . yk ∈ Σ∗O. The length of an I/O-
trace x/y, is the length of its input part and equals the length of its output
part: |x/y| = |x| = |y|. We assume that all states are reachable from the
initial state q (initial connected) and that there is a well-defined reset oper-
ation allowing to restart the machine from its initial state. The state spaces
of two equivalent minimal nondeterministic FSMs may have different sizes
(see Example 1 below). However, equivalent observable, minimal FSMs are
isomorphic, and therefore have the same number of states.

Lemma 3.1 Let M = (Q,q, ΣI, ΣO, h),M
′
= (Q ′, q ′, ΣI, ΣO, h

′) be two ob-
servable, minimal, nondeterministic FSMs over the same input alphabet and
output alphabet. If M,M

′
are equivalent, i.e., L(M) = L(M

′
) then M and

M
′
have the same number of states. Furthermore, M and M

′
are isomorphic.

Proof. Let Q, Q ′ be the state space of M,M
′
, respectively. Since M,M

′

are minimal, Q and Q ′ contain only reachable states, and for any q1, q2 ∈
Q,q ′1, q

′
2 ∈ Q ′, L(q1) = L(q2) implies q1 = q2 and L(q ′1) = L(q ′2) implies

q ′1 = q
′
2.

For any q ∈ Q, there exists x/y ∈ L(q) such that q-after-x/y = q.

Since L(M) = L(M
′
), L(q) = L(q ′), x/y ∈ L(q ′) and L(q ′) = L(q), where

q ′-after-x/y = q ′. Since M
′

is minimal, q ′ is the unique state of Q ′ with
L(q ′) = L(q). Similarly, for any q ′ ∈ Q ′ there exists a unique q ∈ Q such
that L(q) = L(q ′). Hence f : Q → Q ′ : q 7→ q ′ with L(q ′) = L(q) is a
bijection and Q,Q ′ have the same number of states.

Since L(q) = L(M) = L(M
′
) = L(q ′), we get f(q) = q ′. Then for any

(q1, x, y, q2) ∈ h, x/y ∈ L(q1) = L(f(q1)), there is a unique q ′ ∈ Q ′ such

that (f(q1), x, y, q
′) ∈ h ′, since M

′
is observable. From L(q2) = {x/y ∈

Σ∗I/Σ
∗
O | x.x/y.y ∈ L(q1)} = {x/y ∈ Σ∗I/Σ∗O | x.x/y.y ∈ L(f(q1))} = L(q ′),

31

f(q2) = q
′ and (f(q1), x, y, f(q2)) = (f(q1), x, y, q

′) ∈ h ′ hold. Hence M and

M
′

are isomorphic. �

Example 1. Let M = (Q = {q, q1, q2, q3}, q, I = {a, b}, O =
{c, d}, h),M ′ = (Q ′ = {q ′, q ′1, q

′
2}, q

′, I,O, h ′) as given in Fig. 3.1. M,M ′

are minimal and I/O-equivalent, but M is not observable, M ′ is observable,
and |Q| > |Q ′|. �

q0 b/d

q1

a/c

q2

a/c

a/c

q3

b/c b/d

a/c

a/c

b/c

q0' b/d

q1'

a/c b/d

a/c

q2'

b/c a/c

b/c

Figure 3.1: Equivalent minimal FSMs from Example 1 with |Q| > |Q ′|.

We adopt the following definition introduced in [45]: given an FSM M,
its prime machine is the minimal, observable FSM prime(M) satisfying
L(prime(M)) = L(M). As discussed above, the prime machine associated
with an arbitrary FSM is uniquely determined up to isomorphism. For DF-
SMs, the associated prime machines are simply their minimised equivalents.

32

3.3 Minimisation of DFSMs

The minimisation algorithm for deterministic FSMs described in this section
goes back to [21, pp. 60].

3.3.1 Transition Table Representation of DFSMs

In [21, p. 50], the following tabular representation of FSMs is introduced.

Inputs → Outputs (I2O) Inputs → Post-state q ′ (I2P)
q x1 x2 . . . x1 x2 . . .

q y01 y02 . . . q01 q01 . . .

q1 y11 y12 . . . q11 q11 . . .
q2 y21 y22 . . . q21 q21 . . .
. .
qk yk1 yk2 . . . qk1 qk1 . . .

The DFSM states q, q1, . . . , qk are listed in the first column of the table.
The other table columns are structured into an Inputs → Outputs section
and an Inputs → Post-state q ′ section. In each of these sections, the
columns are labelled with the inputs x1, x2 . . . of the input alphabet ΣI.

In the Inputs → Outputs section (called I2O-table in the following),
the table entry identified by state qi and input xj contains the associated
output yij ∈ ΣO, which is produced when input xj is applied when residing
in qi.

In the Inputs → Post-state q ′ section (called I2P-table in the subse-
quent sections), the table entry identified by state qi and input xj contains
the associated post state qij ∈ ΣO, which is reached when input xj is applied
to the DFSM when residing in state qi.

While this representation is obviously well-suited for DFSMs, it is unsuit-
able for nondeterministic FSMs, because there input xj could lead to different
outputs and post-states, when applied in some pre-state qi. This would lead
to many redundant table entries, because all inputs have to be handled in
each line.

Fig. 3.2 shows a DFSM in the usual graph representation; its associated
transition table is shown in Table 3.1.

33

A(0)

A(1)

in0/out1in1/out0

A(4)

in2/out0

in0/out0

A(3)

in1/out1 in2/out1

A(2)

in0/out1in1/out0

in2/out0

in1/out1 in2/out1

in0/out0

in2/out0

in1/out0

A(5)

in0/out1

in2/out1

A(7)

in0/out0

A(8)

in1/out1

A(6)

in1/out0

in0/out1

in2/out0

in0/out1 in1/out0

in2/out0in0/out0in2/out1

in1/out1

Figure 3.2: DFSM to be minimised (example based on [21, pp. 55]).

34

I2O I2P
q 0 1 2 0 1 2

0 1 0 0 1 1 4
1 0 1 1 0 3 3
2 1 0 0 1 1 4
3 0 1 1 2 1 1
4 1 0 0 5 3 2
5 0 1 1 7 8 5
6 1 0 0 5 1 7
7 1 0 0 3 3 6
8 0 1 1 6 8 6

Table 3.1: Transition table of the DFSM from Fig. 3.2.

3.3.2 DFSM Minimisation With Pk Tables

Following [21, pp. 60], a Pk table extends the Inputs → Post-state q ′ (I2P-
table) section of a transition table by an additional left-hand side column
denoting the k-equivalence class (see definition in Section 3.2) every original
state resides in.

The Transition table can be regarded as the “P0-table”, where all states
reside in the same equivalence class [q] = 0, because they cannot be distin-
guished by an input trace of length zero. The transition table from Fig. 3.1
would look like this in the P0-table notation.

35

P0

I2O I2P
[q] q 0 1 2 0 1 2

0 0 1 0 0 1 1 4
0 1 0 1 1 0 3 3
0 2 1 0 0 1 1 4
0 3 0 1 1 2 1 1
0 4 1 0 0 5 3 2
0 5 0 1 1 7 8 5
0 6 1 0 0 5 1 7
0 7 1 0 0 3 3 6
0 8 0 1 1 6 8 6

For k = 0, 1, . . . , k < |Q|, the Pk+1-table is created from the Pk-table as
shown in the next paragraphs. Each Pk-table assigns all k-equivalent states
to the same state equivalence class. The algorithm terminates, as soon as
the transformation of the Pk-table into the Pk+1-table does not yield any
additional state equivalence class. Since a DFSM with |Q| states has at most
|Q| state equivalence classes (the number of classes is |Q| if and only if the
DFSM is minimised), the algorithm terminates after at most (|Q|− 1) steps.
The last Pk-table identifies the state equivalence classes of the minimised
DFSM.

Algorithm – Part A. Create P1-table from the transition table P0.

• Input to the algorithm: DFSM transition table P0

• Output of the algorithm: table P1

• Create initial version of P1 as copy of P0, and reset all state equivalence
classes [q] in P1 to −1, meaning ‘undefined’

• Assign all states whose outgoing transitions have identical I/O-labels
(that is, whose I2O-rows coincide) into the same equivalence classes,
using the following algorithm

1. Set class counter c to 0

2. While class counter c < |Q| do

36

(a) Find smallest row r in P1-table with r ≥ c and [r] = −1
(i.e. [r] is undefined). If no such r can be found terminate by
returning P1

(b) Set [r] = c

(c) Set u = r+ 1

(d) While u < |Q| do

i. If [u] = −1 (i.e. row u is not yet associated with a state
class) and the I2O-table shows the same outputs in row u
as for row r, then set [u] = c, that is, state u is inserted
into the same 1-equivalence class as row r.

ii. Increment u by 1

3. Increment c by 1

According to this algorithm, the P1-table associates all 1-equivalent states
in the same [q]-class. For the P0 table shown above, the P1-table generated
by this algorithm looks as follows.

P1

[q] q I2P
0 1 2

0 0 1 1 4
1 1 0 3 3
0 2 1 1 4
1 3 2 1 1
0 4 5 3 2
1 5 7 8 5
0 6 5 1 7
0 7 3 3 6
1 8 6 8 6

Algorithm – Part B. Create Pk+1-table from the Pk-table for i ≥ 1.
• Input to the algorithm: DFSM transition table Pk

• Output of the algorithm: table Pk+1

• Create initial version of Pk+1 as copy of Pk, and reset all state equiva-
lence classes [q] in Pk+1 to −1, meaning ‘undefined’

37

• Assign all Pk-equivalent states whose outgoing transitions have Pk-
equivalent post-states into the same Pk+1-equivalence classes, using the
following algorithm

1. Set class counter c to 0

2. While at least one row r in Pk+1 is still marked with [r] = −1 do

(a) Find smallest row r in Pk+1-table with r ≥ c and [r] = −1
(i.e. [r] is undefined).

(b) Set [r] = c

(c) Set u = r+ 1

(d) While u < |Q| do

i. If [u] = −1 (i.e. row u is not yet associated with a state
class), r and u are Pk-equivalent, and the I2P-table shows
Pk-equivalent post-states in row u and row r, then set
[u] = c, that is, state u is inserted into the same P(k+1)-
equivalence class with number c as row r.
This condition is formalised as

[u] = −1∧ (Pk.[q])[r] = (Pk.[q])[u]∧(
∀x ∈ ΣI : (Pk.[q])[I2P[r][x]] = (Pk.[q])[I2P[u][x]]

)
ii. Increment u by 1

(e) Increment c by 1

3. Terminate by returning Pk+1

The following table show the application of this algorithm to the P1-table
and its successors. Fig. 3.3 shows the minimised state machine version of the
DFSM in Fig. 3.2. The minimised machine is derived from table P4.

P2

38

[q] q I2P
0 1 2

0 0 1 1 4
1 1 0 3 3
0 2 1 1 4
1 3 2 1 1
0 4 5 3 2
1 5 7 8 5
0 6 5 1 7
0 7 3 3 6
2 8 6 8 6

P3

[q] q I2P
0 1 2

0 0 1 1 4
1 1 0 3 3
0 2 1 1 4
1 3 2 1 1
0 4 5 3 2
3 5 7 8 5
0 6 5 1 7
0 7 3 3 6
2 8 6 8 6

P4

[q] q I2P
0 1 2

0 0 1 1 4
1 1 0 3 3
0 2 1 1 4
1 3 2 1 1
4 4 5 3 2
3 5 7 8 5
4 6 5 1 7
0 7 3 3 6
2 8 6 8 6

39

A_MIN
{0,2,7}(0)

A_MIN
{1,3}(1)

in0/out1in1/out0 A_MIN
{4,6}(4)

in2/out0

in0/out0

in1/out1in2/out1

A_MIN
{8}(2) in1/out1

in0/out0 in2/out1 A_MIN
{5}(3)

in0/out0

in1/out1

in2/out1

in2/out0

in1/out0 in0/out1

Figure 3.3: Minimised DFSM associated with DFSM in Fig. 3.2.

3.4 Characterisation Sets for DFSMs

The state covers and transition covers introduced above in Section 4.2 rep-
resent sets of input traces reaching every possible FSM state and transition,
respectively. So with these two at hand, every FSM state can be checked for
completeness, and every transition of an FSM can be checked with respect
to output faults. What remains to be checked when aiming at proving I/O-
equivalence, is that the target state q ′ reached under a certain SUT transition

40

is equivalent to the expected state q that is reached by the corresponding
transition in the reference model.

Definition 3.2 (Characterisation Set) Given an FSM M =
(Q,q, ΣI, ΣO, h), a characterisation set for M is a set W ⊆ Σ∗I which
is able to distinguish all non-equivalent states of M:

∀q1, q2 ∈ Q : q1
W
∼ q2 ⇔ q1 ∼ q2

�

Definition 3.2 specifies a characterisation set W by the requirement that
two states are I/O-equivalent if and only if every input sequence in W leads
to the same outputs, when applied to both states. An alternative formulation
of this property is

∀q1, q2 ∈ Q :
L(q1) = L(q2)⇔ (∀x ∈W,y ∈ Σ∗O : x/y ∈ L(q1)⇔ x/y ∈ L(q2)),

and another alternative is

∀q1, q2 ∈ Q :
L(q1) 6= L(q2)⇒ (∃x ∈W,y ∈ Σ∗O : (x/y ∈ L(q1)∧ x/y 6∈ L(q2))

∨(x/y 6∈ L(q1)∧ x/y ∈ L(q2))).

The following lemma suggests a very simple method to construct a char-
acterisation set, as soon as at least one distinguishing trace has been found
for some pair of distinguishable states. Originally, this lemma and an asso-
ciated proof have been stated in [9, Lemma 0]. Our version here has been
slightly revised.

Lemma 3.2 Let M = (Q,q, ΣI, ΣO, h) be a completely specified minimal
DFSM and W ∈ Σ∗I a set of input traces partitioning Q into k state classes
with 0 < k < n. Then W ∪ ΣI.W partitions Q into at least k+ 1 classes.

Proof. Two states are in the same class if and only if both produce the same
outputs for all input traces from W. Now select two states q1, q2 from the
same class and an input x ∈ ΣI such that q ′1 = q1-after-x and q ′2 = q2-after-x
reside in different classes. Such an x always exists, since all states in Q

41

are distinguishable.1 For these two classes, select an element w ∈ W such
that different outputs occur if w is applied to q ′1 or q ′2, respectively. Then
x.w ∈ ΣI.W distinguishes at least q1 and q2, and these were indistinguishable
before. Therefore, the state space has been partitioned into at least one
additional class by adding the input traces from ΣI.W to W. This completes
the proof. �

The following algorithm presented in [21, p. 92] can be used to determine
a smaller characterisation set than that suggested by Lemma 3.2. The algo-
rithm applies to an FSM which has been minimised before using Pk tables,
as described in Section 3.3.

1. Inputs. Minimal DFSM M = (Q,q, ΣI, ΣO, h) and the Pk tables cal-
culated for M as described in Section 3.32.

2. Outputs. Characterisation set W ⊆ ⋃|Q|−1
i=1 ΣiI.

3. Initialise W = ∅.

4. For every pair (qi0 , qj0) with qi0 , qj0 ∈ Q,qi0 6= qj0 , proceed as follows.

(a) If (qi0 , qj0) are already distinguished byW, continue with the next
pair of states in Step 4.

(b) Otherwise find ` ≥ 1 such that (qi0, qj0) are equivalent in P`−1, but
reside in different equivalence classes in P`. (For the case where
(qi0 , qj0) are immediately distinguished by P1, the undefined P0
table is not required.)

(c) Set k = 1.

(d) If `− k > 0, proceed to Step 4f.

(e) If ` − k = 0, set xk to any element of ΣI, such that M produces
different outputs for xk, when applied in states (qik−1

, qjk−1
), re-

spectively. Add x1 . . . xk to W. Continue with Step 4.

(f) Set xk to any element of ΣI, such that (qik−1
, qjk−1

) are mapped
to different state classes under xk in table P`−k. Let (qik , qjk) be
representatives of these different classes. Increment k by 1 and
proceed with Step 4d.

1see also section on Pk-table construction.
2Note that these are the Pk-tables calculated for M, which is already minimal, and not

the Pk tables constructed during the minimisation process resulting in M.

42

5. Reduce W to its maximal input traces.

6. Return W.

Observe that the “brute force method” based on product automata de-
scribed in the previous section doesn’t need any of the concepts of state cover,
transition cover, or characterisation set, because it just depends on the hy-
pothesis about the maximal number m of states contained in the minimal
DFSM representing the SUT.

3.5 Transformation to Observable FSMs

Transformation algorithm Recall from Section 3.2 that an FSM is ob-
servable, if for any states q, q1, q2, input x ∈ ΣI, and output y ∈ ΣO,
(q, x, y, q1), (q, x, y, q2) ∈ h implies q1 = q2. Deterministic FSMs are au-
tomatically observable. Nondeterministic FSMs can always be transformed
into equivalent observable ones.

The following theorem shows the basic principle, how an equivalent ob-
servable FSM M ′ can be constructed from the original FSM M by creating
M ′-states corresponding to sets of M-states that are reachable under the
same input/output traces.

Theorem 3.1 Let M = (Q,q, ΣI, ΣO, h) be a finite state machine. Let M ′ =
(Q ′, q ′, ΣI, ΣO, h

′) be a finite state machine defined by

1. Q ′ = {[x/y] | x/y ∈ L(M)}, where [x/y] = {q ∈ Q | (q, x, y, q) ∈ h}
for all x/y ∈ L(M).

2. q ′ = [ε]

3. h ′ = {([x/y], x, y, [x ′/y ′]) | x/y, x ′/y ′ ∈ L(M)∧ x.x/y.y = x ′/y ′}

Then M ′ is initial connected, observable and L(M ′) = L(M). Furthermore,
M ′ is completely specified if M is completely specified.

Proof. M ′ is observable; this follows directly from the definition of h ′,
because [x.x/y.y] is the only possible post-state of [x/y] under input/output
x/y. Extending h ′ in the natural way to a subset of Q ′ × Σ∗I × Σ∗O × Q ′,
results in

h ′ = {([x1/y1], x, y, [x2/y2]) | xi/yi ∈ L(M), i = 1, 2,∧x1.x/y1.y = x2/y2}.

43

This implies L(M ′) = L(M). Furthermore,

(q ′, x, y, q ′) ∈ h ′ ⇔ x/y ∈ L(M)∧ q ′ = [x/y].

As a consequence, according to the definition of Q ′, every state in Q ′ is
reachable, so M ′ is initial connected.

Let [x/y] ∈ Q ′ be any state and x ∈ ΣI any input. Then x/y ∈ L(M).
Suppose M is completely specified. Then there exists y ∈ ΣO such that
x.x/y.y ∈ L(M). Hence ([x/y], x, y, [x.x/y.y]) ∈ h ′ and M ′ is completely
specified, too. �

The following algorithm originally presented in [45] can be used to imple-
ment the transformation method described in Theorem 3.1.

1. Input. An FSM M = (Q,q, ΣI, ΣO, h)

2. Output. An observable FSM M ′ = (Q ′, q ′, ΣI, ΣO, h
′) satisfying

L(M ′) = L(M)

3. Construct a new FSM M ′ = (Q ′, q ′, ΣI, ΣO, h
′) by setting

• q ′ := FSM state labelled by label(q ′) := {q} and set q ′’s colour to
‘white’

• Initialise Q ′ := {q ′}

• Initialise h ′ := ∅

4. While there still exists an FSM state q ′ ∈ Q ′ with colour ‘white’

(a) Select white node q ′ ∈ Q ′

(b) Mark q ′ as ’black’

(c) For each (x, y) ∈ ΣI × ΣO
• Set label ` := {q2 ∈ Q | ∃q1 ∈ label(q ′) : h(q1, x, y, q2)}

• If ` = ∅ continue with (4c)

• If a node q ′′ ∈ Q ′ with label(q ′′) = ` exists, then set h ′ :=
h ′ ∪ {(q ′, x, y, q ′′)}

• Otherwise create a new node q ′′ with label(q ′′) := `, mark
q ′′ with colour ‘white’, and set Q ′ := Q ′ ∪ {q ′′} and h ′ :=
h ′ ∪ {(q ′, x, y, q ′′)}

44

5. Return the FSM M ′; it is observable and fulfils L(M ′) = L(M)

Lemma 3.3 The algorithm above terminates, and the FSM M ′ created by
the algorithm specified above is initial connected, observable, and satisfies
L(M ′) = L(M).

Proof. The termination of the algorithm follows from the fact that the
while-loop (4) terminates as soon as no white Q ′-states exist anymore. The
algorithm, however, creates at most 2|Q| states for Q ′, because each state is
uniquely labelled with a subset of nodes from Q. Moreover, every node in Q ′

is processed only once during the while-loop execution, because it is marked
as ‘black’ when selected (Step (4b) of the algorithm).

It is straightforward to see that the algorithm generates Q ′, q ′, and h ′

as specified by Theorem 3.1. �

Complexity considerations It is important to note, that in the worst
case the observable FSM M ′ created by the algorithm above has 2|Q| states,
because every subset of M-states can appear as a label of states in M ′. In
practise, however, the observable machine M ′ usually has far less states.

Example 2. In Fig. 3.4, a non-observable FSM is shown. Applying the
algorithm above, its observable equivalent is presented in Fig. 3.5. �

45

A(0)

A(1)

in0/out0

A(2)

in0/out0

A(3)

in0/out1in1/out1 in0/out0

in1/out1 in1/out0

in1/out1

in0/out1

in1/out0

in0/out0

in0/out0

Figure 3.4: Nondeterministic and non-observable FSM for Example 2.

46

{ A(0) }(0)

{ A(2),A(1) }(1)

in0/out0

{ A(3) }(2)

in0/out1 in1/out1

in1/out0

in0/out1 { A(1) }(3)

in0/out0

{ A(2),A(3) }(4)

in1/out1

in1/out0

in0/out0in1/out1

in0/out0

in1/out0

in0/out1

in0/out0

{ A(2) }(5)

in1/out1

in1/out0

in0/out1

in1/out1

Figure 3.5: Nondeterministic observable FSM equivalent to the FSM in
Fig. 3.4.

47

Abstraction to FSMs used in language theory It is interesting to
note that observable nondeterministic FSMs as discussed here can be ab-
stracted to deterministic FSMs typically used in language theory: there,
FSM transitions are just labelled by a single element of the language al-
phabet, instead of distinguishing between input and output alphabets as we
do it here for the purpose of testing. To construct such an abstraction, let
M = (Q,q, ΣI, ΣO, h) be an observable NFSM. Now proceed as follows.

1. Let Σ = ΣI × ΣO be the the alphabet of the new “language” FSM ML

to be constructed.

2. Set QL = Q ∪ {q∗} such that q∗ 6∈ Q, and define the set of accepting
states of ML to be Q ⊆ QL.

3. Let q be the initial state of ML.

4. Define the transition relation of ML by

hL = {(q, (x, y), q ′) ∈ QL × Σ×QL) |
(q, x, y, q ′) ∈ h∨ ((q, x, y, q ′) 6∈ h∧ q ′ = q∗)}

Intuitively speaking, every transition q
x/y
−−→ q ′ in M gives rise to a transition

q
(x,y)
−−→ q ′ in ML. Moreover, every I/O x/y that is not associated with any

transition emanating from q in M gives rise to a transition q
(x,y)
−−→ q∗ in ML

leading to the only non-accepting state in QL.
Since M is supposed to be observable, there is at most one transition

emanating from q ∈ Q and labelled by x/y. In ML, we enforce completeness

by adding transitions to q
(x,y)
−−→ q∗ for any other I/O-pair which does not

occur in any M-transition from q. Trivially, ML is completely defined and
deterministic.

These considerations motivate the construction of the minimisation algo-
rithm for observable FSMs which is presented in the next section.

3.6 Minimisation of Nondeterministic FSMs

For NFSMs, a minimisation algorithm can be designed that is quite similar
to the Pk-table algorithm introduced for DFSM minimisation in Section 3.3,
but

48

• the algorithm depends on the NFSM being observable (for this we have
the algorithm defined in Section 3.5), and

• the table structure needs more storage, since the columns may no longer
be indexed by inputs only (in the DFSM case, the table size is O(|Q| ·
|ΣI|)), but need to be indexed by all I/O-pairs in the cross product
|ΣI × ΣO|. As a consequence, the required storage is O(|Q| · |ΣI| · |ΣO|).

OFSM-Tables We call the tables involved OFSM-Tables. The first one –
OFSM-Table 0 – represents the OFSM as shown in the following table which
represents the OFSM in Fig. 3.6: an OFSM-Table has one row per OFSM
state. The second column lists the state numbers, and the first column the
equivalence class the state is residing in. For OFSM-Table 0, all states reside
in the same equivalence class 0. Columns 3, 4, 5, . . . are indexed over all
x/y ∈ ΣI/ΣO. The table entry for state q in column x/y contains

• the number of the post-state q ′, if and only if (q, x, y, q ′) ∈ h, and

• -1 if (q, x, y, q ′) 6∈ h.

OFSM-Table 0

[q] q 0/0 0/1 1/0 1/1

0 0 1 3 6 0
0 1 2 2 3 -1
0 2 -1 0 -1 2
0 3 4 5 1 -1
0 4 -1 0 -1 4
0 5 -1 0 -1 2
0 6 7 7 3 -1
0 7 8 8 -1 7
0 8 7 4 6 8

49

NN(0) in1/out1

NN(1)

in0/out0

NN(3)

in0/out1 NN(6)

in1/out0

NN(2)

in0/out0 in0/out1

in1/out0

in0/out1

in1/out1

in1/out0

NN(4)

in0/out0NN(5)

in0/out1

in0/out1

in1/out1

in0/out1

in1/out1

in1/out0

NN(7)

in0/out0in0/out1

in1/out1

NN(8)

in0/out0 in0/out1

in0/out1

in1/out0

in0/out0

in1/out1

Figure 3.6: Nondeterministic, observable, unminimised FSM.

Construction of OFSM-Table 1 from OFSM-Table 0 Each new
OFSM-Table is constructed from its direct predecessor by changing the [q]-
column only, all other columns remain unchanged. OFSM-Table 1 is con-
structed from OFSM-Table 0 according to the following rule.

Two states q1, q2 are associated with the same class [q] in OFSM-
Table 1, if and only if for every x/y ∈ ΣI/ΣO:

• q1 has an emanating transition labelled by x/y if and only
if q2 has an emanating transition labelled by x/y, that is,

(∃q ′1 : h(q1, x, y, q ′1))⇔ (∃q ′2 : h(q2, x, y, q ′2))
Intuitively speaking, two states are equivalent in OFSM-Table 1, if and only
if their (−1)-entries in the x/y-columns are exactly in the same positions.

50

The following OFSM-Table is derived from OFSM-Table 0 for the OFSM in
Fig. 3.6.

OFSM-Table 1

[q] q 0/0 0/1 1/0 1/1

0 0 1 3 6 0
1 1 2 2 3 -1
2 2 -1 0 -1 2
1 3 4 5 1 -1
2 4 -1 0 -1 4
2 5 -1 0 -1 2
1 6 7 7 3 -1
3 7 8 8 -1 7
0 8 7 4 6 8

Construction of OFSM-Table (j + 1) from OFSM-Table j for j ≥ 1
For j ≥ 1, OFSM-Table (j + 1) is generated from OFSM-Table j according
to the following rule.

Two states q1, q2 are associated with the same class [q] in OFSM-
Table (j+ 1), if and only if

• q1, q2 are already associated with the same class in OFSM-
Table j

and for every x/y ∈ ΣI/ΣO:

• if q1
x/y
−−→ q ′1 and q2

x/y
−−→ q ′2, then q ′1 and q ′2 are associated

with the same class in OFSM-Table j.

Otherwise class [q] is split in OFSM-Table (j+ 1), and q1 and q2
are associated with different classes in OFSM-Table (j+ 1).

Below the OFSM-Table 2 generated from OFSM-Table 1 according to the
rule above is shown. For example, states 0 and 8 reside in OFSM-Table 1 in

the same class [0], but q0
0/0
−−→ q1 and q8

0/0
−−→ q7 and q1 resides in class [1]

in OFSM-Table 1, while q7 resides in class [3] in OFSM-Table 1. Therefore
states 1 and 8 reside in different classes in OFSM-Table 2.

51

OFSM-Table 2

[q] q 0/0 0/1 1/0 1/1

0 0 1 3 6 0
1 1 2 2 3 -1
2 2 -1 0 -1 2
1 3 4 5 1 -1
2 4 -1 0 -1 4
2 5 -1 0 -1 2
5 6 7 7 3 -1
3 7 8 8 -1 7
4 8 7 4 6 8

Termination condition for OFSM-Table construction If no new
equivalence classes [q] are created when constructing OFSM-Table (j + 1)
from OFSM-Table j, then OFSM-Table j already contains the equivalence
class [q] of the minimised OFSM that is equivalent to the original one. The

classes [q] are the states of the minimised OFSM, and a transition [q]
x/y
−−→ [q ′]

exists if and only if there are representatives q1 ∈ [q], q ′1 ∈ [q ′], such that

q1
x/y
−−→ q ′1 in the original OFSM.
In our example, OFSM-Table 2 represents the minimised OFSM shown

in Fog. 3.7.

52

NN_MIN
{0}(0) in1/out1

NN_MIN
{1,3}(1)

in0/out0 in0/out1 NN_MIN
{6}(5)

in1/out0

in1/out0

NN_MIN
{2,4,5}(2)

in0/out0 in0/out1

in0/out1

in1/out1

NN_MIN
{7}(3) in1/out1

NN_MIN
{8}(4)

in0/out0 in0/out1

in0/out1

in0/out0

in1/out1

in1/out0

in1/out0 in0/out0 in0/out1

Figure 3.7: Nondeterministic, observable, minimised FSM equivalent to the
one depicted in Fig. 3.6.

53

3.7 Characterisation Set and

State Identification Sets of NFSMs

3.7.1 Characterisation set and State Identification
Sets for NFSMs

The definition of a characterisation set W (Definition 3.2) applies to both
deterministic and nondeterministic FSMs. Algorithms for calculating W,
however, differ for the deterministic case (see the algorithm presented in
Section 3.4) and the nondeterministic one: while, for example, Pk-tables
could be used for DFSMs, these are not available for NFSMs. We therefore
present a different algorithm with slightly higher complexity for calculating
W in the case of NFSMs in this section. In analogy to the Pk-tables applied
for DFSMs, this algorithm is based on a similar evaluation of the OFSM-
tables introduced for NFSMs in Section 3.6. Moreover, we are interested in
the – potentially smaller – sets Wi of input traces distinguishing just one
FSM state qi from other states.

Definition 3.3 (State Identification Sets) Let W be a characterisation
set for the observable, minimal FSM M = (Q,q0, ΣI, ΣO, h) with Q =
{q0, q1, q2, . . . , q|Q|−1}. A set Wi is a state identification set for qi ∈ Q,
if it fulfils the conditions

1. Wi ⊆ Σ∗I , and every element of Wi is a prefix of an element of W.

2. Wi distinguishes qi from all other states in Q, that is,

∀i ∈ 0, 1, . . . (|Q|− 1), q ∈ Q : qi
Wi
∼ q⇔ qi = q

�

Lemma 3.4 Let M = (Q,q, ΣI, ΣO, h) be an observable, minimal and com-
pletely specified FSM with n states. Let W ⊆ Σ∗I and |Q/W

∼
| = k < n. Then

there exists two states q, q ′ ∈ Q satisfying q
W
∼ q ′, q

ΣI.W

6∼ q ′. Consequently,
there exists a subset of

⋃n−k
i=0 Σ

i
I.W which is a characterisation set for M.

Proof. Since |Q/W
∼
| = k < n, there are q1, q2 ∈ Q two distinct but W-

equivalent states, that is, ∀x ∈ W,y ∈ Σ∗O : x/y ∈ L(q1) ⇔ x/y ∈ L(q1).

54

Since M is minimal, L(q1) 6= L(q2), there exists an input sequence τ ∈ Σ∗I
with the shortest length ≥ 1 satisfying

q1
τ.W

6∼ q2 (3.1)

Let τ = x.x, x ∈ Σ∗I , x ∈ ΣI. Then q1
x
∼ q2, otherwise, q1

x.W

6∼ q2, a
contradiction to the assumption that τ = x.x is a shortest sequence fulfilling

(3.1). In the case x = ε, τ = x, q1
{x}.W

6∼ q2 and q1
W
∼ q2, there is nothing

more to prove.
Suppose x 6= ε. Define subset A ⊆ Σ∗O by A = {y ∈ Σ∗O | x/y ∈ L(q1) ∩

L(q2)}. For any y ∈ A, since M is observable, define qy := q1-after-x/y

and q ′y := q2-after-x/y. Then qy
W
∼ q ′y, otherwise q1

x.W

6∼ q2, again a con-
tradiction to the assumption that τ = x.x is a shortest sequence fulfilling
(3.1).

Furthermore, there exist some y ∈ A such that qy
x.W

6∼ q ′y. Suppose

not, qy
x.W
∼ q ′y, for any y ∈ A. Then q1

x.x.W
∼ q2, a contradiction to the

assumption that τ = x.x and q1
τ.W

6∼ q2. Hence there exist some y ∈ A with

qy
ΣI.W

6∼ q ′y ∧ qy
W
∼ q ′y

�

3.7.2 Algorithm 1. Calculation of W

We will first present an algorithm for calculating a characterisation set for
a given observable, minimal FSM. The algorithm is inspired by the one pre-
sented for DFSMs in Section 3.4, but it operates on OFSM-tables. After
that, a second algorithm is presented showing how to calculate minimal state
identification sets using the result of the first algorithm.

1. Inputs. Observable, minimal FSM M = (Q,q, ΣI, ΣO, h) and the
OFSM-tables calculated for M as described in Section 3.63.

3Note that these are the OFSM-tables calculated for M, which is already minimal, and
not the OFSM-tables constructed during the minimisation process resulting in M.

55

We can assume that the states in Q are ordered (e.g. by numbering
them from zero to (|Q|− 1)), so that a total reflexive, anti-symmetric,
and transitive ordering relation q ≤ q ′ is defined for all pairs of states.

2. Outputs. Characterisation set W

3. Initialise W := ∅.

4. For every q ∈ Q, proceed as follows.

(a) For every q ′ ∈ Q with q ′ > q, set (q0, q
′
0) := (q, q ′) and calculate

a distinguishing sequence as follows.

i. If (q0, q
′
0) are already distinguished by W, continue with 4a.

ii. Set k := 1.

iii. Find ` ≥ 1 such that (q0, q
′
0) are equivalent in OFSM-Table-

(` − 1), but reside in different equivalence classes in OFSM-
Table-`.4

iv. If `− k > 0, proceed to Step 4(a)viii.

v. If ` − k = 0, set xk to any element of ΣI, such that OFSM-
Table-0 has an I/O-column xk/y, y ∈ ΣO, such that qk−1 has
entry (−1) in this column5 and q ′k−1 has an entry ≥ 0 in this
column6 or vice versa.

vi. Set W :=W ∪ {x1.x2.x3 . . . xk}.

vii. Continue with Step 4a.

viii. Set xk to any element of ΣI, such that there exists a y ∈
ΣO, such that (qk−1, q

′
k−1) are mapped under xk/y to states

belonging to different state classes in OFSM-Table-(` − k).
Let (qk, q

′
k) be representatives of these different classes.

ix. Set k := k+ 1.

x. Continue with Step 4(a)iv.

5. Remove all input traces from W that are prefixes of other input traces
also contained in W.

4Recall that in OFSM-Table-0, all states reside in the same class 0. Moreover, M is
assumed to be minimal; as a consequence, all states are distinguished in the last FSM
table. Therefore this ` ≥ 1 always exists.

5This means that qk−1 does not have any emanting transition labelled by xk/y.
6This means that q ′

k−1 has an outgoing transition labelled by xk/y.

56

6. Minimise W by determining a smallest subset W0 ⊆ W that still dis-
tinguishes all states of W. This step is necessary, since the algorithm
specified in the loop above does not always produce a minimal charac-
terisation set. Set W :=W0.

7. Return W.

Observe that a naive minimisation of the initial solution for W has com-
plexity O(2|W|). It should further be noted, that even the minimisation of W
in Step 6 does not guarantee that the resulting characterisation set will be
as small as possible.

• In Step 4(a)i distinguishing traces for (q0, q
′
0) are not constructed, if

this pair of states is already distinguished by the current state of W. In
this step one might skip the construction of an input trace that might
distinguish even more states than the input traces already contained in
W.

• In Steps 4(a)v and 4(a)viii an input xk is identified which is not uniquely
determined. Other suitable values may lead to other input traces which
again might distinguish more additional states than the ones resulting
from the choice of xk that has been made.

The identification of a minimal characterisation set requires the identi-
fication of all distinguishing traces of minimal length. This is a problem of
exponential complexity, involving not only the size of the state space, but also
the size of the input and output alphabets. Therefore we are satisfied with
the algorithm above that only tries to get “close” to the optimal solution.

3.7.3 Algorithm 2. Finding Minimal
State Identification Sets

With a characterisation set at hand, the construction of minimal state iden-
tification sets is performed as follows.

1. Inputs. Observable, minimal FSM M = (Q,q, ΣI, ΣO, h) and a char-
acterisation set W calculated by Algorithm 1 above.

2. Outputs. Collection W = {Wq | q ∈ Q} of state identification sets.

57

3. W := ∅.

4. Create matrix Matrix N = (zi,j), i, j ∈ {0, . . . , |Q| − 1} with zi,j ⊆ W,
such that for all i 6= j, every input sequence contained in zi,j distin-
guishes qi from qj.

5. For each i ∈ {0, . . . , |Q|− 1},

(a) Set S := {zi,j | j ∈ {0, . . . , |Q|− 1} ∧ j 6= i}.
(b) Set Wqi := solution of the minimal hitting set problem with min-

imal cardinality for the set system (W,S), constructed according
to the algorithm in Appendix A.7

(c) Set W :=W ∪ {Wqi}.

6. Return W.

Example 3. Consider the nondeterministic, observable, minimal FSM
shown in Fig 3.8. This FSM has the following OFSM-tables.

OFSM-Table-0

[q] q 0/0 0/1 1/0 1/1

0 0 1 1 5 0
0 1 2 2 1 -1
0 2 -1 0 -1 2
0 3 4 4 -1 3
0 4 3 2 5 4
0 5 3 3 1 -1

OFSM-Table-1

[q] q 0/0 0/1 1/0 1/1

0 0 1 1 5 0
1 1 2 2 1 -1
2 2 -1 0 -1 2
3 3 4 4 -1 3
0 4 3 2 5 4
1 5 3 3 1 -1

7As explained in Appendix A, the minimal hitting set problem may have several solu-
tions with different cardinality. The algorithm presented there calculates all solutions, so
that one with with minimal cardinality can be identified.

58

OFSM-Table-2

[q] q 0/0 0/1 1/0 1/1

0 0 1 1 5 0
1 1 2 2 1 -1
2 2 -1 0 -1 2
3 3 4 4 -1 3
4 4 3 2 5 4
5 5 3 3 1 -1

Applying the algorithm above, results in the characterisation and state
identification sets

W = {0.0, 1}

W0 = {0.0, 1}

W1 = {0.0}

W2 = {0.0}

W3 = {0.0, 1}

W4 = {0.0}

W5 = {0.0, 1}

The following table shows the set of output traces resulting from applying
the input sequences of W to each FSM state.

Input Trace from Wi

q 0.0 1

0 {0.0, 0.1, 1.0, 1.1} {0, 1}

1 {0.1, 1.1} {0}

2 {1.0, 1.1} {1}

3 {0.0, 0.1, 1.0, 1.1} {1}

4 {0.0, 0.1, 1.1} {0, 1}

5 {0.0, 0.1, 1.0, 1.1} {0}

It is easy to see from the table that FSM state qi is distinguished from all
other nodes by the input traces in Wi. �

59

N(0) in1/out1

N(1)

in0/out0 in0/out1 N(5)

in1/out0

in1/out0

N(2)

in0/out0 in0/out1

in0/out1

in1/out1

N(3) in1/out1

N(4)

in0/out0 in0/out1

in0/out1

in0/out0

in1/out1

in1/out0

in1/out0 in0/out0 in0/out1

Figure 3.8: Nondeterministic, observable, minimal FSM used in Example 3.

3.8 Classification of FSM Fault Models

Fault models for FSMs from a given signature Sig = FSM(ΣI, ΣO) are de-
noted by F = (M,≤, Dom) with M ∈ Sig and Dom ⊆ Sig, and in this
lecture, we consider the conformance relations ≤∈ {∼,�} defined above. For

60

FSMs, the possible types of errors can be classified as follows [45].

1. Single output faults. An SUT behaving like an FSM M ′ ∈ Dom has
a single output fault, if M ′ differs from the reference FSM M by one output
in one transition. More precisely, fixing exactly one transition output, the
resulting model M ′′ is I/O-equivalent to M.

2. Single transfer faults. An SUT behaving like an FSM M ′ ∈ Dom
has a single transfer fault, if M ′ differs from the reference FSM M by the
target state of a single transition. This means that by redirecting exactly
one transition of M ′ to another target state, the resulting model M ′′ is I/O-
equivalent to M.

Observe that a transfer fault will not invalidate the I/O-equivalence re-
lationship, if the other target state of the transition under consideration is
I/O-equivalent to the original state. To avoid this confusing distinction be-
tween “harmless” and “harmful” transfer faults, the fault domain and the
reference model are often restricted to observable, minimal FSM: there any
transfer fault will automatically violate I/O-equivalence.

3. Single extra transition faults. An SUT behaving like an FSM M ′ ∈
Dom has a single extra transition fault, if M ′ differs from the reference FSM
M by a single additional transition. This means that by removing exactly
one transition from M ′, the resulting model M ′′ is I/O-equivalent to M.

Note that adding an extra transition can also introduce a new state that
has no corresponding state in M. If we consider single faults only, however,
this new state can never be left, because this would require another extra
transition.

4. Single missing transition faults. An SUT behaving like an FSM
M ′ ∈ Dom has a single missing transition fault, if M ′ differs from the
reference FSM M by a single missing transition. This means that by adding
exactly one transition to M ′, the resulting model M ′′ is I/O-equivalent to
M.

Exercise 3. Assuming that reference model M and SUT behaviour M ′ are
both observable and minimal, identify all possible variants how an additional
and a missing transition may look like. Distinguish between completely de-
fined and incomplete FSMs, and between deterministic and nondeterministic

61

ones. Is there a variant that will not violate I/O-equivalence? Which of these
variants will not only violate ∼, but also �? �

5. Multiple faults. An SUT behaving like an FSM M ′ ∈ Dom has multi-
ple faults, if M ′ differs from the reference FSM M by multiple combinations
of output, transfer, extra transition, and missing transition faults. By ap-
plying the fixing rules for fault types 1 – 4 multiple times, the resulting FSM
M ′′ is again I/O-equivalent to M.

Fault injection functions In the testing theories to be presented in Chap-
ter 4, it is useful to have a precise notion of the different faults defined
above. Therefore we introduce fault injection functions describing how the
faulty FSM differs from the reference FSM. Let M = (Q,q, ΣI, ΣO, h) be
a reference model and M ′ = (Q,q, ΣI, ΣO, h

′) an FSM describing the true
behaviour of the SUT.

An output fault injection function is defined by a function φ : h → ΣO,
such that

∀(q, x, y, q ′) ∈ h : (q, x,φ(q, x, y, q ′), q ′) 6∈ h∨ φ(q, x, y, q ′) = y

Function φ injects multiple output faults, if and only if {(q, x, y, q ′) ∈
h | φ(q, x, y, q ′) 6= y} has more than one element. FSM M ′ deviates from M

by output faults, if an output fault injection function φ can be found such
that

h ′ = {(q, x,φ(q, x, y, q ′), q ′) | (q, x, y, q ′) ∈ h}
A transfer fault injection function is defined by a function ψ : h → Q,

such that

∀(q, x, y, q ′) ∈ h : (q, x, y,ψ(q, x, y, q ′)) 6∈ h∨ φ(q, x, y, q ′) = q ′

Function ψ injects multiple transfer faults, if and only if {(q, x, y, q ′) ∈
h | ψ(q, x, y, q ′) 6= q ′} has more than one element. FSM M ′ deviates from
M by transfer faults, if an transfer fault injection function ψ can be found
such that

h ′ = {(q, x, y,ψ(q, x, y, q ′)) | (q, x, y, q ′) ∈ h}
An extra transition fault injection function is defined by a function γ :

Q→ P(ΣI × ΣO ×Q), such that

∀(q, x, y, q ′) ∈ h, (a, b,w) ∈ γ(q) : (q, a, b,w) 6∈ h∨ (a, b,w) = (x, y, q ′)

62

Function γ injects multiple extra transition faults, if and only if
{(q, a, b,w) | q ∈ Q ∧ (a, b,w) ∈ γ(q)} \ h has more than one element.
FSM M ′ deviates from M by extra transition faults, if an extra transition
fault injection function γ can be found such that

h ′ = h ∪
⋃
q∈Q

{(q, x, y, q ′) | (x, y, q ′) ∈ γ(q)}

A missing transition fault injection function is defined by a function µ :
Q→ P(ΣI × ΣO ×Q), such that

∀q ∈ Q, (a, b,w) ∈ µ(q) : (q, a, b,w) ∈ h

Function µ injects multiple missing transition faults, if and only if {q ∈
Q | µ(q) 6= ∅} has more than one element. FSM M ′ deviates from M by
missing transition faults, if a missing transition fault injection function µ can
be found such that

h ′ = h \
(⋃
q∈Q

{(q, x, y, q ′) | (x, y, q ′) ∈ µ(q)}
)

63

Chapter 4

Testing Theories for FSM

In this chapter, FSM test cases and a variety of complete testing theories
for FSMs is presented; each theory is specialised for a certain class of fault
models.

4.1 FSM Test Cases

For any model-based testing formalism, test cases can be introduced from
two perspectives.

• The abstract perspective sees test cases as sets of observation traces
(e.g. sequences of inputs and outputs) that are “forbidden” (so-called
fail traces) and sets of observation traces the SUT needs to be able to
perform (pass traces).

• The concrete perspective sees test cases as (executable) models with
dynamic behaviour, running concurrently with the SUT, stimulating
its input interfaces and checking its outputs.

Abstract FSM Test Cases

Definition 4.1 Let FSM(ΣI, ΣO) be the set of FSMs over I/O-alphabet
(ΣI, ΣO). An (abstract) FSM test case is a tuple U = (Upass, Ufail) with
Upass, Ufail ⊆ (ΣI × ΣO)∗. The elements of Upass are called pass traces, the
elements of Ufail fail traces. by TC(ΣI, ΣO) we denote the set of all test cases
over I/O-alphabet (ΣI, ΣO). �

64

Following the general test case definition given in Chapter 2, we introduce
two notions of FSMs passing or failing a test case. The first relation will be
used for testing whether the SUT is I/O-equivalent to the reference model.

Definition 4.2 Given M ∈ FSM(ΣI, ΣO), we say that M passes test case
U = (Upass, Ufail) with respect to I/O-equivalence, if and only if all pass
traces of U and none of the fail traces are contained in the language of M.
To this end, the notation

M pass
∼
U ≡

(
Upass ⊆ L(M)∧Ufail ∩ L(M) = ∅

)
is used. �

The second relation will be used for testing for reduction.

Definition 4.3 Given M ∈ FSM(ΣI, ΣO), we say that M passes test case
U = (Upass, Ufail) with respect to reduction, if and only if none of the fail
traces are contained in the language of M. To this end, the notation

M pass� U ≡
(
Ufail ∩ L(M) = ∅

)
is used. �

It is obvious that M pass
∼
U implies M pass� U.

The following theorem justifies the definitions above. It states the well-
known relationship between FSM test cases, I/O-equivalence, and reduction.
Note that similar theorems also hold for other formalisms; in [25], for exam-
ple, it is shown that certain types of test cases can characterise refinement
relations in process algebras.

Theorem 4.1 (Abstract FSM tests characterise ∼ and �)
Let M1,M2 ∈ FSM(ΣI, ΣO). Then

1. M2 �M1 if and only if

∀U ∈ TC(ΣI, ΣO) :M1 pass� U⇒M2 pass� U

2. M2 ∼M1 if and only if

∀U ∈ TC(ΣI, ΣO) :M1 pass
∼
U⇒M2 pass

∼
U

65

Proof. 1. Suppose that M2 � M1. By definition, this is equivalent to
L(M2) ⊆ L(M1). Not suppose that M1 pass� U = (Upass, Ufail). By defini-

tion, this means that Ufail ∩ L(M1) = ∅. Since L(M2) ⊆ L(M1), this implies
Ufail ∩ L(M2) = ∅, and this is equivalent to M2 pass� U.

Conversely, suppose that M1 pass� U ⇒ M2 pass� U holds for all tests

in TC(ΣI, ΣO). Now let ι = x/y ∈ (ΣI × ΣO)∗ be an arbitrary I/O-trace
which is not contained in the language of M1. Define test case U = (Upass =
∅, Ufail = {ι}). Then M1 pass� U, because ι 6∈ L(M1). By assumption, M2

passes this test as well. We conclude that ι is not in the language of M2

either. This implies L(M2) ⊆ L(M1), which means that M2 � M1 holds.
This concludes the proof of Statement 1.

2. Suppose that M2 ∼ M1. By definition, this is equivalent to L(M2) =
L(M1). Not suppose that M1 pass

∼
U = (Upass, Ufail). By definition, this

means that Upass ⊆ L(M1) ∧ Ufail ∩ L(M1) = ∅. Since L(M2) = L(M1),
this implies Upass ⊆ L(M2) ∧ Ufail ∩ L(M2) = ∅, and this is equivalent to
M2 pass

∼
U.

Conversely, suppose that M1 pass
∼
U ⇒ M2 pass

∼
U holds for all tests

in TC(ΣI, ΣO). Now let ι = x/y ∈ (ΣI × ΣO)∗ be an arbitrary I/O-trace
which is not contained in the language of M1. Define test case U = (Upass =
∅, Ufail = {ι}). Then M1 pass� U, because ι 6∈ L(M1). By assumption, M2

passes this test as well. We conclude that ι is not in the language of M2

either. This implies L(M2) ⊆ L(M1). Now suppose that ι ∈ L(M1). Then
M1 pass

∼
U ′ with U ′ = (U ′pass = {ι}, U ′fail = ∅). By our assumption, M2

passes this test case as well, and this implies ι ∈ L(M2). As a consequence,
L(M1) ⊆ L(M2), so we have shown that L(M2) = L(M1). This concludes
the proof of Statement 2. �

Concrete FSM Test Cases

Our concrete FSM test case definition follows closely the exposition given
in [55]. FSM test cases are observable, acyclic, terminating, single-input, and
output-complete NFSM U = (Qu, u, ΣI, ΣO, hu) with an additional deadlock
state fail ∈ Qu. Acyclic means that an execution never visits the same
state twice. Terminating means that each execution is finite, because finally
a deadlock state will be reached. Termination is a direct consequence of
acyclicity: since an FSM has only finitely many states, and since a test case
cannot visit a state more than once, it has to terminate before some state

66

would have to be visited again. Single-input denotes FSMs where in each
state u ∈ Qu that does not deadlock exactly one input (denoted by x(u))
is defined. Output-complete means that from each non-deadlock state every
output may occur. Single-input implies that U is not completely specified,
and output-complete therefore implies that U must be nondeterministic (if
|ΣO| > 1). Since U is also observable, the occurrence of a specific output in
a given state determines the post-state to be reached by U in a unique way.
As a consequence, if x/y ∈ L(U), the set q-after-x/y always contains a single
state.
U operates in parallel with some FSM M representing the SUT, and

parallel composition is the FSM intersection M ∩ U defined in Section 3.2.
M ∩U executes only those I/O-traces x/y that can be executed by both U
and M, since L(M ∩U) = L(M) ∩ L(U). A terminating execution of M ∩U
is called test execution.

Let (q, u) be a deadlock state of M ∩ U that forces the test execution
to terminate. If M is completely specified, then the reason for M ∩ U to
deadlock cannot be that the next input accepted by U is not accepted by M.
Since U is output complete, the deadlock cannot have been caused because
U does not accept the output produced by M. These considerations lead to
the following lemma.

Lemma 4.1 Let M be completely specified and U a test case over the same
I/O-alphabet. Suppose that a test execution of M ∩ U terminates in state
(q, u). Then at least one of the states q, u is a deadlock state of M and U,
respectively. �

The test execution fails if U terminates in fail , otherwise the test execu-
tion passes. For deterministic SUT M, M∩U can only perform a single test
execution. If, however, M is nondeterministic, M∩Umay perform more than
one test execution, and some of these may fail, while others pass. Therefore
we define

M pass U ≡ ∀x/y ∈ L(M ∩U), u ∈ Qu : u = u-after-x/y⇒ u 6= fail

A test case U is preset if it engages in exactly one input sequence. This
means that for all x/y ∈ L(U), x is a prefix of a pre-defined maximal input
sequence xu. If U is not preset, it is called adaptive. This means that the next
input to be selected not only depends on the number of inputs performed so
far, but on the current state of U.

67

When fixing an input alphabet ΣI and an output alphabet ΣO, the set of
all FSM test cases operating on the same alphabets is denoted by TC(ΣI, ΣO).
Since FSM test cases are single-input, the set DF(U) of non-blocking states
induces a well-defined mapping x : DF(U)→ ΣI by setting x(q) ∈ ΣI to the
uniquely defined input that can be processed in this state.

The following Theorem is the equivalent to Theorem 4.1, now formulated
for concrete FSM test cases.

Theorem 4.2 (Concrete FSM tests characterise ∼ and �)
Let M1,M2 ∈ FSM(ΣI, ΣO). Then

1. M2 �M1 if and only if

∀U ∈ TC(ΣI, ΣO) :M1 pass U⇒M2 pass U

2. M2 ∼M1 if and only if

∀U ∈ TC(ΣI, ΣO) :M1 pass U⇒M2 pass U

Proof. We prove Statement 1; then Statement 2 follows from the fact that
M2 ∼M1 holds if and only if M2 �M1 and M1 �M2.

Suppose that M2 � M1. Then, by definition of �, L(M2) ⊆ L(M1)
follows. For any test caseU = (Qu, u, ΣI, ΣO, h) we have L(M2∩U) ⊆ L(M2),
so L(M2∩U) ⊆ L(M1∩U) follows. Now suppose thatM1 pass U and suppose
that x/y ∈ L(M2 ∩ U) with x = x0 . . . xk, y = y0 . . . yk and k ≥ 0. Since
L(M2 ∩U) ⊆ L(M1 ∩U), x/y ∈ L(M1 ∩U) follows, and M1 pass U implies
that x/y is a pass-I/O-trace of M1 ∩U.

Since U is observable, there exists a unique sequence of states u0 . . . uk+1
with u0 = u, such that x(ui) = xi and ui+1 = ui-after-xi/yi for i = 0 . . . , k.
Then ui 6= fail for i = 0, . . . , k + 1, because M1 passes the test. Since
u0 . . . uk+1 is unique, the test U, when running in parallel composition with
M2, runs through the same state sequence u0 . . . uk+1. Since none of the ui
is a fail -state, M2 pass U follows.

Conversely, suppose that M2 6� M1. Then there exists x/y ∈ L(M2)
with x/y 6∈ L(M1). Now construct a test U ∈ TC(ΣI, ΣO) in such a way that
it only produces input trace x or prefixes thereof, passes for all I/O-traces
x ′/y ′ ∈ L(M1) where x ′ is a prefix of (and including) x, and fails for all
I/O-traces x ′′/y ′′ 6∈ L(M1), where x ′′ is a prefix of x and y ′′ is a prefix of y
of the same length as x ′′. Then, M1 pass U, but M2 fail U. This completes
the proof. �

68

4.2 State Cover and Transition Cover

In most testing theories it is essential to cover every state or transition oc-
curring in the reference model. This leads to the following definitions.

Definition 4.4 Given an FSM M = (Q,q, ΣI, ΣO, h), a state cover of M is
a set SCOV(M) ⊆ Σ∗I of input sequences, such that for all reachable states
q ∈ Q, there exists an input sequence x ∈ SCOV(M) and an output sequence
y ∈ Σ∗O, such that (q, x,y, q) ∈ h.

Observe that the empty sequence ε is contained in SCOV(M), because it
is needed to “reach” the initial state.

Definition 4.5 Given a completely specified FSM M = (Q,q, ΣI, ΣO, h), a
transition cover of M is the set TCOV(M) = SCOV(M).ΣI consisting of
all sequences from M’s state cover; each sequence extended by every possible
input.

Note that for FSMs that are not completely specified, the transition cover
only appends those inputs to a state cover input sequence x that are defined
in the target states reached by x.

4.3 The T-Method

The following testing theory has been introduced in [47]; it is called the
T-Method, because each test suite is derived from the reference model by
performing a transition tour, i.e. every transition of the reference model is
performed at least once by the test suite.

Fault models In its most restricted version, the T-Method takes deter-
ministic, completely defined FSMs as reference models; for given alphabets
ΣI, ΣO we denote this set as DFSMC(ΣI, ΣO). The fault model Dom(M) ⊆
DFSMC(ΣI, ΣO) depends on the reference machine M = (Q,q, ΣI, ΣO, h) ∈
DFSMC(ΣI, ΣO) and consists of all deterministic completely defined FSMs
M ′ that deviate from M by output faults, specified by some output fault
injection function φ : h → ΣO. As conformance relation, I/O-equivalence ∼

is choosen.

69

Summarising, we consider the set F of all fault models F(M, ∼, Dom(M))
with

M = (Q,q, ΣI, ΣO, h) ∈ DFSMC(ΣI, ΣO)

Dom(M) =
{
(Q,q, ΣI, ΣO, h

′) | ∃φ : h→ ΣO :

h ′ = {(q, x,φ(q, x, y, q ′), q ′) | (q, x, y, q ′) ∈ h}
}

Abstract test cases The abstract test cases for applying the T-Method
are constructed as follows: for x ∈ Σ∗I , define

U(x) = (Upass, Ufail) = ({x/y | x/y ∈ L(M1)},∅)

U(x) is the test case that can only be passed if the SUT produces the in-
put/output trace x/y which is in the language of the reference model.

Concrete test cases As concrete test cases we take terminating, acyclic,
single-input DFSMs U(x) with x = x1 . . . xk ∈ Σ∗I , such that M ′ pass U(x),
if and only if the I/O-trace x/y performed by M ′∩U is an element of L(M).
More formally, U(x) is defined by

U(x) = (Qu, u, ΣI, ΣO, hu)

Qu = {u, u1, . . . , u#x, fail }

hu = {(u, ε, ε, u)} ∪
{(u, x1, y, u1) | x1/y ∈ L(M)} ∪
{(u, x1, y, fail) | x1/y 6∈ L(M)} ∪
#x−1⋃
i=1

{(ui, xi+1, y, ui+1) | ∃y1, . . . , yi ∈ ΣO :

x1 . . . xi.xi+1/y1 . . . yi.y ∈ L(M)} ∪

#x−1⋃
i=1

{(ui, xi+1, y, fail) | ∀y1, . . . , yi ∈ ΣO :

x1 . . . xi.xi+1/y1 . . . yi.y 6∈ L(M)}

70

Completeness Theorem for the T-Method

Theorem 4.3 For each of the fault models F(M, ∼, Dom(M)) introduced
above, the T-Method test suite TS(M) = {U(x) | x ∈ TCOV(M)} is complete.

Proof. Let U(x) = ({x/y},∅) ∈ TS(M). Then, by definition of U(x),
x/y ∈ L(M). Therefore M ′ pass

∼
U(x) holds for all DFSMs with L(M ′) =

L(M). As a consequence, the test suite TS(M) is sound.
Now let M ′ = (Q ′, q ′, ΣI, ΣO, h

′) ∈ Dom(M), such that L(M ′) 6=
L(M). Then there exists an input trace x.x1 and associated output traces
y, y.y1, y.y2, such that x/y ∈ L(M ′) ∩ L(M), but x.x1/y.y2 ∈ L(M ′) and
x.x1/y.y1 ∈ L(M) and y2 6= y1.

Let x ′ be an element of the state cover of M, such that q-after-x =
q-after-x ′. SinceM ′ differs fromM only in certain outputs, but has the same
number of states and the same transition topology, q ′-after-x = q ′-after-x ′

follows. By construction, x ′.x1 ∈ TCOV(M), and there exist output traces
y ′ and y ′′ such that

h(q, x ′.x1, y
′.y1, q-after-x.x1) and h ′(q ′, x ′.x1, y

′′.y2, q
′-after-x.x1),

such that the output traces y ′.y1 and y ′′.y2 differ at least in the last outputs
y1 and y2. As a consequence, M ′ fails the test U(x ′.x1) ∈ TS(M) which
shows that TS(M) is exhaustive. �

Exercise 4. The objective of this exercise is to apply the T-Method in
practise, using the FSM C++ library fsmlib-cpp which is available as open
source on github – please download from

origin, https://github.com/agbs-uni-bremen/fsmlib-cpp.git

Build the library using Cmake; this will result in 4 libraries located in your
build directory which have to be linked when building an executable using
the fsmlib-cpp:

./fsm/libfsm-fsm.a

./interface/libfsm-interface.a

./sets/libfsm-sets.a

./trees/libfsm-trees.a

Use the test harness for the Ceiling Speed Monitor from Exercise 2 which
is now modified and extended by a class TestCase as shown below.

71

1. Encode the DFSM you created in Exercise 2 in the *.fsm-Format. This
format consists of lines structured as

<source-state> <input-number> <output-number> <target-state>

This FSM definition file is read by the Dfsm-Constructor used in the
function createTestSuite() called from the main program (see be-
low).

2. Fill in the input conversion table for your FSM in TestCase.hpp, as
indicated by the example made available there. (The output conversion
table is already defined.)

3. Run the test suite which uses test cases created according to
the T-Method, using the method invocation dfsm.tMethod() in
createTestSuite().

4. Inject faults into your CSM implementation which is tested by this
configuration and identify typical faults that are uncovered by the test
suite and others that are not. Give explanations why the test suite
based on the T-Method could not find these faults.

5. Inject faults into your CSM implementation that cannot be found by
any DFSM testing method, because your input discretisation is not
suitable for this fault.

�
The test harness main.cpp is written for this exercise as follows.

1 #include <s t r i ng>
2 #include <vector>
3 #include <iostream>
4 #include <fstream>
5
6 #include ”CSM. hpp”
7 #include ”TestCase . hpp”
8 #include ”fsm/Dfsm . h”
9 #include ”fsm/ InputTrace . h”

10 #include ”fsm/IOTrace . h”
11 #include ” i n t e r f a c e / FsmPresentationLayer . h”
12 #include ” t r e e s / IOListContainer . h”
13
14 std : : vector<TestCase∗> t e s tCase s ;
15

72

16 void assertAndLog (bool cnd , std : : s t r i n g testCase , f loat v , f loat vMax , bool c ,
17 int svcBrake , int emerBrake , CSM: : d i s p l a y t d) {
18
19 std : : s t r i n g v e r d i c t ;
20
21 v e r d i c t = (cnd) ? ”PASS” : ”FAIL” ;
22
23 std : : cout << t e s tCase << ” : ” << v e r d i c t
24 << ” v = ” << v << ” vMax = ” << vMax << ” c = ” << c
25 << ” svcBrake = ” << svcBrake << ” emerBrake = ” << emerBrake
26 << ” d = ” << d << std : : endl ;
27 }
28
29
30 int main (int argc , const char ∗ argv []) {
31
32 f loat v ;
33 f loat vMax ;
34 bool c ;
35 int svcBrake ;
36 int svcBrakeEpd ;
37 int emerBrake ;
38 int emerBrakeEpd ;
39 CSM: : d i s p l a y t d ;
40 CSM: : d i s p l a y t dEpd ;
41
42
43 c r e a t e Te s tS u i t e () ;
44
45 CSM csm ;
46
47 // Run t e s t cases in the TEST HARENESS
48 for (s i z e t tc = 0 ; tc < t e s tCase s . s i z e () ; t c++) {
49
50
51 std : : cout << std : : endl << ”=========== Test Case ” << tc
52 << ” ===========” << std : : endl ;
53 while (t e s tCase s [tc]−>getNext (v , vMax , c ,
54 svcBrakeEpd , emerBrakeEpd , dEpd)) {
55 csm .doCSM(v , vMax , c , svcBrake , emerBrake , d) ;
56 assertAndLog (svcBrake == svcBrakeEpd and
57 emerBrake == emerBrakeEpd and d == dEpd ,
58 t e s tCase s [tc]−> t oS t r i ng () ,
59 v , vMax , c , svcBrake , emerBrake , d) ;
60 }

73

61
62 csm . r e s e t () ;
63 }
64
65 return 0 ;
66
67 }

74

The createTestSuite() function is specified by

1 void c r ea t eT e s tSu i t e () {
2
3 std : : shared ptr<FsmPresentationLayer> pl =
4 std : : make shared<FsmPresentationLayer >() ;
5
6
7 Dfsm dfsm (”csm . fsm” , pl , ”CSM”) ;
8
9 dfsm . toDot (”csm”) ;

10
11 IOListConta iner c = dfsm . tMethod () ;
12
13 for (std : : vector<int> v : ∗c . ge t IOLi s t s ()) {
14 InputTrace i (v , p l) ;
15 IOTrace i o = dfsm . applyDet (i) ;
16 TestCase∗ t = new TestCase (i o) ;
17 t e s tCase s . push back (t) ;
18 }
19
20 }

75

The TestCase class is specified as follows.

1 //
2 // TestCase . hpp
3 // CSM
4 //
5 // Created by Jan Pe leska on 2016−10−25.
6 // Copyright (c) 2016 Jan Pe leska . A l l r i g h t s r e s e r v e d .
7 //
8 #ifndef TestCase hpp
9 #define TestCase hpp

10
11 #include <s t d i o . h>
12 #include <s t r i ng>
13 #include <vector>
14
15 #include ”CSM. hpp”
16 #include ”fsm/IOTrace . h”
17 #include ”fsm/ InputTrace . h”
18 #include ”fsm/OutputTrace . h”
19
20 typedef struct inTable {
21 f loat v ;
22 f loat vMax ;
23 bool c ;
24 } i nTab l e t ;
25
26 typedef struct outTable {
27 int svcBrake ;
28 int emerBrake ;
29 CSM: : d i s p l a y t d ;
30 } outTable t ;
31
32 class TestCase {
33
34 private :
35
36 std : : vector<int> inputs ;
37 std : : vector<int> outputs ;
38 unsigned int s tep ;
39
40 public :
41
42 // @todo Here i s an example f o r an FSM with input
43 // a l p h a b e t 0 . . 6 . Exchanges t h i s by your complete
44 // input convers ion t a b l e .

76

45 constexpr stat ic const i nTab l e t inConv [] = {
46 { 30 .0 f , 50 .0 f , true } , // 0
47 { 52 .0 f , 50 .0 f , true } , // 1
48 { 55 .0 f , 50 .0 f , true } , // 2
49 { 56 .0 f , 50 .0 f , true } , // 3
50 { 60 .0 f , 50 .0 f , true } , // 4
51 { 0 .0 f , 50 .0 f , fa l se } , // 5
52 { 30 .0 f , 50 .0 f , fa l se } , // 6
53
54 } ;
55
56 constexpr stat ic const outTable t outConv [] = {
57 { 0 , 0 , CSM: :OK } , // 0
58 { 0 , 0 , CSM: :OVR } , // 1
59 { 0 , 0 , CSM: :WRN } , // 2
60 { 1 , 0 , CSM: : IV } , // 3
61 { 1 , 1 , CSM: : IV } , // 4
62 } ;
63
64
65 TestCase (std : : s t r i n g tc) ;
66
67 TestCase (IOTrace i o) ;
68
69 bool getNext (f loat& v , f loat& vMax , bool& c ,
70 int &svcBrake , int &emerBrake , CSM: : d i s p l a y t &d) ;
71
72 std : : s t r i n g toS t r i ng () ;
73 } ;
74 #endif /∗ TestCase hpp ∗/

77

1 //
2 // TestCase . cpp
3 // CSM
4 //
5 // Created by Jan Pe leska on 2016−10−25.
6 // Copyright (c) 2016 Jan Pe leska . A l l r i g h t s r e s e r v e d .
7 //
8 #include <iostream>
9 #include <sstream>

10 #include ”TestCase . hpp”
11
12
13 const i nTab l e t TestCase : : inConv [] ;
14 const outTable t TestCase : : outConv [] ;
15
16
17 TestCase : : TestCase (IOTrace i o) {
18
19 step = 0 ;
20
21 InputTrace i = i o . getInputTrace () ;
22 OutputTrace o = i o . getOutputTrace () ;
23
24 for (s i z e t n = 0 ; n < i . get () . s i z e () ; n++) {
25 inputs . push back (i . get () [n]) ;
26 outputs . push back (o . get () [n]) ;
27 }
28
29
30 }
31
32 TestCase : : TestCase (std : : s t r i n g tc) {
33
34 step = 0 ;
35
36 s i z e t n = tc . f i n d (” (”) ;
37
38 while (n != std : : s t r i n g : : npos) {
39
40 s i z e t m = tc . f i n d (” , ” ,n) ;
41
42 i f (m == std : : s t r i n g : : npos) {
43 std : : c e r r << ”Cannot parse tc s t r i n g ” << tc << std : : endl ;
44 return ;
45 }

78

46
47 int inp = a t o i (tc . subs t r (n+1,m−n−1). c s t r ()) ;
48
49 inputs . push back (inp) ;
50
51 s i z e t p = tc . f i n d (”) ” ,m) ;
52
53 i f (p == std : : s t r i n g : : npos) {
54 std : : c e r r << ”Cannot parse tc s t r i n g ” << tc << std : : endl ;
55 return ;
56 }
57
58 int outp = a t o i (tc . subs t r (m+1,p−m−1). c s t r ()) ;
59
60 outputs . push back (outp) ;
61
62 n = tc . f i n d (” (” ,p) ;
63
64 }
65
66 }
67
68 bool TestCase : : getNext (f loat &v , f loat &vMax , bool& c ,
69 int &svcBrake , int &emerBrake , CSM: : d i s p l a y t &d) {
70
71 bool r e t = true ;
72
73 i f (s tep < inputs . s i z e ()) {
74 int n = inputs [s tep] ;
75 v = inConv [n] . v ;
76 vMax = inConv [n] . vMax ;
77 c = inConv [n] . c ;
78 }
79 else {
80 r e t = fa l se ;
81 }
82
83 i f (r e t and s tep < outputs . s i z e ()) {
84 int n = outputs [s t ep] ;
85 svcBrake = outConv [n] . svcBrake ;
86 emerBrake = outConv [n] . emerBrake ;
87 d = outConv [n] . d ;
88 s tep++;
89 }
90 else {

79

91 r e t = fa l se ;
92 }
93
94 return r e t ;
95 }
96
97 std : : s t r i n g TestCase : : t oS t r i ng () {
98 std : : o s t r ing s t r eam s ;
99 bool f i r s t = true ;

100 for (s i z e t n = 0 ; n < inputs . s i z e () ; n++) {
101 i f (not f i r s t) {
102 s << ” . ” ;
103 }
104 s << ” (” << inputs [n] << ” , ” << outputs [n] << ”) ” ;
105 f i r s t = fa l se ;
106 }
107 return s . s t r () ;
108 }

4.4 Test Oracles for Checking

I/O-Equivalence and Reduction

Given a nondeterministic FSM reference modelM1, let FSMM2 describe the
true behaviour of a given SUT. Consider any test case x given by an input
sequence x = x1 . . . xk ∈ Σ∗I . When checking whether M2 is a reduction of
M1, it has to be shown that any I/O-sequence x/y produced by M2 when
reacting to test case x is also an element of M1’s language, that is, whether
x/y ∈ L(M1). Since M2 may be nondeterministic, it is not guaranteed that
erroneous behaviour will be uncovered in a single execution of the test case
against the SUT: it may be produce an erroneous I/O-trace x/y ′ 6∈ L(M1)
only after a number of executions of x or not at all, since nondeterminism
does not guarantee that every behaviour of the system will be revealed within
a finite number of executions.

For complete test suites checking nondeterministic systems, it is therefore
necessary to state the complete testing assumption [26]. This hypothesis
assumes the existence of a constant c ≥ 1, such that executing a test case
c times against the SUT will reveal every possible behaviour of the SUT.
Under this assumption, it suffices to execute every test case c times in order
to ensure that every possible reaction of the SUT to the given test case,

80

including the erroneous ones, will come up at least once.
When checking for reduction, each of the c executions of x resulting in

I/O-traces x/y1, . . . , x/yc just need to be checked with respect to contain-
ment in L(M1). When checking for I/O-equivalence, however, it has to be
checked that every reaction to x contained in L(M1) has been observed. This
means that it has to be checked whether

{x/y1, . . . , x/yc} =
{
x/y ∈ {x}× Σ∗O | x/y ∈ L(M1)

}
holds.

In practice, such a constant c is determined by some form of grey-box
testing, where, for example, the code and the states covered during the tests
are monitored, so that it can be determined whether other behaviours of the
SUT that have not been observed yet, might still come up.

4.5 A Complete Testing Theory Derived

From Product Automata

In this section we prove a theorem which is quite well known in both the
fields of testing and model checking of finite state systems: if two completely
specified, possibly nondeterministic, FSMs M1,M2 have n and m states, re-
spectively, it suffices to test all input traces in Σ∗I up to a length of mn, in
order to check whether M2 and M1 are I/O-equivalent, or whether M2 is a
reduction of M1. This is the first and most fundamental theorem showing
that non-terminating systems can be checked for I/O-equivalence or reduc-
tion with only finitely many (though really very many!) tests.

For an FSM M1 = (Q,q, ΣI, ΣO, h) and q1 ∈ Q, recall from Section 3.2
that

q1-after-x = {q ′ | ∃y ∈ Σ∗O : h(q1, x, y, q
′)}.

We extend this definition to sets V ⊆ Σ∗I of input traces by setting

q1-after-V = {q ′ | ∃x ∈ V : q ′ ∈ q1-after-x}.

Using this notation, the following lemma describes a simple fact about
sets V of input traces and the associated sets of states that are reachable
under these traces: if the input traces in V do not reach all reachable states,
then the extended traces set V ∪V.ΣI reaches at least one additional state of
the FSM.

81

Lemma 4.2 LetM = (Q,q, ΣI, ΣO, h) be a (possibly nondeterministic) FSM
over input alphabet ΣI and output alphabet ΣO. Let V ⊆ Σ∗I be a finite set of
input traces containing the empty trace ε. Then either

1. q-after-V contains all reachable states, i.e., q-after-V = q-after-Σ∗I , or

2. q-after-(V ∪ V.ΣI) contains at least one additional state which is not
contained in q-after-V, that is, q-after-V (q-after-(V ∪ V.ΣI).

Proof. Suppose that q ∈ Q− (q-after-V) is a reachable state of M1. Then
q may be reached via some input trace x ∈ Σ∗I , that is, q ∈ q-after-x. By
assumption, x 6∈ V . Then it is possible to decompose x into x = x1.x.x2 with
x ∈ ΣI and x1, x2 ∈ Σ∗I , such that

• q-after-z ⊆ q-after-V holds for all prefixes z of x1 including x1, and

• there exists a state q ′ such that q ′ ∈ (q-after-x1.x) \ (q-after-V).

This means that x1 is the longest prefix of x such that all states reachable
by x1 and its prefixes can also be reached by some input traces from V . This
x1 always exists, because it may also be the empty trace which is contained
in V . Observe that x1 is not necessarily an element of V .

Now let q ′′ ∈ q-after-x1, such that h(q ′′, x, y, q ′) for some y ∈ ΣO. Then
q ′′ can be reached by an input trace v ∈ V according to our assumption
about x1. As a consequence, q ′ ∈ q-after-v.x, and v.x ∈ V.ΣI. Now we have
identified a state q ′ which is not contained in q-after-V , but in q-after-(V ∪
V.ΣI). This completes the proof. �

The lemma above has an important corollary.

Corollary 4.1 Let M1 = (Q1, q1, ΣI, ΣO, h1) and M2 = (Q2, q2, ΣI, ΣO, h2)
be FSMs over the same alphabets with n and m states, respectively. Then
every reachable state of the product FSM M1∩M2 can be reached by an input
trace from

⋃nm−1
i=0 ΣiI. Therefore,

⋃nm−1
i=0 ΣiI is a state cover of M1 ∩M2.

Proof. By the definition of the FSM product, M1 ∩M2 has at most nm
states. Define V = {ε}. Now apply Lemma 4.2 nm − 1 times to conclude
that V ∪ V.ΣI ∪ · · · ∪ V.Σnm−1

I reaches all states (in the worst case, all nm
states) of M1 ∩M2. Observing that Σ0I = {ε} by definition, we conclude that

V ∪ V.ΣI ∪ · · · ∪ V.Σnm−1
I =

nm−1⋃
i=0

ΣiI,

82

and this completes the proof. �

Theorem 4.4 Let M1 = (Q1, q1, ΣI, ΣO, h1), M2 = (Q2, q2, ΣI, ΣO, h2) be
two observable FSMs with n and m states, respectively. Then

L(M2) ⊆ L(M1) if and only if L(M2)∩
mn⋃
i=0

(ΣI×ΣO)i ⊆ L(M1)∩
mn⋃
i=0

(ΣI×ΣO)i.

Proof. We prove by contradiction that the assumption L(M2)∩
⋃mn
i=0(ΣI ×

ΣO)
i ⊆ L(M1) ∩

⋃mn
i=0(ΣI × ΣO)i implies L(M2) ⊆ L(M1). Suppose therefore

that the assumption holds, but L(M2) 6⊆ L(M1).
Then there exists a shortest π ∈ (ΣI×ΣO)∗ such that π ∈ L(M2)\L(M1).

Since L(M2) ∩
⋃mn
i=0(ΣI × ΣO)i ⊆ L(M1) ∩

⋃mn
i=0(ΣI × ΣO)i, the I/O-trace

π satisfies |π| ≥ mn + 1. Let π = π ′.x/y for some π ′ ∈ (ΣI × ΣO)|π|−1,
x/y ∈ ΣI × ΣO. Since π ∈ L(M2), we have π ′ ∈ pref(π) ⊆ L(M2). Since π is
the shortest trace satisfying π ∈ L(M2)\L(M1), we have π ′ ∈ L(M2)∩L(M1).

Since M1 and M2 are observable, there is a unique pair of states (q1, q2)
satisfying (q1, q2) = (q

1
-after-π ′, q

2
-after-π ′).

Then x/y ∈ LM2
(q2)\LM1

(q1). Since
⋃mn−1
i=0 ΣiI is a state cover ofM1∩M2

by Corollary 4.1, there exists a trace τ ∈ (ΣI×ΣO)∗, |τ| ≤ mn− 1 such that
(q
1
-after-τ, q

2
-after-τ) = (q

1
-after-π ′, q

2
-after-π ′) = (q1, q2). Since x/y ∈

LM2
(q2) \ LM1

(q1), we have τ.x/y ∈ L(M2) \ L(M1) and

|τ.x/y| ≤ mn− 1+ 1 = mn < mn+ 1 ≤ |π|.

This is a contradiction to the assumption that π is the shortest trace con-
tained in L(M2) \ L(M1) and completes the proof. �

As a direct consequence of Theorem 4.4, we get the following theorem on
I/O-equivalence,

Theorem 4.5 Let M1, M2 be two observable FSMs with n, m states, re-
spectively. Then

L(M2) = L(M1) if and only if L(M2)∩
mn⋃
i=0

(ΣI×ΣO)i = L(M1)∩
mn⋃
i=0

(ΣI×ΣO)i.

Proof. By applying Theorem 4.4 two times, once for L(M2) ∩
⋃mn
i=0(ΣI ×

ΣO)
i ⊆ L(M1) ∩

⋃mn
i=0(ΣI × ΣO)i, and once for L(M1) ∩

⋃mn
i=0(ΣI × ΣO)i ⊆

L(M2) ∩
⋃mn
i=0(ΣI × ΣO)i the theorem is proven. �

83

Complexity of Reduction Testing. According to Theorem 4.4, it has to
be checked that all I/O-traces up to length mn that can be produced by the
SUT M2 are also contained in the language of the reference model M1. The
test cases – that is, the input traces associated with these I/O-traces come
from the set

mn⋃
i=0

ΣiI.

Applying the formula for the sum of a geometric progression [42, p. 31] which
is calculated as

k∑
i=0

xi =
1− xk+1

1− x
,

we get an upper bound for the maximal number of test cases required for
reduction testing specified by

mn∑
i=0

|ΣI|
i =

1− |ΣI|
mn+1

1− |ΣI|
. (4.1)

Asymptotically, this results in

O(|ΣI|
mn). (4.2)

According to the complete testing assumption explained above, there exists
a c ≥ 1 such that every possible output is produced by the SUT when
exercising an input trace against the SUT c times. Therefore, the number of
test executions is bounded by

c · 1− |ΣI|
mn+1

1− |ΣI|
. (4.3)

If the FSMs are completely specified, the asymptotic estimate given in for-
mula (4.2) becomes a non-asymptotic upper bound: suppose that the SUT
produces an erroneous I/O-trace x/y ′ for some test case x with |x| < mn.
Then we can execute a longer input trace x.u against the SUT which has
exactly length mn. Since the SUT accepts this trace and languages are
prefix-closed, it will produce I/O-trace x.u/y ′.z at least once when execut-
ing test case x.u at least c times. Therefore, the erroneous output y ′ will
also be detected when exercising only x.u, but not x against the SUT. As a
consequence, the number of test executions to be performed is

|ΣI|
mn for completely specified FSMs, (4.4)

84

and only the test cases from ΣI|
mn| need to be performed. Observe that this

does not hold for incomplete FSMs, because then it may be the case that
non of the suffixes u extending x to a trace x.u of length mn are accepted
by reference model and/or SUT.

Minimal values for n and m. Theorem 4.4 and Theorem 4.5 do not
require minimality of the FSMs M1 (reference model) and M2 (system under
test).

It is advisable, however, to minimise the reference model and make an
estimate for the number of state m in the minimised version of the FSM M2

reflecting the SUT behaviour. This is because language-equivalent observable
FSMs have the smallest possible number of states when being minimised.

Test cases x with |x| < mn are insufficient for reduction testing.
The following example shows that the maximal length mn of test cases to
be executed for reduction testing cannot be reduced. Consider the reference
modelM1 depicted in Fig. 4.1 and the SUT modelM2 shown in Fig. 4.2. Both
FSMs are completely specified, nondeterministic, observable, and minimal
with n = 3n m = 4, input alphabet ΣI = {a} and output alphabet ΣO =
{0, 1}. It is easy to see that all test cases consisting of at most mn−1 = 11 a-
inputs lead to SUT-outputs that are also possible according to the reference
model. Only the test case

a . . . a︸ ︷︷ ︸
nm = 12 times

,

when applied c times to the SUT, will reveal the erroneous output b which
is not allowed after 12 a-inputs according to the reference model.

85

p0 a/0

p1

a/1

a/0

p2

a/1

a/0

Figure 4.1: Reference model M1

q0

q1

a/0

q2

a/0

q3

a/0

a/0 a/1

Figure 4.2: SUT model M2

4.6 The W-Method

The W-Method was one of the first complete strategies for proving I/O-
equivalence between deterministic, completely specified FSM by means of
testing [69, 9].

In Section 4.3, the notation DFSMC(ΣI, ΣO) has been introduced for the
set of completely specified deterministic state machines over input alphabet
ΣI and output alphabet ΣO. This notation is now extended to

DFSMC(ΣI, ΣO,m) ⊆ DFSMC(ΣI, ΣO), m ∈ N

which denotes the completely specified deterministic FSMs with at most m
states.

86

Throughout this section, it is assumed that the reference model M1 ∈
DFSMC(ΣI, ΣO) is represented by its minimal equivalent. Recall that an
algorithm for minimising DFSMs has been presented in Chapter 3. The true
behaviour of the SUT is represented by some M2 ∈ DFSMC(ΣI, ΣO), and
– since we cannot observe M2 – we might as well assume that it is also
minimised.

The following lemma shows that the existence of a homomorphism be-
tween completely specified deterministic FSM, which uses the identity func-
tions on input and output alphabets, already implies I/O-equivalence.

Lemma 4.3 Let M1 = (Q1, q1, ΣI, ΣO, h1),M2 = (Q2, q2, ΣI, ΣO, h2) be two
complete and deterministic FSMs over the same input alphabet ΣI. Suppose
there is a mapping f : Q1 → Q2 inducing a homomorphism between M1 and
M2 by satisfying f(q

1
) = q

2
and (q, x, y, q ′) ∈ h1 ⇒ (f(q), x, y, f(q ′)) ∈ h2

for all q, q ′ ∈ Q1, x ∈ ΣI, y ∈ ΣO. Then L(M1) = L(M2), so M1 ∼M2 holds.

Proof. Suppose that f : Q1 → Q2 induces a homomorphism. Let
x/y = x1 . . . xk/y1 . . . yk ∈ L(M1), k ≥ 1 be a non-empty I/O-sequence.
Then, because M1 is completely specified, there are q1, . . . , qk ∈ Q1 such
that (qi−1, xi, yi, qi) ∈ h1, for all i = 1 . . . , k, where q0 = q

1
. Then

(f(qi−1), xi, yi, f(qi)) ∈ h2, for all i = 1 . . . , k, and f(q0) = f(q
1
) = q

2
.

Hence x/y ∈ L(M2) and L(M1) ⊆ L(M2). Since M1 is complete, for any
x/y ∈ L(M2), there exists x/y ′ ∈ L(M1) ⊆ L(M2). Since M2 is determinis-
tic, y = y ′. Hence x/y ∈ L(M1) and L(M1) = L(M2). �

In the following we use the notation q-after-x instead of δ(q, x). Since
the FSMs under consideration are completely specified and deterministic,
q-after-x always denotes a single well-defined state.

The test cases U(x) referenced in the theorem are again the ones already
introduced in Section 4.3.

Theorem 4.6 (W-method) Let M = (Q,q, ΣI, ΣO, h) be a complete, min-
imal and deterministic FSM over input alphabet ΣI and output alphabet ΣO.
Let |Q| = n and m an integer with m ≥ n. Let V be a state cover of M and
W a characterisation set of M. Then, defining

W = V.

m−n+1⋃
i=0

ΣiI.W and Dom = DFSMC(ΣI, ΣO,m)

87

the test suite
TS = { U(x) | x ∈W }

is complete for fault model F(M, ∼, Dom).

Proof. Let M ′ = (Q ′, q ′, ΣI, ΣO, h
′) ∈ Dom.

Suppose M ′ ∼M. Then M ′ W∼ M, since I/O-equivalence is equivalent to

M ′ Σ
∗
I
∼ M and W ⊆ Σ∗I .

Now suppose M ′ W∼ M. We are going to show that M ′ ∼ M. Let Q =
{q1, . . . qn} with q = q1. Let V = {x1, . . . , xn} with q-after-xi = qi, i =
1, . . . , n. Recall that ε ∈ V , because V is a state cover: q1 = q-after-ε. Note

further, that W ⊆W, because ε ∈ V.Σ0I .
Let q ′i = q ′-after-xi for i = 1, . . . , n. Then q ′

W
∼ q, because W ⊆ W.

Furthermore, q ′
V.W
∼ q, because V.W ⊆ W. Applying this fact to every

xi ∈ V , this yields qi
W
∼ q ′i for each i = 1, . . . , n.

Since W is a characterisation set, qi
W

6∼ qj, for all i 6= j in range 1, . . . , n.

Hence also q ′i
W

6∼ q ′j , because otherwise q ′i
W
∼ q ′j , q

′
i

W
∼ qi, and q ′j

W
∼ qj would

imply qi
W
∼ qj, due to transitivity of

W
∼, and this contradicts the fact that

qi
W

6∼ qj.
Now q ′i

W

6∼ q ′j for all i 6= j in range 1, . . . , n implies that also the q ′i are

pairwise distinct for i = 1, . . . , n, because
W
∼ is reflexive. As a consequence,

|{q ′1, . . . , q
′
n}| = |{q1, . . . , qn}| = n. Now we have shown that V reaches n

distinct states of M ′, but it could still be possible that M ′ has more than n
states, so V is not yet established as a state cover of M ′.

By Lemma 4.2,

V.

m−n⋃
i=0

ΣiI

is a state cover of M ′, because M ′ has at most m − n additional states,
since it is an element of the fault domain Dom. Hence for any q ′ ∈ Q ′,
there exists x ∈ V.ΣjI, for some j ≤ m − n, such that q ′ = q ′-after-x. Let

88

q = q-after-x ∈ Q be the corresponding M-state. Since q ′
W
∼ q, this implies

q ′
W
∼ q because {x}.W ⊆W

q ′
ΣI
∼ q because {x}.ΣI.W ⊆W

q ′
ΣI.W
∼ q because {x}.ΣI.W ⊆W

As a consequence
∀x ∈ ΣI : ω(q ′, x) = ω(q, x)

and this implies (q ′, x, y, q ′-after-x) ∈ h ′ ⇒ (q, x, y, q-after-x) ∈ h, and

(q ′-after-x)
W
∼ (q-after-x) for all x ∈ ΣI. Summarising, we have shown that

for any reachable state q ′ of M ′, there exists a reachable, W-equivalent state
q in M. Since W is a characterisation set of M, this state q is uniquely
determined.

Define f : Q ′ → Q by f(q ′) = q ⇔ q ′
W
∼ q. Then f(q ′) = q. The proof

steps above imply that for all q ′ ∈ Q ′, x ∈ ΣI, and y ∈ ΣO
(q ′, x, y, q ′-after-x) ∈ h ′ ⇒ (f(q ′), x, y, f(q ′)-after-x) ∈ h

and

(q ′-after-x)
W
∼ (f(q ′)-after-x)

which implies f(q ′-after-x) = f(q ′)-after-x and

(q ′, x, y, q ′-after-x) ∈ h ′ ⇒ (f(q ′), x, y, f(q ′-after-x)) ∈ h

Therefore f is a homomorphism from M ′ to M. By Lemma 4.3 we have
L(M ′) = L(M) which completes the proof. �

Corollary 4.2 Let M = (Q,q, ΣI, ΣO, h) be a complete, minimal and deter-
ministic FSM over input alphabet ΣI and output alphabet ΣO. Let |Q| = n

and m an integer with m ≥ n. Define

Dom = DFSMC(ΣI, ΣO,m)

Then the test suite

TS = { U(x) | x ∈
m+n−1⋃
i=0

ΣiI }

is complete for fault model F(M, ∼, Dom).

89

Proof.
By Lemma 4.2 and Lemma 3.4 there exist a state cover ε ∈ V of M and

a characterisation set W of M such that

V,W ⊆
n−1⋃
i=0

ΣiI

because M has n states.
Define W := V.

⋃m−n+1
i=0 ΣiI.W. Then W ⊆ ⋃m+n−1

i=0 ΣiI ⊆ Σ∗I . From the

W-method we have q ′∼q ⇒ q ′
⋃m+n−1

i=0 ΣiI
∼ q ⇒ q ′

W
∼ q ⇒ q ′∼q for any

M ′ = (Q ′, q ′, ΣI, ΣO, h
′) ∈ Dom. �

Complexity considerations Let’s analyse the test complexity advantages
gained when using the W-Method instead of the product-automata technique
presented in Section 4.5 (remember that the latter’s test complexity was
|ΣI|

mn).
To this end, we need an estimate for the cardinality of W, which is the

product of

• the number of elements in the state cover V ,

• the number of elements in
⋃m−n+1
i=0 ΣiI, and

• the number of elements in the characterisation set W.

The state cover contains n input traces to reach each of the n non-
equivalent states of M.

Using the formula for the sum of a geometric progression [42, p. 31] which
is calculated as

k∑
i=0

xi =
1− xk+1

1− x
,

the number of elements in
⋃m−n+1
i=0 ΣiI is determined by

∣∣m−n+1⋃
i=0

ΣiI
∣∣ = m−n+1∑

i=0

|ΣI|
i =

1− |ΣI|
m−n+2

1− |ΣI|

For the characterisation set W, suppose W = {x1, . . . , xk} is a minimal
characterisation set and define Wi = {x1, . . . , xi}, ∀i = 1, . . . , k. Then W1 ⊂

90

W2 ⊂ · · · ⊂ Wk = W. W1 separates the state space Q into n1 equivalence

classes with equivalence relation
W1
∼ . Then n1 ≥ 2, since W1 must distinguish

at least two states – otherwise it would not be contained in W. Since W is
minimal, Wi distinguishes the state space Q into ni classes and ni ≥ ni−1+1,
for all i = 2, . . . k, and nk = n. Hence

n = nk ≥ nk−1 + 1 ≥ nk−2 + 2 ≥ · · · ≥ n1 + (k− 1) ≥ k+ 1

so
|W| = k ≤ n− 1

Summarising, this results in the approximation

|W| ≤ n · 1− |ΣI|
m−n+2

1− |ΣI|
· (n− 1) = (n2 − n) · 1− |ΣI|

m−n+2

1− |ΣI|

Asymptotically, we get the test complexity

O(n2 · |ΣI|m−n+1),

so the good new is, that the W-Method reduces the exponential test com-
plexity of the product-automaton algorithm to polynomial complexity in the
case where the SUT is known to have just as many states as the reference
model, i.e. m = n. Otherwise it is exponential in the difference m − n of
states in M2 and M1.

Let us now consider the worst-case number of test steps that may occur
in a test case. The longest possible input sequence in a transition cover V has
(n− 1) elements; the longest sequences in

⋃m−n+1
i=0 ΣiI have length m−n+ 1,

and from [21, Section 4.5] it is known that in the worst case, the elements of
W have length n− 1. This results in a maximal length of

(n+m− 1) test steps in a test case

For the case m = n, this results asymptotically in

O(n3 · |ΣI|)

test steps to be performed over all test cases.

Example 4. The following example has been adopted from [9, Fig. 6].
Let Q = {q1, q2}, ΣI = {a, b}, ΣO = {0, 1}. Let M,M ′ be two minimal and

91

completely specified DFSMs over (ΣI, ΣO) with state spaceQ and initial state
q1. The transition relations are given by

hM = {(q1, a, 0, q2), (q1, b, 1, q2), (q2, a, 1, q1)(q2, b, 0, q2)}

and

hM ′ = {(q1, a, 0, q2), (q1, b, 1, q2), (q2, a, 1, q2)(q2, b, 0, q2)}.

The machines are shown in Fig. 4.3.
M and M ′ are not I/O equivalent since a.a.a/0.1.0 ∈ L(M) \ L(M ′):

there is a transition fault in M ′ with the transition (q2, a, 1, q2) ∈ hM ′ but
(q2, a, 1, q1) ∈ hM. For applying the W-Method, we observe that

1. V = {ε, a} a state cover of M and

2. W = {a} a characterisation set of M. Then

3. V ∪ V.ΣI = {ε, a, b, a.a, a.b} is a transition cover of M.

4. W = (V ∪ V.ΣI).W = {a, a.a, b.a, a.a.a, a.b.a} is the complete test
suite generated by the W-Method under the assumption that m = n.

Since M
V∪V.ΣI
∼ M ′, the test suite {U(x) | x ∈ V ∪ V.ΣI} is not able to

detect the transition fault in M ′. But test suite {U(x) | x ∈ W} can detect
the transition fault by applying the test case U(a.a.a).

�

92

q1

q2

a/0 b/1 a/1

b/0

q1'

q2'

a/0b/1

a/1b/0

Figure 4.3: Single transition fault

4.7 The H-Method

4.7.1 Motivation

As discussed in [13], complete test methods for FSMs depend on the technique
how to distinguish different states in a crucial way. The choice of these
distinction methods is also the main “tool” for reducing the overall number
of test cases without losing completeness: in any complete test strategy,
we need to visit every state of the reference model, check correctness of
input/output behaviour from there and explore possibly uncovered states of
the SUT with all traces up to length. Therefore, all input traces of the state
cover V , followed by traces from the set

∑m−n+1
i=0 ΣiI of arbitrary input traces

up to length (m− n+ 1) need to be explored in any method.

93

These considerations have led to the development of the H-Method1, orig-
inally published in [13]. In Fig. 4.4, it can be seen that the H-Method sig-
nificantly reduces the test suite size, when compared to the W-Method dis-
cussed in Section 4.6. We will not discuss the HSI-Method in these lecture
notes, since the H-Method is a refinement thereof. The authors of the SPY
method [63] state that SPY outperforms all other known FSM testing meth-
ods for equivalence. The results from [15] shown in Fig. 4.4, however, do not
confirm this statement. The P-Method shown in Fig. 4.4 is only applicable
for the case m = n, i.e. the assumption that the SUT does not have more
distinguishable states than the reference model must be valid.

Figure 4.4: Comparison of various complete FSM-based test methods,
from [15].

The H-Method has the following attractive features.

1The “H” stands for harmonised state identifiers (i.e., distinguishing traces); this term
was introduced in [60].

94

• It guarantees completeness for arbitrary m ≥ n with significantly
smaller test suites, when compared to other complete methods.

• It is applicable to deterministic or nondeterministic, complete or in-
complete observable models.

• The W-Method presented in Section 4.6 and the Wp-Method from
Section 4.8.1 ar direct corollaries of the H-Method.

4.7.2 Definitions related to the H-Method

For the remainder of this section, let M = (Q,q, ΣI, ΣO, h) be a minimal and
observable FSM over Σ = ΣI × ΣO with finite state space Q, |Q| = n. Let

ω(q, x) = {y ∈ ΣO | ∃q ′ ∈ Q, (q, x, y, q ′) ∈ h}

be the set-valued function returning all possible FSM outputs to a given
state q and input x. Note that ω(q, x) = ∅ if M is not completely specified
and input x is undefined in state q. This set-valued output function can be
extended to input traces by setting

ω : Q× Σ∗I → P(Σ∗O)
ω(q, ε) = {ε}

ω(q, x) = {y ∈ Σ∗O | ∃q ′ : (q, x, y, q ′) ∈ h} for |x| > 0

Recall that q-after-x = {q ′ ∈ Q | ∃y ∈ ΣO, (q, x, y, q
′) ∈ h} and

q-after-x/y = q ′ if and only if (q, x, y, q ′) ∈ h.

Definition 4.6 Let x ∈ Σ∗I be any input sequence. We call x is a distinguish-
ing trace of states q1, q2 ∈ Q, if ω(q1, x) 6= ω(q2, x). By ∆(q1, q2) ⊆ Σ∗I
we denote the set of all distinguishing traces of q1, q2. The distinguishing
I/O-traces of states q1, q2 ∈ Q are specified by

∆IO(q1, q2) = {x/y | x/y ∈ (L(q1) \ L(q2)) ∪ (L(q2) \ L(q1))}.

Observe that x/y ∈ ∆IO(q1, q2) always implies that x ∈ ∆(q1, q2).

Definition 4.7 Let W ⊆ Σ∗I . W is called a characterisation set of M, if
W ∩ ∆(q1, q2) 6= ∅ holds for any q1 6= q2 ∈ Q.

95

4.7.3 H-Method Theorems

The first theorem states the H-Method as a language-theoretic insight.

Theorem 4.7 (H-Method) Let M be defined as given above. Let ε ∈
V = {v1, . . . , vn} ⊆ Σ∗I and ε ∈ Π = {v1/u1, . . . , vn/un} ⊆ L(M) such that
{q-after-vi/ui | i = 1, . . . , n} = Q. For m ≥ n, define fault domain D as the
set of all minimal and observable FSM over Σ with at most m states. Let

A = Π× Π,

B = Π× Π.
m−n+1⋃
k=1

Σk

C =
⋃

π∈Π,τ∈
⋃m−n+1

k=1 Σk

{π}.pref(τ)× {π.τ}

Let TSH ⊆ Σ∗ be a set containing

• Π.⋃m−n+1
k=0 Σk and

• {α.w,β.w}, for any (α,β) ∈ A∪B∪C, q-after-α 6= q-after-β and some
w ∈ Σ∗ with L(q-after-α) ∩ {w} 6= L(q-after-β) ∩ {w}.

Then
L(M ′) = L(M)⇔ L(M ′) ∩TSH = L(M) ∩TSH

Proof. It is trivial that L(M ′) = L(M) ⇒ L(M ′) ∩ TSH = L(M) ∩ TSH.
Therefore, the following proof only shows L(M ′) ∩ TSH = L(M) ∩ TSH ⇒
L(M ′) = L(M).

Suppose that L(M ′) ∩ TSH = L(M) ∩ TSH holds, but L(M ′) 6= L(M).
Then there exist I/O sequences which are contained in L(M) \ L(M ′) or
L(M ′) \ L(M). Define ∆IO(M,M

′) = {ι ∈ Σ∗ | L(M ′) ∩ {ι} 6= L(M) ∩ {ι}}.
Then ∆IO(M,M

′) 6= ∅.
Define Ω = {τ ∈ Σ∗ | ∃π ∈ Π, L(M ′)∩ {π.τ} 6= L(M)∩ {π.τ}}. Since ε ∈ Π,

∆IO(M,M
′) ⊆ Ω 6= ∅. Let τ ∈ Ω be a shortest trace and π ∈ Π satisfying

L(M ′) ∩ {π.τ} 6= L(M) ∩ {π.τ}.
Since L(M ′) ∩ TSH = L(M) ∩ TSH, we conclude that π.τ 6∈ TSH,

and, therefore, |τ| > m − n + 1. Since Π.
⋃m−n+1
i=0 Σi ⊆ TSH, we have

96

L(M ′)∩Π.⋃m−n+1
i=0 Σi = L(M)∩Π.⋃m−n+1

i=0 Σi and, consequently, Π ⊆ L(M ′).
Furthermore, any proper prefix τ ′ of τ must satisfy π.τ ′ ∈ L(M) ∩ L(M ′),
because otherwise τ is not the shortest element of Ω.

Let τ = σ1. . . . σk, k > m − n + 1. and τi := σ1 . . . σi, i = 1, . . . ,m −
n + 1. Then π.σ1. . . . σi ∈ L(M) ∩ L(M ′), i = 1, . . . ,m − n + 1. Consider
q ′-after-π1, . . . , q

′-after-πn, q
′-after-π.τ1, . . . , q

′-after-π.τm−n+1 ∈ Q ′. These
-after-expressions specify m + 1 states. Therefore, since |Q ′| = m, at least
two of these states must be the same, and we can distinguish the following
three cases.

∃i < j ∈ {1, . . . , n} : q ′-after-πi = q
′-after-πj (4.5)

∃i ∈ {1, . . . , n}, j ∈ {1, . . . ,m− n+ 1} : q ′-after-πi = q
′-after-π.τj (4.6)

∃1 ≤ i < j ≤ m− n+ 1 : q ′-after-π.τi = q
′-after-π.τj (4.7)

Now we have shown the existence of α,β ∈ L(M ′) satisfying (α,β) ∈ A∪B∪C
and q ′-after-α = q ′-after-β in M ′.

Suppose that q-after-α 6= q-after-β in M. Then there is some w ∈
∆IO(q-after-α, q-after-β) such that

{α.w,β.w} ⊆ TSH and |{α.w,β.w} ∩ L(M)| = 1.

Since q ′-after-α = q ′-after-β,

|{α.w,β.w} ∩ L(M ′)| ∈ {0, 2}

follows. This shows that

L(M ′) ∩ {α.w,β.w} 6= L(M) ∩ {α.w,β.w}

and implies L(M ′)∩TSH 6= L(M)∩TSH, a contradiction to the assumption
L(M ′) ∩TSH = L(M) ∩TSH. Hence q-after-α = q-after-β in M.

Now we apply the case analysis from formulas (4.5) to (4.7) to this pair
(α,β).

1. If Formula (4.5) applies, this means that α = πi and β = πj with traces
πi, πj ∈ Π. By definition of Π, however, q-after-πi 6= q-after-πj holds.
This is a contradiction to the fact that q-after-α = q-after-β as shown
above.

97

2. If Formula (4.6) applies, we have α = πi and β = π.τj. Let ι =
σj+1 . . . σk, so that π.τj.ι = π.τ. Then |ι| < |τ| and π.τ = β.ι. Since
L(q-after-α) = L(q-after-β) and L ′(q ′-after-α) = L ′(q ′-after-β),

π.τ ∈ L(M)⇔ α.ι ∈ L(M) and π.τ ∈ L(M ′)⇔ α.ι ∈ L(M ′)

follows. Since L(M ′) ∩ {π.τ} 6= L(M) ∩ {π.τ}, we have

L(M ′) ∩ {α.ι} 6= L(M) ∩ {α.ι},

which is equivalent to L(M ′) ∩ {πi.ι} 6= L(M) ∩ {πi.ι}, a contradiction
to the fact that τ is a shortest element of Ω.

3. If Formula (4.7) applies, we have the case α = π.τi and β = π.τj with
1 ≤ i < j ≤ m − n + 1. As in the previous case, let ι = σj+1 . . . σk,
so that π.τj.ι = π.τ. Let ι ′ = τi.ι. Then |ι ′| < |τ|, π.τ = β.ι, and
α.ι = π.τi.ι = π.ι

′. Since L(M ′) ∩ {π.τ} 6= L(M) ∩ {π.τ}, we have, just
as in the previous case,

L(M ′) ∩ {α.ι} 6= L(M) ∩ {α.ι},

which is equivalent to L(M ′) ∩ {π.ι ′} 6= L(M) ∩ {π.ι ′}. Again, this is a
contradiction to the fact that τ is a shortest element of Ω.

Now we have derived a contradiction for all possible cases of α and β. As
a consequence, the assumption L(M ′) 6= L(M) must be wrong, and this
completes the proof. �

The following corollary re-formulates Theorem 4.7 as a test strategy.

Corollary 4.3 Let M be an minimal and observable FSM over Σ = ΣI×ΣO
with finite state space Q, |Q| = n. (M is not necessary deterministic or
completely specified.) Let ε ∈ V = {v1, . . . , vp} ⊆ Σ∗I be a state cover of M.
Let m ≥ n, F = (M, ∼,D), where D is the set of all minimal and observable
FSM over Σ with at most m states.

Let

A = V × V,

B = V × V.
m−n+1⋃
k=1

ΣkI

C = {(α,β) | α,β ∈ V.
m−n+1⋃
k=1

ΣkI , α ∈ pref(β)}

98

Then the test suite TSH ⊆ Σ∗I containing

• V.⋃m−n+1
k=0 ΣkI and

• {α.w,β.w}, for any (α,β) ∈ A∪B∪C, q-after-α 6= q-after-β and some
w ∈ Σ∗I with w ∈ ∆(q, q ′), q ∈ q-after-α 6= q ′ ∈ q-after-β,

is complete for F = (M, ∼,D).

The following corollary shows that the W-Method is a simple consequence
of Theorem 4.7, and that it holds also for nondeterministic incomplete FSMs.

Corollary 4.4 Let M be an minimal and observable FSM over Σ = ΣI×ΣO
with finite state space Q, |Q| = n. (M is not necessary deterministic or
completely specified.) Let ε ∈ V = {v1, . . . , vp} ⊆ Σ∗I be a state cover of M.
Let W ⊆ Σ∗I be a characterisation set of M. Let m ≥ n, F = (M, ∼,D),
where D is the set of all minimal and observable FSM over Σ with at most
m states.

Then the test suite TSW = V.
⋃m−n+1
k=0 ΣkI .W is complete for F = (M, ∼

,D).

4.8 FSM Testing Theories for

Nondeterministic Systems

4.8.1 A Nondeterministic Variant of the Wp-Method

The Wp-Method originally presented in [19] was an improvement of the W-
Method (Section 4.6) with lower test complexity. We present here a further
extension of the Wp-Method elaborated in [45], which is applicable to non-
deterministic FSMs. The conformance relation under consideration is I/O-
equivalence ∼, just as for the original W-Method. We will discuss later on
that for nondeterministic systems, complete test suites for reduction � are
more suitable in most application cases.

In analogy to the W-Method, test cases of the Wp-Method are again
represented by a set Wp ⊆ Σ∗I , and this set is constructed using the following
algorithm.

1. Input to the algorithm: an observable, minimal FSM M =
(Q,q, ΣI, ΣO, h).

99

2. Output of the algorithm: a test suite Wp.

3. Calculate a state cover SCOV of M.

4. Calculate a characterisation set W of M.

5. Calculate state identification sets {W0, . . . ,W|Q|−1} of M, such that2

• Wi ⊆ pref(W) for i = 0, . . . , |Q|− 1.

• Wi distinguishes qi from all other states in Q.

6. Set

Wp1 = SCOV.
(m−n⋃
i=0

ΣiI
)
.W

7. Set
Wp2 = SCOV.Σm−n+1

I ⊕ {W0, . . . ,W|Q|−1},

where for any V ⊆ Σ∗I , the ⊕-operator is defined by

V ⊕ {W0, . . . ,W|Q|−1} =⋃{
{x}.Wi | i ∈ {0, . . . , |Q|− 1} ∧ x ∈ V ∧ qi ∈ q-after-x}

}
8. Set Wp =Wp1 ∪Wp2.

9. Return Wp.

In the algorithm above, the specification of Wp2 deserves some explana-
tion. Intuitively speaking, Wp2 contains input sequences from SCOV.Σm−n+1

I

that are extended by sequences from one or more Wi according to the follow-
ing recipe: Given an input sequence x in SCOV.Σm−n+1

I , consider all target
states that are reachable from the initial state by applying x. These target
states are specified by the set q-after-x. Now x is extended by every trace
from Wi, if and only if qi is among these target states reachable under x.

Remark 4.1 The set Wp2 of Wp-Method was originally presented by

Wp ′2 = R.Σ
m−n
I ⊕ {W0, . . . ,W|Q|−1}

where R = SCOV.ΣI \ SCOV. Obviously, Wp =Wp1 ∪Wp2 =Wp1 ∪Wp ′2.
2pref(W) is the set of all prefixes of all input traces in W.

100

Theorem 4.8 The Wp-Method described by the algorithm above is complete
for all fault models F = (M, ∼, Dom), where M is an observable minimal
FSM with n states, and fault domain Dom contains all FSMs over the same
input and output alphabets as M, whose prime machines have at most m ≥ n
states.

Corollary 4.5 The W-Method is complete for all fault models F = (M, ∼
, Dom), where M is an observable minimal FSM with n states, and fault
domain Dom contains all FSMs over the same input and output alphabets
as M, whose prime machines have at most m ≥ n states.

When testing nondeterministic systems, completeness only holds under the
complete testing assumption [26]: this is a fairness hypothesis stating the
existence of some k > 0, so that, when applying test case U to an implemen-
tation M ′ k times, every input/output sequence x/y that can be observed
with M ∩U will be observed.

The Wp-Method cannot prove reduction The following example
shows that the Wp-Method is not exhaustive (and therefore not complete)
when testing whether the implementation is a reduction of the reference
model.

Example 5. Let Mi = (Qi, qi, ΣI, ΣO, hi), i = 1, 2, 3 be three FSMs,
with Qi = {s0, s1, s2, s3}, qi = s0, ΣI = {a, b}, ΣO = {d, e, f}, with transition
graphs as shown in Fig. 4.5, 4.6, and 4.7. DFSM M1 is the reference model.
Implementation M2 has a transition fault in the outgoing transition from s3
labelled by a/f. Implementation M3 has the same error, but additionally

the transition s0
a/e
−−→ s3 from M1 is missing. Both implementations have the

same number of states as the reference model.

101

S0

b/f S1
a/d

S3
a/e

b/f
a/f

S2

b/e

b/e

a/f
b/f

a/f

Figure 4.5: M1 – reference model.

S0

b/f S1
a/d

S3a/e

b/f a/f

S2

b/e

b/e

a/fb/f
a/f

Figure 4.6: M2

102

S0

b/f

S1
a/d
b/f

S3
a/f

S2

b/e

b/e

a/f
b/f

a/f

Figure 4.7: M3

�
Constructing a Wp-Test Suite from reference model M1 leads to the

following results. W = {a, b} is a characterisation set and W0 = {a},
W1 = W3 = {b}, W2 = {a, b} are state identification sets. The set
V = {ε, a, a.b} is a state cover, the Wp-Test Suite looks as follows.

TS = (V.W) ∪ (V.ΣI ⊕ {W0, . . . ,W3})

= {a, b, a.a, a.b, a.b.a, a.b.b, b.a, a.a.b, a.b.a.b, a.b.b.a}

The following table shows the outputs produced by each Mi when apply-
ing this test suite.

103

Input Output(M1) Output(M2) Output(M3)

a d, e d, e d

b f f f

a.a d.f, e.f d.f, e.f d.f

a.b d.e, d.f, e.e d.e, d.f, e.e d.e, d.f

a.b.a d.e.f,
d.f.d,
d.f.e
e.e.d,
e.e.e

d.e.f,
d.f.d,
d.f.e,
e.e.d,
e.e.e

d.e.f,
d.f.d

a.b.b d.e.f, d.f.f, e.e.f d.e.f, d.f.f, e.e.f d.e.f, d.f.f

b.a f.d, f.e f.d, f.e f.d

a.a.b d.f.e, e.f.e d.f.e, e.f.f d.f.e

a.b.a.b d.e.f.e,
d.f.d.f,
d.f.d.e,
d.f.e.e,
e.e.d.e,
e.e.d.f,
e.e.e.e

d.e.f.e,
d.f.d.f,
d.f.d.e,
d.f.e.e,
e.e.d.e,
e.e.d.f,
e.e.e.e

d.e.f.e,
d.f.d.f,
d.f.d.e

a.b.b.a d.e.f.d,
d.e.f.e,
d.f.f.d,
d.f.f.e,
e.e.f.d,
e.e.f.e

d.e.f.d,
d.e.f.e,
d.f.f.d,
d.f.f.e,
e.e.f.d,
e.e.f.e

d.e.f.d,
d.f.f.d

In M1, the outputs produced by applying input sequence a.a.b are
{d.f.e, e.f.e} but in M2, {d.f.e, e.f.f}. Hence M1 6∼ M2, and the transition
fault (s3, a, f, s2) ∈ h2 \ h1 can be detected by using the test suite TS.
M3 is not a reduction ofM1, since the transition fault (s3, a, f, s2) ∈ h3\h1

exists. But in M3, the transition (s0, a, e, s3) ∈ h1 \ h3 doesn’t exist. If we
are only testing for reduction, this is not an error. Now the outputs produced
in M3 by TS can all be accepted by M1, because the transition (s0, a, e, s3)
would have been a “short cut” to the state s3 from where the transition fault
could be uncovered by means of input sequence a.a.b. Intuitively speaking,
the test cases generated by the Wp-Method are too short to uncover the fault,
and the missing “short cut” transition does not lead to an error since we are
testing for reduction. As a consequence, the test suite TS is not suitable to
detect the fault for reduction.

Theorem 4.9 The Wp-Method never generates more test cases than the W-
Method.

104

Proof. Suppose each state identification set Wi, i = 0, . . . , n − 1, is a
subset of W (this means that we do not care about the possibility that a
member of a state identification set could be a prefix of an input trace of the
characterisation set: we always take a full-length member of W to insert into
the respective W = i). Then the test suite Wp is a subset of the test suite
W. Therefore Wp contains at most many test cases as in W.
Let SCOV be a state cover, W a characterisation set. Let identification
sets Wi ⊆ W, ∀i = 0, . . . , n − 1. Let W = SCOV.

(⋃m−n+1
i=0 ΣiI

)
.W, and

Wp =Wp1 ∪Wp2, where

Wp1 = SCOV.
(m−n⋃
i=0

ΣiI
)
.W

and
Wp2 = SCOV.Σm−n+1

I ⊕ {W0, . . . ,Wn−1}.

Obviously, Wp1 ⊆W, and

Wp2 = SCOV.Σm−n+1
I ⊕ {W0, . . . ,Wn−1}

⊆ SCOV.Σm−n+1
I ⊕ {W} [Wi ⊆W]

= SCOV.Σm−n+1
I .W

⊆ W

Hence Wp = (Wp1 ∪Wp2) ⊆W. �

4.8.2 Testing Nondeterministic FSMs for Reduction
Using the State Counting Method

When testing nondeterministic FSMs, the conformance relation to be applied
in most cases is reduction �, because in most of these application scenarios
the reference FSM is an over approximation of the intended behaviour. The
implementation will then be deterministic or nondeterministic, but in any
case it will realise less behaviours than “allowed” according to the reference
model.

In the case of nondeterministic implementations, one input sequence may
stimulate several legal output sequences. This suggests to use adaptive test
cases as defined in Section 4.1, because it is often useful to adapt the test

105

behaviour to the actual reactions of the SUT observed during the test exe-
cution.

The complete testing assumption introduced above must hold just as for
the case when testing nondeterministic FSMs for equivalence.

The most effective testing algorithms for nondeterministic FSMs and re-
duction as conformance relation have been suggested by [26, 55]. In this
section, we present the simpler version of reduction testing with preset test
cases which uses the state counting method.

Recall that we already have established a complete test suite for reduc-
tion testing in Theorem 4.4. There, the resulting number of test cases to
be executed was O(|Σ|mn) (see formula (4.2)). As a consequence, any new
complete reduction testing method should require less than that amount of
test cases in order to be of interest for us.

The state counting method exploits facts about some states being reach-
able in a deterministic way, though the FSM reference model is nondeter-
ministic. This motivates the following definitions.

Definition 4.8 Let M = (Q,q, ΣI, ΣO, h) be a completely specified, minimal
and observable FSM. A state q is d-reachable (“deterministically reachable”)
if and only if there is some input sequence x such that

q = q-after-x/y for all y satisfying x/y ∈ L(M).

The subset of d-reachable states of M is denoted by Qd ⊆ Q.

Note that the initial state of M is always d-reachble, so Qd is never empty.

Definition 4.9 A set V of input sequences is called a d-state cover if and
only if for any d-reachable state q, there exists an input trace x ∈ V, such
that q-after-x = q.

The following definition describes when two states q, q ′ of a nondeter-
ministic FSM are “reliably” distinguishable by a single input x. This is the
case when all possible outputs y to be observed when inputting x in state
q differ from all possible outputs to be obtained when applying input x in
state q ′.

Definition 4.10 Two states q, q ′ are r(1)-distinguishable if and only if
there is some defined input x satisfying

∀y ∈ ΣO :
(
x/y ∈ L(q)⇒ x/y 6∈ L(q ′)

)
∧
(
x/y ∈ L(q ′)⇒ x/y 6∈ L(q)

)
.

The singleton set {x} is called an r-distinguishing set of q, q ′.

106

In some cases, we will use the equivalent defining formula

L(q) ∩ L(q ′) ∩ {x/y | y ∈ ΣO} = ∅ (4.8)

for r(1)-distinguishable states.

Definition 4.11 Two states q, q ′ are r(k)-distinguishable for k > 1 if and
only if either q, q ′ are r(j)-distinguishable for some 1 ≤ j < k or there is
some defined input x satisfying

q-after-x/y and q ′-after-x/y are r(j)-distinguishable for some j < k

for all y ∈ ΣO with x/y ∈ L(q) ∩ L(q ′).

Definition 4.12 Let q, q ′ be r(k)-distinguishable states. Let x ∈ ΣI, such
that for any x/y ∈ L(q) ∩ L(q ′), q-after-x/y and q ′-after-x/y are r(j)-
distinguishable, for some j < k. Then

W(q, q ′) = {x}.
⋃

x/y∈L(q)∩L(q ′)

W(q-after-x/y, q ′-after-x/y)

is called an r-distinguishing set of q, q ′.

Definition 4.13 A set W of input sequences is called an r-characterisation
set if W r-distinguishes any r-distinguishing states.

Definition 4.14 @todo Let R1, . . . , Rt be maximal sets of r-distinguishable
states.

⋃t
i=1 Ri = Q. Denote Rdi = Ri ∩ Qd, where Qd = {q ∈

Q | q is d-reachable}. Let q ∈ Q be d-reachable. Let α = x/y ∈ L(q) of
length k. Set qi = q-after-αi, ∀1 ≤ i ≤ k, where αi = α[1,...,i]. Define
nj(q, α) =

∑k
i=1 |{qi} ∩ Rj|. The number of states of Rj that are traversed by

α from state q is denoted by nj(q, α).

107

M0(0)

M0(1)

in0/out0

M0(3)

in0/out1 in1/out1 in0/out0

in1/out1

M0(2)

in1/out0

in1/out1

in0/out1

in1/out0

in0/out0

Figure 4.8: Nondeterministic FSM M0 (example taken from [26]).

108

M1(0)

M1(1)

in0/out0

M1(3)

in0/out1 in1/out1 in0/out0

in1/out1

M1(2)

in1/out0

in1/out1

in0/out1

in1/out0

in0/out0

Figure 4.9: Nondeterministic FSM M1 – identical to M0, but with start state
1 instead of 0.

109

(M00,M11)(0)

(M01,M11)(1)

in0/out0

(M03,M13)(2)

in1/out1in0/out0

in1/out1

(M02,M12)(3)

in0/out0

(M00,M10)(4)

in1/out0

in0/out1

in1/out1

in1/out0

in0/out0

in0/out1 in1/out1

Figure 4.10: IntersectionM0∩M1 contains a (in fact, is a) completely defined
sub-machine. Therefore state 0 and 1 of M0 are not r-distinguishable.

110

Traversal sets [58]

Mdr3(0)

Mdr3(1)

in0/out0

Mdr3(3)

in0/out1

in1/out1

Figure 4.11: State 3 of M0 is definitely reachable.

111

Mdr2(0)

Mdr2(1)

in0/out0

Mdr2(3)

in0/out1

in1/out1

Mdr2(2)

in0/out0

Figure 4.12: State 2 of M0 is definitely reachable.

112

R02(0)

R02(1)

in1/out1

R02(2)

in1/out0

in0/out1

R02(3)

in0/out0

Figure 4.13: State separator for states 0 and 2 in M0.

113

R03(0)

R03(1)

in1/out1

R03(2)

in1/out0

Figure 4.14: State separator for states 0 and 3 in M0.

114

R23(0)

R23(1)

in0/out0

R23(2)

in0/out1

Figure 4.15: State separator for states 2 and 3 in M0.

115

Part III

Equivalence Class Partition
Testing

116

Chapter 5

Introduction to Equivalence
Class Partition Testing

5.1 Objectives

Model-based testing against finite state machine models is limited by the
fact that FSMs only admit finite input data domains, finite output data
domains, and finitely many internal states. When dealing with test models
possessing infinite data domains – for example, real-valued time-continuous
observables in physical models – or very large data domains that cannot be
enumerated with acceptable effort, new methods are required to reduce the
potentially infinite number of test cases needed to achieve completeness or
at least acceptable test strength for the test strategies to be generated.

A well-known heuristic for this objective is equivalence class partition
testing (ECPT). Infinite (input, output or internal state) data domains are
partitioned into finitely many domains, and it is argued that the implemen-
tation is likely to “behave equivalently” within each partition. This means,
that all data elements from the same partition will be processed by the same
algorithm. Therefore it is likely that an error in this algorithm will be de-
tected when choosing one or just a few representatives from this class. The
research question investigated in the subsequent chapters is whether this
heuristic can be formalised to yield complete testing theories for models and
SUTs with infinite (or very large) data domains.

Example 6. Suppose

float f(float x)

117

is a stateless operation supposed to implement the transformation of input
x according to the linear equation f(x) = a · x + b with a 6= 0. Consider
the fault domain of all function implementations f ′ that are linear, that is,
all members of this domain implement some linear equation f ′(x) = a ′ · x+
b ′. Then the whole float-data domain represents a single equivalence class,
and two distinct representatives are sufficient to uncover every error in an
implementation from this fault domain. For example, the representatives can
be x0 = 0 and x1 = 1. Applying x0 determines the parameter b ′ used by
implementation f ′, and consecutive application of x1 determines the factor
a ′, since

a ′ =
f ′(x1) − b ′

x1

for all x1 6= 0. This concept can be generalised to more complex transforma-
tions than just linear functions of one argument.

1. A polynomial transformation

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

is fully determined by (n+ 1) test cases.

2. This can be generalised to functions

f = Rn → Rm, f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where each fi(x1, . . . , xn) is a polynomial of degree k with n arguments
(x1, . . . , xn).

�

5.2 Three Types of Equivalence Classes

Structural equivalence classes. When classes are derived from the con-
trol structures of a specification model, or – in the case of structural software
tests – from the control structures of the source code, they are called struc-
tural equivalence classes [16, B.19]. Model or SUT execution traces covering
the same sequence of classes are considered as equivalent, because they are
subject to the same sequences of control decisions. It is argued that only a
few of these equivalent traces are needed to uncover errors in data transfor-
mations or control decisions along the same sequence of classes.

118

Input equivalence classes. When input data domains are partitioned
into subdomains, where equivalent SUT behaviour is expected, the resulting
classes are denoted as input equivalence classes [64, p. 101]. Whereas struc-
tural equivalence classes require a model (or code) revealing control decisions
to be performed by the SUT, input classes can be derived from implicit spec-
ifications of the required behaviour, such as pre/post-conditions in the case
of terminating SUT or temporal logic or trace logic specifications in the case
of – possibly non-terminating – reactive systems.

Output equivalence classes. If classes are derived from output domains
whose values are assumed to be processed in an equivalent way, they are
called output equivalence classes [64, p. 103]. The input data is now con-
structed by determining sufficiently many input data, so that all output
domains are covered by the resulting tests.

5.3 Formal Background

The theoretical foundations for dealing with the reduction of test suites of
unmanageable size have been laid out in [20]: the justification of equivalence
classes is just a special case of proving the validity of a uniformity hypothesis.
Given an SUT S ′, a subdomain D of its semantic domain, and a specification
Φ with free variable in D, this hypothesis states

∀ι ∈ D :
(
S ′ |= Φ(ι)⇒ (∀τ ∈ D : S ′ |= Φ(τ))

)
(5.1)

This means that it can be assumed that the SUT will satisfy specification
Φ for every member of D if S ′ fulfils Φ for one ι ∈ D. This formalises
the informal notion of “similar treatment” or “equivalent behaviour” for the
elements of an equivalence class partition.

In the case of non-terminating systems (these are in the main focus of
this article), the reduction of infinite data domains to finitely many partitions
does not immediately induce finite test cases, since the SUT will generally be
able to produce an infinite number of observation traces of unbounded length.
As outlined in [20], a reduction to a complete finite test suite consisting of
finite test cases depends on the validity of a regularity hypothesis. This is of
the form (

∀t ∈ T : |t| ≤ k⇒ S ′ |= Φ(t)
)⇒ (

∀t ∈ T : S ′ |= Φ(t)
)

(5.2)

119

where T is the (potentially infinite) set of tests t and may include tests of
infinite length. Then |t| is some N-valued function assessing the “size” of
a test, such as, for example, the length of the trace of inputs to be passed
successively to the SUT. The regularity hypothesis states that if all tests of
some finite maximal size k have been passed by the SUT P, then P will in
fact pass all possible tests from T .

5.4 Main Results

In the subsequent chapters, a subdomain of Kripke structures called reactive
I/O-state-transition systems (RIOSTS) is investigated. Its members have
large (possibly infinite) input variable domains and finite domains for inter-
nal state variables and outputs. Typical examples for these systems are train
speed supervision systems (reference speed and actual speed have large do-
mains, while outputs are ON/OFF triggers for the emergency brakes), airbag
controllers (crash sensors have large analogue input ranges, but outputs are
Boolean activation triggers for the inflation of the airbags), or route con-
trollers for train interlocking systems (possible train positions in the railway
network represent large input domains, while outputs are discrete commands
for a limited number of points and signals). These examples show that the
domain of RIOSTS covers a large variety of embedded control systems: it is
one of the important paradigms of embedded systems design to “condense”
a conceptually infinite amount of input information to a small set of control
decisions.

In this context, the following main results about input equivalence class
partition testing (IECPT) are elaborated.

• It is shown that complete black-box testing theories for (determinis-
tic or nondeterministic) FSMs can be translated to likewise complete
black-box input equivalence class partition testing theories for RIOSTS.
To this end, input and state equivalence relations are defined, allow-
ing to transform RIOSTSs to FSMs without any loss or addition of
information about the observable behaviour.

• The complexity of RIOSTS test suites translated from complete FSM
suites is the same as that of the FSM suites. In particular, finite FSM
suites result, when translated, in finite RIOSTS suites.

120

• The application of this translation method results in several IECPT
theories for nondeterministic RIOSTS that were, to our best knowl-
edge, not known before. As conformance relations, I/O-equivalence
(reference model and SUT can perform exactly the same I/O-traces)
and reduction (the SUT performs a subset of the I/O-traces of the ref-
erence model) can be used. Previous results in this field obtained by
the authors were only applicable to deterministic systems [31], where
I/O-equivalence is the only useful conformance relation.

• It is proven that the completeness results are preserved when perform-
ing random selections from input equivalence class X whenever a rep-
resentative of X is needed. This extension of the strategies (normally,
fixed representatives would be chosen from each class) has been shown
to yield considerable test strength improvements for SUTs outside the
fault domain. The experimental evaluation supporting this claim has
been performed for airbag systems, train speed supervision monitors,
and interlocking systems and has been described in [34, 52].

• While known approaches to equivalence class testing usually focused
on specific modelling formalisms (this is described in more detail in
Section 11 on related work), the results presented here are applicable to
any concrete formalism whose behavioural semantics can be expressed
by means of RIOSTS. This covers, for example, SysML (for details,
see [31]), and extended state machines (see Section 11).

5.5 Proof Strategy and Overview

The material on equivalence class partition testing presented here fol-
lows [30, 31, 4, 34, 32]. We focus on the investigation of input equivalence
class partitions inducing complete testing theories.

Complete black-box testing theories accept correct implementations and
reject faulty ones. They depend on fault models specifying the reference
model and the conformance relation to be tested against. Moreover, fault
models comprise fault domains capturing the types of (faulty or correct)
behaviours to be expected in an implementation (Section 2.3).

The proof strategy for obtaining our main results is as follows. Testing
theories are typically elaborated in a specific semantic domain or a sub-
set thereof, such as the domain of finite state machines, labelled transition

121

systems, or Kripke structures. To translate a theory from one domain to
another, we create two maps: the model map transfers concrete models of
one domain into the other, and the test case map translates test cases in the
opposite direction. If this pair of maps fulfils a so-called satisfaction condi-
tion, one can conclude that every complete testing theory elaborated in the
co-domain of the model map gives rise to an equally complete theory in the
source domain of this map. This general approach is described in Section 2.6
and expressed by Theorem 2.1. Chapter 11 presents references to the lit-
erature where the associated model-theoretic underpinning is elaborated in
more detail.

In Chapter 6, the concrete semantic domain to be investigated for the
purpose of equivalence class testing is introduced: reactive I/O-transition
systems (RIOSTSs) are defined as a subdomain of Kripke structures. They
operate on input, output, and internal state variables and distinguish quies-
cent (i.e. stable) states from transient ones. For comparing RIOSTSs, I/O-
equivalence (both systems perform the same input/output traces) and reduc-
tion (the system representing the implementation performs a subset of the
I/O-traces of the reference system) are considered as conformance relations.

In analogy to the test cases introduced for FSMs in Section 4.1, we define
abstract test cases for RIOSTSs as sets of pass traces and fail traces: an
RIOSTS passes such a test, if and only if its language contains all pass traces
and none of the fail traces specified for the test.

RIOSTSs allow for variables with arbitrary types; we focus here on the
RIOSTS subdomain with input variable types of arbitrary (possibly infinite)
size, while internal state variables and outputs are restricted to finite types
that can be enumerated for the purpose of test data computation. It is the
objective of this article to elaborate various input equivalence class partition
test strategies for this semantic subdomain.

In Chapter 3 the semantic domain from where existing complete testing
theories will be transferred to the domain of RIOSTSs has already been intro-
duced: this domain consists of finite state machines which may be determin-
istic or nondeterministic. As conformance relations language equality (also
called I/O-equivalence) or language inclusion (also called reduction) were
considered. We described the existing definitions of FSM parallel composi-
tion (which equals language intersection), as well as the notions of minimality
and observability.

The model map from the RIOSTS subdomain under consideration into
the domain of FSMs is constructed in Chapter 7. We show that these

122

RIOSTSs can be abstracted by creating pairs of state and input equivalence
class partitionings, so that the future behaviour of an RIOSTS residing in a
state class is independent on the class representative and only depends on
the sequence of input classes, but not on the input class representatives that
are present in an input trace. This allows us to abstract each member of the
RIOSTS subdomain to a uniquely determined minimal and observable FSM.
This FSM operates on input equivalence class identifiers as input alphabet,
and its output alphabet is in on-to-one correspondence to the different out-
put vector valuations that can be be produces by the associated RIOSTS. It
is shown that the model map induced by this abstraction respects the confor-
mance relations, which is the first requirement of the satisfaction condition
(Theorem 7.3).

In Chapter 8 the test case map is constructed. An abstract FSM test case
is mapped to an RIOSTS test case by mapping each pass trace and fail trace
of the former to a pass or fail trace of the latter. When mapping such an
FSM I/O-trace, each input referring to an input equivalence class partition
is replaced to a randomly selected input value residing in this partition.
Each FSM output is mapped to the corresponding RIOSTS output vector
valuation.

With model map T from RIOSTSs to FSMs and test case map T ∗ from
FSM test cases to RIOSTS test cases at hand, the second requirement of the
associated satisfaction condition is proven in Chapter 9: for each RIOSTS
model S in the domain of the model map it is shown that the associated
FSM T(S) passes a test case U if and only if S passes the translated test
case T ∗(U).

In Chapter 10 the general theory translation Theorem 2.1 is applied to the
concrete model map T from the RIOSTS subdomain to FSMs and its counter
part, the test case map T ∗. This allows us to translate arbitrary complete
FSM testing theories applicable to FSMs in the co-domain of T to complete
IECPT theories of the RIOSTS subdomain. As a result, complete IECPT
theories for RIOSTSs are obtained for (1) deterministic reference models and
deterministic implementations (this is a known result, but proven here again
in the more general theory translation framework), (2) nondeterministic mod-
els (different theories are available for I/O-equivalence and reduction), and
(3) nondeterministic reference models and deterministic implementations (re-
duction only). As an example of a weaker testing strategy it is shown that
(4) the T-Method which is known to uncover FSM output faults gives rise to
an IECPT theory uncovering RIOSTS output faults. The IECPT strategies

123

(2), (3), and (4) are new for the RIOSTS subdomain under consideration.
Since the test case map leaves a degree of freedom regarding the selection of
representatives from each input equivalence class, all of these strategies can
be randomised with respect to this selection.

Chapter 11 presents detailed references to related work.

124

Chapter 6

State Transition Systems and
Kripke Structures

State Transition Systems The testing theory to be elaborated in the sub-
sequent chapters applies to all modelling formalisms whose behavioural se-
mantics can be expressed as a variant of state transition systems (STS); these
are triples S = (S, s, R) with state space S, initial state s ∈ S and transition
relation R ⊆ S×S. A finite sequence of states s1 . . . sn is called a trace of S, if
it starts in the initial state (i.e. s1 = s) and if each pair of consecutive states
is related by the transition relation, that is, ∀i ∈ {1, . . . , n − 1} : R(si, si+1).
The set of all traces of S is denoted by traces(S). A deadlock state of S is
a state s ∈ S from where no emanating transitions exist, that is, (s, s ′) /∈ R
for all s ′ ∈ S. A termination trace of S is a traces that ends in a deadlock
state. We denote the subset of states that do not deadlock by DF(S).

Input/Output State Transition Systems We restrict the STSs un-
der consideration to those possessing a notion of variable valuations, input,
and output. An input/output state transition system (IOSTS) is an STS
S = (S, s, R) where states s ∈ S are valuation functions s : V → D, such that
V is a set of variable symbols and D =

⋃
v∈V Dv, where Dv is the domain of

variable v, and s(v) ∈ Dv holds for every v ∈ V and s ∈ S. The variable
symbol set V is finite and can be partitioned into disjoint sets V = I∪M∪O
called input variables, (internal) model variables, and output variables, re-
spectively. The state space S of an IOSTS can be partitioned into quiescent
and transient states, S = SQ ∪ ST . All transitions from quiescent states
change inputs only, while outputs and internal state variables remain un-

125

changed. Conversely, all transitions from transient states change internal
states and outputs only. Transitions from quiescent to transient states can
only be performed by changing the input valuation. This is expressed by
the condition ∀s ∈ SQ, s ′ ∈ ST : R(s, s ′) ⇒ (∃x ∈ I : s(x) 6= s ′(x)) which
restricts the admissible transition relations of IOSTS. This reflects the fact
that writing the current valuation again to a shared variable interface is not
observable. We require, however, that stuttering is admissible which means
that for quiescent states s that do not deadlock, (s, s) is a member of the
transition relation: ∀s ∈ SQ ∩DF(S) : R(s, s).

Kripke Structures By associating a set AP of atomic propositions with
free variables in V , any IOSTS can be extended to a Kripke Structure K(S) =
(S, s, R, V,D, L,AP). The labelling function L : S → 2AP maps s ∈ S to the
set of all atomic propositions p ∈ AP that evaluate to true, when replacing
every free variable v of p by its valuation s(v) in state s. Observe, however,
that the standard definition (see, e.g. [10]) of Kripke Structures requires the
transition relation to be total, so that deadlock states are not admissible. In
the context of testing, the notion of deadlock is required in order to express,
for example, termination properties of test cases.

Notation For IOSTS S = (S, s, R), the following notational conventions
are used. The set of input variables is denoted by I = {x1, . . . , xk}, and
the tuple of all inputs (usually called the input vector) is denoted by x =
(x1, . . . , xk). The valuation of the input vector in a given state s ∈ S is
written as s(x) = (s(x1), . . . , s(xk)). DI = Dx1 × · · · ×Dxk denotes the set of
all input vector valuations. Finite sequences of such valuations are written
as x ∈ D∗I . In analogy, output variables and (sequences of) output vectors
are defined: O = {y1, . . . , yp}, y = (y1, . . . , yp), s(y) = (s(y1), . . . , s(yp)),
y ∈ D∗O. Changing a state s1 : V → D with respect to its input vector
valuation is written as s2 = s1 ⊕ {x 7→ c}, c ∈ DI. State s2 coincides with s1
for all variables v ∈ V − I, but s2(x) = c.

The tuple Sig = (I,O,DI, DO) represents an interface type specification;
it is called the signature of S.

For any quiescent state s ∈ SQ, input vector c ∈ DI is defined in s if and
only if (s, s ⊕ {x 7→ c}) ∈ R. The set of these admissible input changes is
denoted by

C(s) = {c ∈ DI | R(s, s⊕ {x 7→ c})}

126

An IOSTS S over variables from V = I ∪M ∪ O is completely specified if
and only if from every quiescent state, every input change is possible, that
is, (∀s ∈ SQ : C(s) = DI).

Nondeterminism An IOSTS S is called deterministic, if every transient
state has exactly one post-state; otherwise it is called nondeterministic. Fol-
lowing the terminology in [62], S exhibits bounded nondeterminism, if tran-
sient states can branch into finitely many post-states only; otherwise S has
unbounded nondeterminism.

Livelock Freedom and the /-Operator An IOSTS S is called livelock-
free if and only if there exists no infinite sequence of consecutive transient
states linked by the transition relation. Livelock-free IOSTSs allow for an
abstraction of state traces by removing all transient states from this trace.
The resulting sequences of quiescent states are called q-traces. We will now
introduce the /-operator for constructing all q-traces emanating from a qui-
escent state s ∈ SQ. The construction is performed by “applying” nonempty
input traces x to s. Since the IOSTS may be nondeterministic, there may
be more than one q-trace associated with the same input trace. Therefore
the operator application s/x is typed as a set of q-traces. More formally, it
is defined as follows.

s0/c =

∅ if c 6∈ C(s0)

{s0 ⊕ {x 7→ c}} if c ∈ C(s0)
and s0 ⊕ {x 7→ c} ∈ SQ

{s ′ ∈ SQ | ∃k ≥ 1, s1, . . . , sk ∈ ST :
s1 = s0 ⊕ {x 7→ c} ∧ if c ∈ C(s0)
∀i ∈ {0, . . . , k− 1} : and s0 ⊕ {x 7→ c} ∈ ST

R(si, si+1)∧ R(sk, s
′)}

An input trace x = c1 . . . ck is defined in state s0 ∈ SQ, if and only if there are
s1, . . . , sk ∈ SQ such that ci+1 ∈ C(si) and si+1 ∈ si/ci+1 for i = 0, . . . , k− 1.
We extend the /-operator “s0/ ” recursively to input traces that are defined
in s0.

s0/ε = {ε}

s0/c1 . . . ck = {s1 . . . sk | si+1 ∈ si/ci+1, i = 0, . . . , k− 1}

127

Obviously, s0/x = ∅ if input trace x is not defined in s0.
If s = s1 . . . sn ∈ s/x, then y = s(y) = s1(y) . . . sn(y) denotes the output

trace created during application of input trace x to s. Define (s/x)(y) =
{s(y) | s ∈ s/x}. Abstracting s to inputs and outputs only, results in the
I/O-trace x/y = s(x,y) = s1(x,y) . . . sn(x,y). The set of all I/O-traces
starting in some quiescent state s is specified by L(s) = {ε} ∪ {x/y | x ∈
D∗I ∧∃s ∈ (s/x) : s(y) = y}. The set L(S) of I/O-traces associated with S is
identical to L(s), the set of I/O-traces associated with the initial state. For
any s ∈ SQ,x/y ∈ L(s), define s-after-x/y = {last(s) | s ∈ s/x ∧ s(y) = y}.
When considering input traces only, the definition s-after-x = {last(s) | s ∈
s/x} applies.

Reactive I/O-Transition Systems A reactive I/O transition system
(RIOSTS) S = (S, s, R) is an IOSTS, such that every transient state has
quiescent post-states only. The intuition behind this definition is that se-
quences of transitions between transient states are typically not observable in
test executions, at least when performing HW/SW integration tests. There-
fore these sequences can be aggregated to a single transition from a transient
state to a quiescent post-state. This aggregation can always be performed
if the RIOSTS is deterministic and free of livelocks; an algorithm to per-
form this is given in [31, Section 3]. In the nondeterministic case it has to
be additionally required that nondeterminism is bounded. This condition is
trivially fulfilled in the context of this paper, because we will specialise on
RIOSTS with possibly infinite input domains, but with finite domains for
internal states and outputs.

Example 7. We specify an alarm indication system as an RIOSTS S
which inputs non-negative real values on variable x and raises an alarm on
output y if the values of x violate some threshold max > 0. For x = max
a nondeterministic decision whether to raise the alarm is admissible. When
the value is back in normal range, the alarm shall be switched off. To avoid
unstable ALARM, OK-outputs in situations where the values of x are close to
max and rapidly changing, an active alarm shall only be de-activated after x
has dropped below max − δ for some 0 < δ < max.
S has variables V = I ∪M ∪ O = {x} ∪ {m} ∪ {y} with domains Dx =

[0,∞), Dm = {0, 1, 2}, and Dy = {OK, ALARM}. The initial state s is specified
by s(x,m, y) = (0, 0, OK) (recall that we use vector notation for function
arguments: s(x,m, y) = (0, 0, OK) is short for (s(x), s(m), s(y)) = (0, 0, OK)).

128

s(x) < max ^ s(m) = 0 ^ s(y) = OK

S0

S1 S2

S3 S4S5 S6

S7

s(x) = max
s(m) = 0
s(y) = OK

s(x) = max
s(m) = 1
s(y) = OK

s(x) > max
s(m) = 1
s(y) = OK

s(x) > max � �
s(m) = 2
s(y) = ALARM

s(x) > max
s(m) = 0
s(y) = OK

s(x) < max
s(m) = 1
s(y) = OK

s(x) max � �
s(m) = 2
s(y) = ALARM

Figure 6.1: Transition diagram of RIOSTS S from Example 1. Boxes specify
sets of quiescent states, ovals transient states.

The sets of quiescent and transient states, as well as the transition rela-
tion are visualised in Fig. 6.1. More formally, the quiescent states of S are
specified by

SQ = S0 ∪ S1 ∪ S2
S0 = {s : V → D | s(x) < max ∧ s(m) = 0∧ s(y) = OK}

S1 = {s : V → D | s(x) = max ∧ s(m) = 1∧ s(y) = OK}

S2 = {s : V → D | s(x) > max − δ∧ s(m) = 2∧ s(y) = ALARM}

129

The transient states are defined by

ST = S3 ∪ S4 ∪ S5 ∪ S6
S3 = {s : V → D | s(x) = max ∧ s(m) = 0∧ s(y) = OK}

S4 = {s : V → D | s(x) > max ∧ s(m) = 0∧ s(y) = OK}

S5 = {s : V → D | s(x) < max ∧ s(m) = 1∧ s(y) = OK}

S6 = {s : V → D | s(x) ≤ max − δ∧ s(m) = 2∧ s(y) = ALARM}

S7 = {s : V → D | s(x) > max ∧ s(m) = 1∧ s(y) = OK}

The transition relation is defined by

R =

2⋃
i=0

(Si × Si) ∪ (S0 × S3) ∪ (S0 × S4) ∪
(S1 × S5) ∪ (S1 × S7) ∪ (S2 × S6) ∪ R3 ∪ R4 ∪ R5 ∪ R6 ∪ R7

R3 = {(s, s ′) ∈ S3 × (S1 ∪ S2) | s ′(x) = s(x)}
R4 = {(s, s ′) ∈ S4 × S2 | s ′(x) = s(x)}
R5 = {(s, s ′) ∈ S5 × S0 | s ′(x) = s(x)}
R6 = {(s, s ′) ∈ S6 × S0 | s ′(x) = s(x)}
R7 = {(s, s ′) ∈ S7 × S2 | s ′(x) = s(x)}

�

Conformance Relations We are interested in two types of conformance
relations between RIOSTS representing reference models and systems under
test.

• I/O-equivalence expresses the fact that reference model and SUT can
perform the same set of observable input/output sequences.

• Reduction expresses the property that the observable SUT behaviours
form a subset of the behaviours observable in the reference model.

Let S be an RIOSTS. Two quiescent states s1, s2 ∈ SQ are called I/O-
equivalent (written s1 ∼ s2), if and only if L(s2) = L(s1). State s2 is called
a reduction of s1 (written s2 4 s1), if and only if L(s2) ⊆ L(s1). Two
RIOSTS S1 and S2 are called I/O-equivalent (written S2 ∼ S1), if and only if
L(S2) = L(S1). S2 is called a reduction of S1 (written S2 4 S1), if and only

130

if L(S2) ⊆ L(S1). It is easy to see that S2 4 S1 implies S2 ∼ S1, if both have
the same defined input sequences and S1 is deterministic. In particular, if S1
is deterministic and S2 is completely specified, S1 is also completely specified
and S2 4 S1 implies S2 ∼ S1.

131

Chapter 7

The Model Map

In general, an RIOSTS cannot be mapped to an FSM without losing signif-
icant behaviour-related information, because RIOSTS operate on variables
with potentially infinite domains, while FSM are restricted to finite state
spaces and finite input/output alphabets. In this section, a sub-domain of
completely defined RIOSTS is identified, whose members S can be mapped
to finite state machines M, such that the latter reflect the behaviour of the
former in a “loss-less” way. This is achieved by way of input domain parti-
tions. The domains of internal state variables and outputs are supposed to
be finite for the RIOSTS sub-class under consideration.

7.1 Set Partitions

Recall that a partition of some set N is a subset I of N’s power set, such
that

∀X ∈ I : X 6= ∅, ∀X,X ′ ∈ I : X = X ′ ∨ X ∩ X ′ = ∅, and
⋃
X∈I

X = N

If I, I ′ are two partitions of N, I ′ is called a refinement of I if and only if

∀X ′ ∈ I ′ : ∃X ∈ I : X ′ ⊆ X

Given two partitions I, I ′ of N, the intersection

I ∩ I ′ = {X ∩ X ′ 6= ∅ | X ∈ I, X ′ ∈ I ′}

is the coarsest partition of N that refines both I and I ′.

132

A partition I of N induces an equivalence relation ∼I on N by defining
a ∼I a

′ if and only if a, a ′ reside in the same partition element X ∈ I.
Conversely, the classes of any equivalence relation on N build a partition of
N. Partitions I of N induce equivalence relations on the set N∗ of finite
sequences over N-elements by defining

a1 . . . ak ∼I b1 . . . bk ′ ≡ k = k ′ ∧ (∀i = 1, . . . , k : ∃Xi ∈ I : ai, bi ∈ Xi)

for sequences a1 . . . ak, b1 . . . bk ′ ∈ N∗.

7.2 State Equivalence Class Partitions

Given the state space S of an RIOSTS S = (S, s, R), a natural equivalence
relation ∼ on S is introduced by defining

s ∼ r ≡ L(s) = L(r)

The set of ∼-equivalence classes is denoted by S/∼.
Now let S be a completely defined RIOSTS such that DM and DO are

finite, while the input vector domain DI may be infinite. Define an enumer-
ation of all internal state values combined with all output values by

{(d1,e1), . . . , (dn,en)} =
{(d,e) ∈ DM ×DO | ∃s ∈ SQ : s is reachable and s(m,y) = (d,e)}.

In the above definition, recall that s(m,y) is an abbreviation for the tuple
(s(m1), . . . , s(mk), s(y1), . . . , s(yp)), where M = {m1, . . . ,mk} is the set of
internal variable symbols, and O = {y1, . . . , yp} is the set of output variables.

For i = 1, . . . , n, let Ai, be the set of all quiescent states s with
s(m,y) = (di,ei). By definition, all elements of Ai coincide in their val-
uations of internal variables and output variables, but they differ in their
input valuations. We call A = {A1, . . . , An} the MO-partition of SQ. For any
s, r ∈ Ai, s ⊕ {x 7→ c} = r ⊕ {x 7→ c}, and consequently s/c = r/c, for any
input vector c ∈ DI. Hence L(s) = L(r), so s and r are I/O-equivalent. As
a consequence, the MO-partition A is a refinement of the partition S/∼.

133

7.3 Input Equivalence Class Partitions

Definition 7.1 Given an RIOSTS S = (S, s, R), two input vectors c, c ′ ∈
DI are called equivalent, (c ∼ c ′), if and only if

∀s ∈ SQ,x ∈ D∗I : L(s, c.x) = L(s, c ′.x)

The set DI/∼ = {[c] | c ∈ DI ∧ [c] = {c ′ | c ′ ∼ c}} is an input equivalence
class partition (IECP) of S.

Recall that L(s, c.x) contains all output traces y satisfying c.x/y ∈ L(s). So
the intuition behind Definition 7.1 is that equivalent inputs, when extended
in an arbitrary way by input sequences x, will always lead to the same sets
of possible outputs. For deterministic systems, this output is uniquely deter-
mined, so L(s, c.x) = L(s, c ′.x) contains a single output trace.

It is easy to see that ∼ is indeed an equivalence relation on DI. The
following lemma shows that ∼-equivalent input traces produce outputs from
the same set, when applied to the same quiescent state. To this end, the
equivalence relation is extended in the natural way to input sequences as
described in Section 7.1: x ∼ x ′ if and only if x and x ′ have the same length,
and each pair of corresponding elements in x and x ′ is equivalent according
to Definition 7.1.

Lemma 7.1 Given an RIOSTS S = (S, s, R), let x ∼ x ′. Then

∀s ∈ SQ : L(s,x) = L(s,x ′) (7.1)

Proof. Let x,x ′ be two equivalent input traces of length n ≥ 1. In the
case n = 1, there are c, c ′ ∈ DI, such that x = c, x ′ = c ′ and c ∼ c ′, so the
statement holds according to Definition 7.1. Let k ≥ 1 be a positive integer.
Suppose that Statement (7.1) holds for any n ≤ k. Now let n = k + 1
and suppose that x = c1.x1.ck+1 and x ′ = c ′1.x

′
1.c
′
k+1. Then c1 ∼ c ′1, and

x1.ck+1 ∼ x ′1.c
′
k+1 are of length n− 1 = k. Let s be any quiescent state. Let

134

y = e1.y1 ∈ D∗O be any nonempty output sequence. Then

x/y ∈ L(s) ⇔ [x = c1.x1.ck+1 ∧ y = e1.y1]

(c1.x1.ck+1)/(e1.y1) ∈ L(s)

⇔ [c1 ∼ c ′1]

(c ′1.x1.ck+1)/(e1.y1) ∈ L(s)

⇔ [Definition of L(s)]

∃s ′1 ∈ s-after-c ′1/e1 ∧ (x1.ck+1)/y1 ∈ L(s ′1)

⇔ [x1.ck+1 ∼ x ′1.c
′
k+1 are of length k and induction hypothesis]

∃s ′1 ∈ s-after-c ′1/e1 ∧ (x ′1.c
′
k+1)/y1 ∈ L(s ′1)

⇔ [Definition of L(s)]

(c ′1.x
′
1.c
′
k+1)/(e1.y1) ∈ L(s)

⇔ [x ′ = c ′1.x
′
1.c
′
k+1 ∧ y = e1.y1]

x ′/y ∈ L(s)
This proves that L(s, x) = L(s, x ′). �

The following Lemma 7.2 states that – up to refinement – DI/∼ is the
only way to partition DI, such that Property (7.1) is satisfied.

Lemma 7.2 Given an RIOSTS S = (S, s, R), let I be any partition of DI.
Then the following statements are equivalent.

1. I is a refinement of DI/∼, with ∼ specified in Definition 7.1.

2. Property (7.1) holds for all x,x ′ ∈ D∗I with x ∼I x ′, that is, ∀s ∈ SQ :
L(s,x) = L(s,x ′).

Proof. To show that Statement 1 implies Statement 2, let I be a refinement
of DI/∼. Then x ∼I x ′ implies x ∼ x ′, for any pair of input traces x,x ′ ∈ D∗I .
Then Lemma 7.1 implies the validity of Property (7.1).

To show that Statement 2 implies Statement 1, let I be a partition of DI

satisfying the Property (7.1) for all x ∼I x ′. We show that for any c, c ′ ∈ DI,
c ∼I c

′ implies c ∼ c ′. To this end, let x ∈ D∗I be any input trace and y ∈ D∗O
be any output trace and s ∈ SQ be any quiescent state. Then c.x ∼I c ′.x
and from Property (7.1) we have L(s, c.x) = L(s, c ′.x). �

135

7.4 The Transition Index Function

For calculating input equivalence class partitions, it is helpful to introduce
partitions of the state space and an auxiliary function indicating how mem-
bers of one state class may be mapped under given input vectors to certain
target classes.

Let S = (S, s0, R) be a completely defined RIOSTS such that DM and
DO are finite, while the input vector domain DI may be infinite. Define an
enumeration of all internal state values combined with all output values by

{(d1,e1), . . . , (dn,en)} =
{(d,e) ∈ DM ×DO | ∃s ∈ SQ : s is reachable and s(m,y) = (d,e)}

Let Ai, i = 1, . . . , n, be the set consisting of all quiescent states s with
s(m,y) = (di,ei). Then for any s, r ∈ Ai, s ⊕ {x 7→ c} = r ⊕ {x 7→ c}, and
consequently s/c = r/c, for any input vector c ∈ DI. Hence L(s) = L(r), so
s and r are I/O-equivalent. We call A the MO-partition of SQ. The transition
index function

δ : DI → (P({1, . . . , n}))n; c 7→ (δ1(c), . . . , δn(c))

is specified by

j ∈ δi(c) if and only if (s/c) ∩Aj 6= ∅ for some s ∈ Ai.

Intuitively speaking, each component function δi of δ maps an input vector
c to the indexes j of all MO-partition elements Aj that may be reached from
Ai-states when applying c. For deterministic RIOSTS δ(c) always contains
exactly one element. δ is well-defined: for any i = 1, . . . , n, any s1, s2 ∈ Ai,
s1(m,y) = s2(m,y) and therefore s1 ⊕ {x 7→ c} = s2 ⊕ {x 7→ c}. Hence
s1/c = s2/c, consequently (s1/c) ∩Aj 6= ∅⇔ (s2/c) ∩Aj 6= ∅.

Lemma 7.3 The set I = {X(c) | c ∈ DI}, where

X(c) = {c ′ ∈ DI | δ(c
′) = δ(c)},

is a finite partition of input domain DI and satisfies the Property (7.1).

Proof. From the definition of δ and I we conclude that |I | is bounded by
|δ(DI)| ≤ 2(nn) and therefore finite. Each X(c) ∈ I is non-empty because

136

it contains at least c. The definition of I further implies that the union of
all X ∈ I equals DI. Moreover, c, c ′ ∈ DI are contained in the same X ∈ I
if and only if δ(c) = δ(c ′). Therefore X(c) and X(c ′) are either identical or
disjoint. Hence I is a finite partition of input domain DI. Let c, c ′ ∈ DI be
any input vectors with c ∼I c ′. Let s ∈ SQ be any quiescent state. Then
there is a unique i ∈ {1, . . . , n} with s ∈ Ai and

s/c =
⋃

j∈δi(c)

{{x 7→ c,m 7→ dj,y 7→ ej}}

and
s/c ′ =

⋃
j∈δi(c ′)

{{x 7→ c ′,m 7→ dj,y 7→ ej}}

Since c ∼I c ′, we have δi(c) = δi(c
′), so s/c and s/c ′ have the same car-

dinality, and their elements only differ in the input valuations c and c ′,
respectively. As a consequence, for any s1 ∈ s/c ′ and any c1 ∈ DI, we
find an s2 ∈ s/c ′ such that s1 ⊕ {x 7→ c1} = s2 ⊕ {x 7→ c1} and vice versa.
This shows that (s/c.c1)(m,y) = (s/c ′.c1)(m,y), and this process can be
repeated with additional arbitrary input vectors c2, c3, Now we have
shown that (s/c.x)(y) = (s/c ′.x)(y) holds for all x ∈ D∗I . According to
Definition 7.1, this proves c ∼ c ′, so ∼I is a refinement of the partition DI/∼.
Applying Lemma 7.2, this shows that I satisfies Property (7.1). This com-
pletes the proof. �

In [31], an algorithm is presented showing how to calculate input equiv-
alence class partitions with the help of the transition index function. The
basic principle of this calculation is illustrated in the following example.

Example 8. Consider again the alarm system from Example 7. Its reach-
able pairs of internal states m and outputs y are

{(0, OK), (1, OK), (2, ALARM)} ⊆ Dm ×Dy.

From the specification of quiescent states SQ given in Example 7, the follow-
ing MO-partition is derived.

A = {S0, S1, S2}

S0 = {s : V → D | s(x) < max ∧ s(m) = 0∧ s(y) = OK}

S1 = {s : V → D | s(x) = max ∧ s(m) = 1∧ s(y) = OK}

S2 = {s : V → D | s(x) > max − δ∧ s(m) = 2∧ s(y) = ALARM}

137

The transition index function δ(c) = (δ0(c), δ1(c), δ2(c)) is constant on the
input intervals

X1 = [0,max−δ], X2 = (max−δ,max), X3 = {max}, X4 = (max,∞)

and has the following function table

X1 X2 X3 X4

δ0 {0} {0} {1, 2} {2}

δ1 {0} {0} {1} {2}

δ2 {0} {2} {2} {2}

Therefore I = {X1, X2, X3, X4} is a finite partitioning of DI which satisfies
Property (7.1), and hence it is a refinement of the IECP DI/∼. �

7.5 State Machine Abstraction of

Equivalence Class Partitions

Let A, I be refinements of SQ/∼, DI/∼, respectively. We call (A, I) an equiv-
alence class partition pair of S. If A and I are both finite, (A, I) is called a
finite equivalence class partition pair.

Definition 7.2 Let S = (S, s, R) be an RIOSTS with finite DO and DM.
Let (A, I) be a finite equivalence class partition pair of S. Then M =
(A, A, I, DO, hM) with initial state A ∈ A containing s, transition relation
hM ⊆ A× I ×DO ×A, such that

(A,X,e, A ′) ∈ hM ⇔ ∃s ∈ A, s ′ ∈ A ′, c ∈ X : (s ′ ∈ s/c∧ s ′(y) = e)

is called the FSM induced by S and (A, I).

Example 9. For the equivalence class partition pair (A, I) elaborated for
the alarm indication system S in Example 8, the FSM induced by S and
(A, I) is shown in Fig. 7.1. Its transitions can be derived from the transition
index function shown in Example 8. �

138

S0

X1/OKX3/OK

X4/ALARM

X3, X4/ALARM

X1, X2/OK

X2, X3, X4/ALARM

X1, X2/OK

X3/OK

S1 S2

Figure 7.1: FSM induced by S and (A, I) from Example 7 and 8.

Definition 7.3 Let I be a refinement of DI/∼. Let X ∈ I∗ be an input
equivalence class sequence and c ∈ D∗I an input vector sequence. x is incident
to X (written x I X) if and only if |x| = |X| and x(i) ∈ X(i), for i =
1, . . . , |x|.

Let I be a refinement ofDI/∼. By definition, two input sequences x,x ′ are
I-equivalent, (x ∼I x ′) if and only if they are incident to the same sequence
of of partition elements from I. Since I is a refinement of DI/∼, x ∼I x ′

implies x ∼ x ′.

Theorem 7.1 Let (A, I) be a finite equivalence class partition pair of S and
M the induced FSM. Let x ∈ D∗I and X ∈ I∗, such that x I X. Then for any
output vector sequence y ∈ D∗O:

X/y ∈ L(M)⇔ x/y ∈ L(S)

Proof. Let X = X1 . . . Xn ∈ I∗, x = c1 . . . cn ∈ D∗I with ci ∈ Xi, i =
1, . . . , n. Let y = e1 . . .en ∈ D∗O. Suppose X/y ∈ L(M). Then, by definition
of hM, there exists a state sequence s0 . . . sn ∈ S∗ with s0 = s and an input
sequence x ′ = c ′1 . . . c

′
n ∈ D∗I , such that c ′i ∈ Xi, i = 1, . . . , n and si ∈

(si−1-after-c ′i/ei) for all i = 1, . . . , n. By definition of L(S), this implies that
x ′/y ∈ L(S). Since x ∼I x ′, by Lemma 7.1, x/y ∈ L(S).

Now suppose x/y ∈ L(S). By definition of L(S), there exists a state
sequence s0 . . . sn ∈ S∗ with s0 = s, such that s1(x,y) . . . sn(x,y) = x/y and

139

then si ∈ (si−1-after-ci/ei) for all i = 1, . . . , n. Since x I X, by definition of
hM, we have X/y ∈ L(M). �

Lemma 7.4 Let (A1, I), (A2, I) be two finite equivalence class partition
pairs of S. Then the induced FSMs M1,M2 are I/O-equivalent.

Proof. Let X ∈ I∗ and x ∈ D∗I , such that x I X. Then by Theorem 7.1,
for any output vector sequence y ∈ D∗O, we have X/y ∈ L(M1) ⇔ x/y ∈
L(S)⇔ X/y ∈ L(M2). This proves M1 ∼M2. �

Lemma 7.5 Let (A1, I), (A2, I) be two finite equivalence class partition
pairs of S and M1,M2 the induced FSMs. Let M1,M2 be the prime machines
associated with M1,M2, respectively. Then M1,M2 are isomorphic and I/O-
equivalent.

Proof. This follows directly from Lemma 7.4 and Lemma 3.1. �

Hence, for a given I, finite refinement of input equivalence class partition
DI/∼, there is, up to isomorphism, a unique minimal, observable FSM induced
by S. This machine is obtained by constructing the prime machine associated
with any FSM induced by S and some finite equivalence class partition pair
(A, I). This FSM is denoted by M(S, I), since it is independent on A.

Lemma 7.6 Suppose S is deterministic. Then for any finite refinement I
of DI/∼, the FSM M(S, I) is also deterministic.

Proof. Let I be a finite refinement of DI/∼. Let M be the FSM
induced by (A = SQ/∼, I). Suppose (A,X,e1, A1), (A,X,e2, A2) ∈ hM.
By definition, there exist s, r ∈ A, c1, c2 ∈ X, s1 ∈ A1, s2 ∈ A2, such that
s1 ∈ s/c1∧ s1(y) = e1 and s2 ∈ r/c2∧ s2(y) = e2. Since S is deterministic,
s1 = s/c1 and s2 = r/c2. Since c1, c2 ∈ X, c1 ∼ c2.

140

∀x ∈ D∗I ,y ∈ D∗O:

s1(y) = e1 ∧ x/y ∈ L(s1) ⇔ c1/e1 ∈ L(s)∧ (c1.x)/(e1.y) ∈ L(s) [s1 = s/c1]⇔ c2/e1 ∈ L(s)∧ (c2.x)/(e1.y) ∈ L(s) [c1 ∼ c2]⇔ c2/e1 ∈ L(r)∧ (c2.x)/(e1.y) ∈ L(r) [L(s) = L(r)]

⇔ (r/c2)(y) = e1 ∧ x/y ∈ L(r/c2) [S is deterministic]

⇔ s2(y) = e1 ∧ x/y ∈ L(s2) [s2 = r/c2]⇔ e1 = e2 ∧ x/y ∈ L(s2) [s2(y) = e2]

Since A = SQ/∼, L(s1) = L(s2) implies A1 = A2. Since e1 = e2 and A1 = A2,
M is deterministic and therefore observable. The minimal FSM equivalent
to M is also deterministic. �

The following theorem shows that I/O-equivalence and reduction between
RIOSTSs can be determined by checking these properties for their FSM
abstractions.

Theorem 7.2 Let Si, i = 1, 2 be RIOSTSs with the same signature. Let I
be a joint input equivalence class partitioning.1 Then

S1 ∼ S2 ⇔M(S1, I) ∼M(S2, I) and S1 � S2 ⇔M(S1, I) �M(S2, I)

Proof. The theorem is a consequence of Theorem 7.1. For x ∈ D∗I , let
X(x) ∈ I∗ denote the uniquely determined sequence of input equivalence

1For example, I = I1 ∩I2, where I1 and I2 have been constructed for Si according to
Lemma 7.3.

141

classes satisfying x I X. Then

S1 ∼ S2 ⇔ L(S1) = L(S2)
[Definition of I/O-equivalence]⇔ ∀x ∈ D∗I ,y ∈ D∗O : x/y ∈ L(S1)⇔ x/y ∈ L(S2)
[Definition of L]⇔ ∀x ∈ D∗I ,y ∈ D∗O : X(x)/y ∈ L(M(S1, I))⇔ X(x)/y ∈ L(M(S2, I))
[Theorem 7.1]⇔ ∀X ∈ I∗,y ∈ D∗O : X/y ∈ L(M(S1, I))⇔ X/y ∈ L(M(S2, I))
[I∗ = {X(x) | x ∈ D∗I }]⇔ L(M(S1, I)) = L(M(S2, I))
[Definition of L]⇔ M(S1, I) ∼M(S2, I)
[Definition of FSM I/O-equivalence]

The proof for � is performed analogously. �

7.6 RIOSTS Sub-domains and Associated

Model Maps – Proof of SC1

Fixing a signature Sig = (I,O,DI, DO) such that DO is finite, we restrict the
set of RIOSTS over Sig to those operating on finitely many internal states.
Given an arbitrary input partitioning I, let D(Sig, I) denote the subdomain
of these RIOSTS S for which a state partition A can be found such that
(A, I) is a finite equivalence partition pair of S. Then the mapping M(S, I)
constructed above induces the total function

T : D(Sig, I)→ FSM(I, DO); S 7→M(S, I)

We call T the model map from RIOSTS subdomainD(Sig, I) to FSM(I, DO).
Re-written in terms of the model map, and referring to the satisfcation con-
dition defined in Section 2.6, Theorem 7.2 can be re-formulated as follows.

142

Theorem 7.3 (Satisfaction Condition SC1) Given an RIOSTS subdo-
main D(Sig, I),

S1 ∼ S2 ⇔ T(S1) ∼ T(S2) and S1 � S2 ⇔ T(S1) � T(S2)

holds for all S1,S2 ∈ D(Sig, I), so T fulfils the satisfaction condition SC1,
introduced in Section 2.6. �

7.7 Practical Calculation of the Model Map

7.7.1 Objectives

In this section an algorithm is introduced that allows for practical calculation
of the model map, so that the input equivalence classes of an RIOSTS can be
mechanically identified and represented as propositions. This algorithm re-
quires mathematical constraint solvers, such as, for example, an SMT solver
as the one described in [44, 53]. Such a constraint solver is needed again
for calculating concrete representatives of the input equivalence classes rep-
resented by these propositions.

The material presented here is based on the algorithm described in [31],
but here it is extended to nondeterministic RIOSTS, while [31] only cov-
ered the deterministic case. Applications of the algorithm for deterministic
RIOSTS have been described in [5, 4]; in this section the nondeterministic
alarm indication system introduced in Example 7 is used for illustrating the
algorithm.

The algorithm addresses three non-trivial realisation aspects. (1) The
transition relations of RIOSTS require to abstract consecutive transitions
between transient states into a single one from the first transient state of this
sequence to its quiescent post state. The effect of the consecutive transitions
has to be aggregated by the abstracted one. (2) The I/O-equivalence classes
have to be determined. (3) The initial IECP has to be calculated.

Note that (1) requires the original test models to be livelock free, because
livelocks would imply the existence of infinite sequences of transitions be-
tween transient states, and these could not be abstracted to a single transient
RIOSTS state. Indeed, only livelock free models are generally admissible for
automated test generation, because otherwise an unbounded number of ac-
tions could be conceptually performed in zero time, that is, without waiting
for another change of inputs.

143

7.7.2 DNF transformation

We start with an arbitrary first order representation R1 of the STS model’s
transition relation R1 (the construction of such representations is described
in more detail in [10, 2.1.1])): R1 has free variables in V referring to the
pre-state of a transition, and variables in V ′ = {v ′ | v ∈ V} referring to its
post-state. The transition relation R1 is determined by R1 through

R1 = {(s1, s2) ∈ S× S | R1[s1(v)/v, s2(v)/v ′|v ∈ V, v ′ ∈ V ′]}

where R1[s1(v)/v, s2(v)/v ′|v ∈ V, v ′ ∈ V ′] denotes R1 with every unprimed
variable v replaced by its pre-state value s1(v) and every primed variable v ′

replaced by the post-state value s2(v).

Example 10. The transition relation of the alarm indication system in
Example 7 can be re-written in first order form as

R1 ≡
8∨
i=0

ηi

η0 ≡ x < max ∧ (m,y) = (0, OK)∧ (m ′, y ′) = (m,y)

η1 ≡ x = max ∧ (m,y) = (1, OK)∧ (m ′, y ′) = (m,y)

η2 ≡ x > max − δ∧ (m,y) = (2, ALARM)∧ (m ′, y ′) = (m,y)

η3 ≡ x = max ∧ (m,y) = (0, OK)∧ (m ′, y ′) = (1, OK)∧ x ′ = x

η4 ≡ x = max ∧ (m,y) = (0, OK)∧ (m ′, y ′) = (2, ALARM)∧ x ′ = x

η5 ≡ x > max ∧ (m,y) = (0, OK)∧ (m ′, y ′) = (2, ALARM)∧ x ′ = x

η6 ≡ x ≤ max − δ∧ (m,y) = (2, ALARM)∧ (m ′, y ′) = (0, OK)∧ x ′ = x

η7 ≡ x > max ∧ (m,y) = (1, OK)∧ (m ′, y ′) = (2, ALARM)∧ x ′ = x

η8 ≡ x < max ∧ (m,y) = (1, OK)∧ (m ′, y ′) = (0, OK)∧ x ′ = x

�
The initial transition relation in first order form R1 is first transformed

into disjunctive normal form (DNF) with atomic propositions pi that are
Boolean expressions over free variables from V . In each disjunct, the atomic
propositions p1∧ · · ·∧pk are arranged in such a way that p1, . . . , p` have free
variables in V only and p`+1, . . . , pk have free variables in V and V ′. This
means that p1 ∧ · · · ∧ p` represent the pre-condition for the disjunct to be
applied, and p`+1 ∧ · · · ∧ pk specifies the effect of this disjunct on the post-
state represented by primed variables. Summarising, we gain an equivalent

144

representation

R2 ≡
q∨
i=0

(
ϕi ∧ψi

)
(7.2)

of R1, such that free(ϕi) ⊆ V and free(ψi) ⊆ V ∪ V ′, and each atomic
proposition in ψi contains at least one primed variable from V ′.

Example 11. Continuing with Example 10, we construct

R2 ≡
8∨
i=0

(
ϕi ∧ψi

)
such that (ϕi ∧ψi) ≡ ηi for i = 0, . . . , 8. This results in

i ϕi ψi

0 x < max ∧ (m,y) = (0, OK) (m ′, y ′) = (m,y)

1 x = max ∧ (m,y) = (1, OK) (m ′, y ′) = (m,y)

2 x > max − δ∧ (m,y) = (2, ALARM) (m ′, y ′) = (m,y)

3 x = max ∧ (m,y) = (0, OK) (m ′, y ′) = (1, OK)∧ x ′ = x

4 x = max ∧ (m,y) = (0, OK) (m ′, y ′) = (2, ALARM)∧ x ′ = x

5 x > max ∧ (m,y) = (0, OK) (m ′, y ′) = (2, ALARM)∧ x ′ = x

6 x ≤ max − δ∧ (m,y) = (2, ALARM) (m ′, y ′) = (0, OK)∧ x ′ = x

7 x > max ∧ (m,y) = (1, OK) (m ′, y ′) = (2, ALARM)∧ x ′ = x

8 x < max ∧ (m,y) = (1, OK) (m ′, y ′) = (0, OK)∧ x ′ = x

�

7.7.3 Identification of quiescent states

With the first order representation from Equation (7.2) it is easy to identify
the quiescent states of the RIOSTS: if ψi leaves some freedom to change
inputs (i.e., does not contain propositions equivalent to x ′ = x) and does
not allow changes of internal model variables and outputs, then ϕi specifies
a subset of quiescent states. This identification can be mechanised by using
a constraint solver and checking whether

ϕi ∧ψi ∧ x ′ 6= x

has a solution. As a consequence, we can re-arrange the disjuncts of R2 such
that the first q0 specify transitions from quiescent states, and the ones with

145

indexes q0 < i ≤ q specify transitions from transient states. As a result, the
transition relation is represented by

R3 ≡
q0∨
i=1

(
ϕi ∧ψi

)
∨

q∨
i=q0+1

(
ϕi ∧ψi

)
(7.3)

Example 12. Continuing with Example 11, we construct

R3 ≡
2∨
i=0

(
ϕi ∧ψi

)
∨

8∨
i=3

(
ϕi ∧ψi

)
with ϕi, ψi specified as in Example 11. �

7.7.4 Rewriting the representation

Observing that the variable domains of v ∈M∪O are finite, propositions γ
with free variables in V,V ′ occurring in R3 can be re-written as

γ ≡
∨

d,d ′∈DM,e,e ′∈DO

(
γ[d/m,e/y,d ′/m ′,e ′/y ′]∧

(m,y) = (d,e)∧ (m ′,y ′) = (d ′,e ′)
)

Observing that input changes are unconstrained when transiting from qui-
escent states and disallowed when transiting from transient states, the
γ[d/m, . . .] can be assumed to have free variables in I only. This induces
another representation of the transition relation in first order form.

R4 ≡
a0∨
i=0

(
αi ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (m,y)

)
∨

a∨
i=a0+1

(
βi ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (d ′i,e

′
i)∧ x ′ = x

)
where propositions αi and βi are disjunctions of input constraints. The num-
ber a0 enumerates the pairs (di,ei) of internal state and output values. The
propositions αi denote quiescent state conditions, sorted over the possible

146

(di,ei)-values. Each βi specifies a condition for a transient state s1 satis-
fying βi[s1(x)/x], s1(m) = di and s1(y) = ei to switch to a quiescent post
state s2 satisfying s2 = {x 7→ s1(x),m 7→ d ′i,y 7→ e ′i}.

Example 13. The table specifying ϕi, ψi in Example 11 is already struc-
tured in such a way that the propositions αi, βi required for the representa-
tion R4 can be directly identified:

α0 x < max

α1 x = max

α2 x > max − δ

β3 x = max

β4 x = max

β5 x > max

β6 x ≤ max − δ

β7 x > max

β8 x < max

�

7.7.5 Final RIOSTS Transition Relation

Evaluating R4 by means of a reachability analysis, the final proposition R
conforming to an RIOSTS transition relation is produced as follows. A reach-
ability trace is a finite sequence of indexes i0.i1 . . . in, n > 1, such that

1. i0, in ∈ {1, . . . , a0} and {i1, . . . , in−1} ⊆ {a0 + 1, . . . , a} (recall that a0, a
are indexes denoting the last elements of disjunctions in the definition
of R4).

2. di0 = di1 ∧ ei0 = ei1 .

3. d ′ij = dij+1
∧ e ′ij = eij+1

for j = 1, . . . , n− 1.

4. The formula
n−1∧
j=1

βij ∧ αin

is satisfiable, that is, there exists c ∈ DI such that

n−1∧
j=1

βij [c/x]∧ αin [c/x].

147

A reachability trace captures a set of state traces starting in any quiescent
state s0 satisfying s0(m) = di0 , s0(y) = ei0 and ending in a quiescent state
sn satisfying sn(m) = din , sn(y) = ein , such that s1, . . . , sn−1 are transient.
The trace conforms to the transition relation: the input defined when tran-
siting from s0 to sn is never changed until sn is reached, and the changes
produced by the transition from transient state si are consistent with the
valuation in state si+1. Since a0, a are finite, the number of reachability
traces is always finite. Note that this fact holds for both deterministic and
nondeterministic state transition systems. Consequently, the sets RTRi0,in of
reachability traces starting in i0 ∈ {1, . . . , a0} and ending in in ∈ {1, . . . , a0},
and the sets RTRi0 of reachability traces starting in i0 ∈ {1, . . . , a0} and
ending at any in are finite as well.

Note that – since we are dealing with potentially infinite input domains –
it may be the case that two quiescent states in the original test model are con-
nected by an infinite number of different path segments containing transient
states only. Each segment, however, will be finite (that is, a trace segment),
because the model is assumed to be livelock free. Each of these traces will
cover exactly one finite sequence of state classes which is identified by a
reachability trace i0 . . . in. Therefore the potentially infinite number of finite
traces connecting to quiescent states by transient states can be abstracted
by the finite number of associated reachability traces.

Starting from the initial state s0, the reachable quiescent states are ex-
plored according to the following algorithm.

1. Inputs. State valuation s0 : V → D that associates an initial value to
every model variable. Constants a0, a ∈ N, propositions α1, . . . , αa0
and βa0+1, . . . , βa, as well as associated value vectors (di,ei), i =
1, . . . , a0, a0 + 1, . . . , a and (d ′i,e

′
i), i = a0 + 1, . . . , a, extracted from

the transition relation in first order representation R4, as specified in
Section 7.7.4.

2. Outputs. Transition relation R in first order form, conforming to
the RIOSTS requirement that transient states are always followed by
quiescent states, while quiescent states may transit to other quiescent
or to transient states.

3. Initialise R with

R ≡
a0∨
i=1

(
αi ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (di,ei)

)
148

4. Let i0 ∈ {1, . . . , a0} be the uniquely determined index, such that the
initial state s0 fulfils

s0(αi0)∧ s0(m) = di0 ∧ s0(y) = ei0

5. Initialise an index queue T with this index i0.

6. Initialise index sets IDX := ∅ and J := ∅.

7. While T is not empty

(a) Set i = head(T) and remove head from T .

(b) Set IDX := IDX ∪ {i}.

(c) Calculate RTRi as the set of all reachability traces starting with
index i. (From the discussion above we know that RTRi is finite
and can be automatically calculated by checking the satisfiability
of formulas of the type

∧n−1
j=1 βij ∧ αin .)

(d) For every reachability trace i.i1 . . . in ∈ RTRi

i. Set

gi.i1...in :=
(n−1∧
j=1

βij ∧ αin
)

ii. Extend R by setting

R := R∨
(
gi.i1...in ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (din,ein)

)
.

iii. Insert (i, in) into J.

iv. If in 6∈ IDX

• Insert in into IDX.

• Append in to T .

(e) Continue with Step 7.

8. For all i ∈ {1, . . . , a0} − IDX remove disjunct i from R, because the
associated quiescent pre-states are unreachable.

9. For each (i, j) ∈ J, collect all disjuncts

gi ′.i ′1...i ′n ′ ∧

(m,y) = (di ′ ,ei ′)∧ (m ′,y ′) = (di ′
n ′
,ei ′

n ′
)

149

satisfying i ′.i ′1 . . . i
′
n ′ ∈ RTRi,j and consequently i ′ = i, i ′n ′ = j and

merge them into a single disjunct

gi,j ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (dj,ej)

where
gi,j ≡

∨
i ′.i ′1...i

′
n ′∈RTRi,j

gi ′.i ′1...i ′n ′

10. Terminate by returning R.

Observe that the algorithm always terminates because the number of
reachability traces is finite, and therefore the nested loop in Step 7 termi-
nates. Furthermore, since R has been constructed using all reachability
traces induced by R4, the set of R4-state traces is I/O-equivalent to the
set of R-state traces (recall that I/O-equivalence abstracts from intermedi-
ate transient states and only compares quiescent ones). Furthermore, since
the transformations from R1 to R4 are all equivalence transformations, this
proves that the set of R1-state traces in the original model is I/O-equivalent
to the set of R-state traces. This establishes termination and correctness of
the algorithm.

The resulting proposition

R ≡ R1 ∨R2 (7.4)

R1 ≡
∨
i∈IDX

(
αi ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (di,ei)

)
(7.5)

R2 ≡
∨

(i,j)∈J

(
gi,j ∧ (m,y) = (di,ei)∧ (m ′,y ′) = (dj,ej)

)
(7.6)

completely specifies the RIOSTS representation we are looking for. The
set of reachable quiescent states s is specified by

SQ =
{
s : V → D | s

(∨
i∈IDX

(αi ∧ (m,y) = (di,ei))
)}

The set of transient states is specified by

ST =
{
s : V → D | s

(∨
(i,j)∈J

(gi,j ∧ (m,y) = (di,ei))
)}

150

The transition relation R ⊆ S× S is given by

R = {(s1, s2) | R[s1(v)/v, s2(v)/v ′]}

Example 14. For the alarm indication system, Example 13 shows that
there is not much to do in the algorithm above, because the transition rela-
tionR4 already has the required target form required for the final proposition
R: every transient state specified by βi ∧ (m,y) = (di, ei) has one or two
immediate quiescent post-states. Therefore it is not necessary to calculate
reachability traces. In [31], a more complex example is presented where reach-
ability traces need to be constructed. For our example here, R is constructed
from R4 by setting

R ≡
2∨
i=0

gi,i ∧ (m,y) = (di, ei)∧ (m ′, y ′) = (m,y)∨∨
(i,j)∈J

gi,j ∧ (m,y) = (di, ei)∧ (m ′, y ′) = (dj, ej)

with
J = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0)}

and

(d0, e0) = (0,OK), (d1, e1) = (1,OK), (d2, e2) = (2,ALARM),

and

g0,0 ≡ x < max

g1,1 ≡ x = max

g2,2 ≡ x > max − δ

g0,1 ≡ x = max

g0,2 ≡ x ≥ max

g1,0 ≡ x < max

g1,2 ≡ x > max

g2,0 ≡ x ≤ max − δ

�

7.7.6 IECP Identification

From the discussion in Section 7.4 we know that the propositions αi induce
sets

Ai = {s ∈ S | s(αi)∧ s(m) = di ∧ s(y) = ei}, i ∈ IDX

151

of I/O-equivalent quiescent states. Setting gi,i ≡ αi for i ∈ IDX, we observe
that all input changes s ⊕ {x 7→ c} satisfying gi,i[c/x] lead to post-states in
Ai.

By construction, all input changes s ⊕ {x 7→ c} applied to states s in Ai
satisfying gi,j[c/x] with (i, j) ∈ J (J defined in the algorithm in Section 7.7.5
and used in Equation (7.6)) may lead to post-states in Aj. If the RIOSTS is
deterministic, then this is the only possibility. For nondeterministic RIOSTS,
however, several conditions gi,j1 [c/x], gi,j2 [c/x], j1 6= j2 may evaluate to true.
Then, as the structure of R in Equation (7.6) shows, the transient state
s⊕ {x 7→ c} may transit nondeterministically to one of the post-states

{x 7→ c,m 7→ dj1 ,y 7→ ej1} or {x 7→ c,m 7→ dj2 ,y 7→ ej2}.

This possibility is, of course, not restricted to two possible post-states, but
it is always restricted to a finite number of choices, because the number |J|

of reachable pairs (dj,ej) of internal state values and output values is finite.
To analyse these finite variants of nondeterministic choices further, consider
a fixed index i ∈ IDX and set Ji = {i} ∪ {j ∈ IDX | (i, j) ∈ J}. Let K 6=∅ ⊆ Ji
and define

Φi,K ≡
∧
j∈K

gi,j ∧
∧
j∈Ji\K

¬gi,j

and
Ki = {K 6=∅ ⊆ Ji | Φi,K is satisfiable}.

For each function f : IDX→ 2IDX where the proposition

Φf ≡
∧
i∈IDX

Φi,f(i)

is satisfiable, the following property holds:

∀i ∈ IDX, c ∈ DI :
(
(s ∈ Ai ∧Φf[c/x])⇒ (∀j ∈ f(i) : s/c ∩Aj 6= ∅)

)
This means that any input change c satisfying Φf, when applied to any
s ∈ Ai leads to a quiescent post-state in some Aj with j ∈ f(i). Moreover, for
any j ′ ∈ f(i), a transition from s to an element of Aj ′ is possible: if |f(i)| > 1,
this reflects the presence of nondeterministic transitions.

The following lemma shows that the Φf introduce a finite partitioning of
DI, because every c ∈ DI fulfils exactly one Φf.

152

Lemma 7.7 The set

I = {Xf | Φf is satisfiable and Xf = {c ∈ DI | Φf[c/x]}}

is an IECP according to Definition 7.1 or a refinement thereof.

Proof. For any i ∈ IDX, every input vector c fulfils the disjunction∨
j∈Ji gi,j[c/x], because our RIOSTS are completely specified, that is,{

c ∈ DI |
∨
j∈Ji

gi,j[c/x]
}
= DI. (7.7)

For arbitrary c ∈ DI, define Ci(c) = {j ∈ Ji | gi,j[c/x]}. Then Ci(c) is never
empty according to Equation (7.7), and∧

j∈Ci(c)

gi,j[c/x]∧
∧

j∈Ji\Ci(c)

¬gi,j[c/x]

always evaluates to true. Let ∼C be a binary relation on DI, where

c ′ ∼C c if and only if ∀i ∈ IDX : Ci(c
′) = Ci(c).

Obviously, ∼C is an equivalence relation, IDX and {Ci(c) | c ∈ DI} ⊆ 2Ji are
finite sets. Hence DI/∼C is a finite partitioning of DI.

For any i ∈ IDX and K ⊆ Ji,

Φi,K ≡
∧
j∈K

gi,j ∧
∧
j∈Ji\K

¬gi,j

is satisfiable if and only if there is c ∈ DI, Φi,K[c/x], i.e., K = Ci(c).
For each function f : IDX→ 2IDX, the proposition

Φf ≡
∧
i∈IDX

Φi,f(i)

is satisfiable, if and only if there exists c ∈ DI, such that Φi,f(i)[c/x] holds
for all i ∈ IDX. This means that f(i) = Ci(c) holds for all i ∈ IDX.

For any c ∈ DI, let fc : IDX → 2IDX, fc(i) = Ci(c). Then for any
f : IDX → 2IDX, the proposition Φf is satisfiable if and only if f = fc, for

153

some c ∈ DI. Hence

DI/∼C =
⋃
c∈DI

{c ′ ∈ DI | Ci(c
′) = Ci(c),∀i ∈ IDX}

=
⋃
c∈DI

{c ′ | Φfc [c
′/x]}

=
⋃

Φf is satisfiable

{c ′ | Φf[c
′/x]}

�

Example 15. With R obtained for the alarm indication system in Exam-
ple 14 the input equivalence classes are calculated as follows:

J0 = {0, 1, 2}, J1 = {0, 1, 2}, J2 = {0, 2}

and
K0 = {{0}, {2}, {1, 2}}, K1 = {{0}, {1}, {2}}, K2 = {{0}, {2}}

Φ0,{0} ≡ x < max

Φ0,{2} ≡ x > max

Φ0,{1,2} ≡ x = max

Φ1,{0} ≡ x < max

Φ1,{1} ≡ x = max

Φ1,{2} ≡ x > max

Φ2,{0} ≡ x ≤ max − δ

Φ2,{2} ≡ x > max − δ

The conjunctions Φf that have a solution are constructed by enumerating
all possible mappings f : {0, 1, 2} → 2{0,1,2}. The following conjunctions are
feasible. In these definitions the notation (k0, k1, k2), ki ∈ Ki, denotes the
function f = {0 7→ k0, 1 7→ k1, 2 7→ k2}

Φ({0},{0},{0}) ≡ x < max∧x ≤ max−δ ≡ x ∈ [0,max−δ]

Φ({0},{0},{2}) ≡ x < max∧x > max−δ ≡ x ∈ (max−δ,max)

Φ({1,2}{1}{2}) ≡ x = max

Φ({2}{2}{2}) ≡ x > max

This induces the input equivalence classes

I = { [0,max−δ], (max−δ,max), [max,max], (max,∞) }.

�

154

Chapter 8

Test Case Map – From FSM
Test Cases to RIOSTS Test
Cases

8.1 RIOSTS Test Cases

In analogy to the introduction of abstract FSM test cases in Section 4.1, we
introduce RIOSTS test cases as subsets of the I/O-languages involved.

Definition 8.1 Given an RIOSTS signature (I,O,DI, DO), a test case W
(for signature (I,O,DI, DO)) is a pair of disjoint sets

W = (Wpass,Wfail), Wpass ∪Wfail ⊆ (ΣI × ΣO)∗.

For an RIOSTS S and a test case W = (Wpass,Wfail), the following pass-
criteria are defined.

1. S pass� W ≡ L(S) ∩Wfail = ∅.

2. S pass
∼
W ≡Wpass ⊆ L(S)∧ L(S) ∩Wfail = ∅.

The set of all RIOSTS test cases for the given signature is denoted by
TC(I,O,DI, DO). �

Since Theorem 4.1 only refers to the existence of a language associated
with each model, and to the definitions of pass-traces and fail-traces, this
theorem holds in analogous form for RIOSTS:

155

Theorem 8.1 Let S1,S2 be any RIOSTS with signature (I,O,DI, DO).
Then

1. S2 � S1 if and only if

∀W ∈ TC(I,O,DI, DO) : S1 pass� W ⇒ S2 pass� W

2. S2 ∼ S1 if and only if

∀W ∈ TC(I,O,DI, DO) : S1 pass
∼
W ⇒ S2 pass

∼
W

�

8.2 The Test Case Map

Given an RIOSTS signature Sig = (I,O,DI, DO) and a sub-domain
D(Sig, I) as introduced in Section 7.6, this associates a signature
FSM(I, DO) of FSMs and FSM test cases TC(I, DO). We will now con-
struct the test case map

T ∗ : TC(I, DO)→ TC(I,O,DI, DO)

which translates FSM test cases to RIOSTS test cases.
Let W = (Wpass,Wfail) ∈ TC(I,O,DI, DO). W = (Wpass,Wfail) is called

a representative of U = (Upass, Ufail) ∈ TC(I, DO), if there exists an injective
mapping fU : Upass ∪Ufail → (DI ×DO)

∗ satisfying:

1. W = (fU(Upass), fU(Ufail)).
1

2. fU(ε) = ε.

3. ∀X/y ∈ Upass ∪ Ufail : fU(X/y) = x/y with some x ∈ D∗I satisfying
x I X.

Condition 3 to be satisfied by admissible mappings fU states that every
concrete input xi in an input/output trace x/y is a representative of the
corresponding input equivalence class Xi in the FSM test trace X/y.

Now we can define the test case map

1We apply the usual notation for lifting functions f : A→ B to their set-valued equiv-
alents: for Z ⊆ A, f(Z) = {f(a) | a ∈ Z}.

156

T ∗ : TC(I, DO)→ TC(I,O,DI, DO);
U = (Upass, Ufail) 7→W = (fU(Upass), fU(Ufail))

as a function mapping each FSM test case U ∈ TC(I, DO) to one of its repre-
sentatives W ∈ TC(I,O,DI, DO). Different selections of representatives lead
to different variants of T ∗, but the proof of the satisfaction condition given be-
low will show that SC2 holds independently on the choice of representatives,
as long as the selected fU all fulfil the conditions specified above.

157

Chapter 9

Proof of the Satisfaction
Condition SC2

With both model map and test case map available, we are now in the position
to prove the second part of the satisfaction condition.

Given an RIOSTS signature Sig = (I,O,DI, DO) and a sub-domain
D(Sig, I), we have seen in Section 7.6 that this induces a well-defined model
map T : D(Sig, I) → FSM(I, DO) from RIOSTS models to FSMs. More-
over, from Section 8 it is known that a test case map T ∗ : TC(I, DO) →
TC(I,O,DI, DO) can be constructed by mapping each FSM test case U =
(Upass, Ufail) to a representative T ∗(U) = W = (fU(Upass), fU(Ufail)), where
fU maps I/O-traces of U to I/O-traces of W and satisfies the condition spec-
ified in Section 8.2. It will now be shown that T and T ∗ fulfil the second part
SC2 of the satisfaction condition introduced in Section 2.6.

Theorem 9.1 (Satisfaction Condition SC2) With the notation intro-
duced in the previous sections, the following statements hold for all U =
(Upass, Ufail) ∈ TC(I, ΣO) and all S ∈ D(Sig, I).

1. T(S) pass� U⇔ S pass� T
∗(U)

2. T(S) pass
∼
U⇔ S pass

∼
T ∗(U)

Proof. Since W = T ∗(U) = (fU(Upass), fU(Ufail)) is the representative of
U with fU satisfying the conditions specified in Section 8.2, application of
Theorem 7.1 results in

fU(X/y) ∈ L(S)⇔ X/y ∈ L(T(S)) (9.1)

158

Hence

L(S) ∩ (Wpass ∪Wfail) = [Definition of W]

L(S) ∩ fU(Upass ∪Ufail)

= {fU(X/y) ∈ L(S) | X/y ∈ Upass ∪Ufail}

= [Equivalence (9.1)]

{fU(X/y) | X/y ∈ L(T(S))∧ X/y ∈ Upass ∪Ufail}

= fU
(
L(T(S)) ∩ (Upass ∪Ufail)

)
(∗)

Consequently,

S pass� T
∗(U) ⇔ [T ∗(U) =W]

L(S) ∩ (Wpass ∪Wfail) ⊆Wpass

⇔ [Derivation (∗),Wpass = fU(Upass)]

fU
(
L(T(S)) ∩ (Upass ∪Ufail)

)
⊆ fU(Upass)

⇔ [fU is injective]

L(T(S)) ∩ (Upass ∪Ufail) ⊆ Upass

⇔ T(S) pass� U

and

S pass
∼
T ∗(U) ⇔ [T ∗(U) =W]

L(S) ∩ (Wpass ∪Wfail) =Wpass

⇔ [Derivation (∗),Wpass = fU(Upass)]

fU
(
L(T(S)) ∩ (Upass ∪Ufail)

)
= fU(Upass)

⇔ [fU is injective]

L(T(S)) ∩ (Upass ∪Ufail) = Upass

⇔ T(S) pass
∼
U

�

159

Complexity considerations for (T, T ∗) With Theorem 7.3 and Theo-
rem 9.1, it has been established that the translation of FSM testing theories
to theories for RIOSTS is admissible, using the pair (T, T ∗) for translation of
models and test cases. Both mappings are implementable, so the question of
their complexity in practical applications arises.

The complexity for calculating an image value T(S) of the model map
mainly depends on the effort to calculate the image of the transition index
function introduced in Section 7.4. As shown in the proof of Lemma 7.3,
this task has worst-case complexity 2n

n
, where n is the number of pairs

(d,e) that enumerate the possible value combinations of internal states and
outputs. The experimental evaluations published in [4, 34, 52] show that
this worst-case complexity hardly ever occurs when processing meaningful
controller models.

The effort to calculate the RIOSTS test case W = T ∗(U) associated
with FSM test case U is obviously linear in the size of the FSM test cases
U = (Upass, Ufail). When calculating representatives of input equivalence
classes X ∈ I, however, an SMT solver is used to solve the defining constraint
of X. Depending on the arithmetic formulas contained in this constraint, the
effort for solving this constraint may become exponential in the number of
bits needed to represent the data items involved.

160

Chapter 10

Complete Testing Theories for
RIOSTS

10.1 Overview

In this section, Theorem 2.1 is “instantiated” for the case of RIOSTSs and
FSMs. This allows us to establish novel complete IECP testing theories for
RIOSTSs by means of translation of known FSM theories. The new strate-
gies apply to RIOSTS fault models with varying types of reference models,
conformance relations, and fault domains; the combinations are shown in
Table 10.1.

Throughout this section, a fixed signature Sig = (I,O,DI, DO) for
RIOSTSs is considered, such that, while DI may be infinite, DO is finite.
Let D(Sig, I) ⊆ Sig denote the subdomain of completely defined RIOSTSs
in Sig with finitely many internal states, such that I is an input equivalence
partitioning or a refinement thereof for all S ∈ D(Sig, I). The function
T : D(Sig, I) → FSM(I, DO) denotes the model map as introduced in Sec-
tion 7.6. Recall that F(D(Sig, I),≤) denotes the set of all fault models
defined on D(Sig, I); for RIOSTS, the conformance relation ≤ is always ∼

(I/O-equivalence) or 4 (reduction).

161

Table 10.1: Complete IECP testing theories for RIOSTSs.

Reference Model Conformance Relation Fault Domain Theorem
deterministic I/O-equivalence deterministic 10.2
nondeterministic reduction nondeterministic 10.3
nondeterministic I/O-equivalence nondeterministic 10.4
nondeterministic reduction deterministic 10.5

10.2 Theory Translation Theorem – From

FSM Theories to RIOSTS Theories

The following theorem is an instance of the general theory translation Theo-
rem 2.1. It states the conditions for existing complete testing theories about
FSMs to induce likewise complete testing theories for RIOSTS. It further
explains, how RIOSTS test suites are created from FSM suites by means of
translation, using the test case map T ∗ : TC(I, DO)→ TC(Sig) constructed
in Section 8.2.

Theorem 10.1 Let FFSM be a set of FSM fault models with conformance
relation ≤∈ {∼,4}. Then every complete FSM testing theory TSFSM : FFSM →
P(TC(I, DO)) induces a complete RIOSTS testing theory, if F and TS are
defined by TS : F→ P(TC(Sig)) with

1. F = {(S,≤,D) ∈ F(D(Sig, I),≤) | ∃(M,≤,DFSM) ∈ FFSM : T(S) =
M∧ T(D) ⊆ DFSM},

2. TS(S,≤,D) = T ∗(TSFSM(T(S),≤,DFSM)), for some (T(S),≤
,DFSM) ∈ FFSM with T(D) ⊆ DFSM.

Proof. For the model map T : D(Sig, I) → FSM(I, DO) and test case
map T ∗ : TC(I, DO) → TC(Sig) it has been shown in Theorem 7.3 and
Theorem 9.1 that (T, T ∗) satisfy the satisfaction condition for I/O-equivalence
∼ and reduction �. Applying the general theory translation Theorem 2.1 to
(T, T ∗) proves the theorem. �

Recall from Section 7.6, that the model map depends on the choice of the
input partition I. The fault models in F contain only reference models S and

162

fault domains with members S ′, such that I refines both the IECP of the
reference models S and the potential implementation behaviours S ′. Refining
I increases the size of the fault domain, at the cost of having to consider larger
alphabets for the associated FSMs. Recall further from Section 8.2, that
the test case map T ∗(U) varies with the choice of fU which selects concrete
representatives from every IEC, each time it is referenced by U as an input
to the SUT. Since Theorem 10.1 does not depend on a specific choice of the
fU, this can be interpreted in the way that the theorem still holds if a random
selection is made from each IEC, whenever it is referenced from some test
case.

We are now in the position to transform a variety of testing theories for
FSMs to equivalence class testing theories for RIOSTS. The theorems below
always state the existence of a theory in relation to a set of fault models, as
introduced in Section 2.3. In the proofs, however, references to the concrete
construction of RIOSTS test suites by means of translation from FSM test
suites are given.

10.3 Deterministic Reference Model and

Deterministic Implementation

The following result has originally been published in [31], but now it can be
easily established as one application of Theorem 10.1. Moreover, we extend
the existing result with respect to random selection of representatives from
input equivalence classes.

Theorem 10.2 Let D0 = D0(Sig, I,m) ⊆ D(Sig, I) denote the fault do-
main of deterministic RIOSTSs, such that for all S ∈ D0, the prime machine
T(S) has at most m states.
Let F = {(S, ∼,D0) ∈ F(D(Sig, I), ∼) | S ∈ D0}. Then there exist complete
finite input equivalence class testing theories TS : F → P(TC(Sig)) with
randomised selection of representatives from each input equivalence class.

Proof. Consider the FSM fault domain DFSM(I, DO,m) of completely
specified, deterministic FSMs whose prime machines (recall that these are
just the minimised deterministic FSM) have at most m states. Then the
classical W-Method is known to produce finite complete test suites for every

163

fault model

F ∈ FDFSM = {(M, ∼,DFSM(I, DO,m)) | M ∈ DFSM(I, DO,m)}

This has been shown in [9, 69]; alternatively, the Wp-Method can be applied,
which is known to yield shorter test suites [19]. Let TSDFSM : FDFSM →
P(TC(I, DO)) denote a complete testing theory constructed according to
the W-Method or the Wp-Method.

By definition of D0, and since we know from Lemma 7.6 that for any S ∈
D0, its minimal FSM abstraction T(S) is also deterministic (and therefore
also observable), T(D0) ⊆ DFSM(I, DO,m) follows. As a consequence, the
general fault model collection

F = {(S,≤,D) ∈ F(D(Sig, I),≤) |
∃(M,≤,DFSM) ∈ FFSM : T(S) =M∧ T(D) ⊆ DFSM}

specified in condition 1 of Theorem 10.1 equals

F = {(S, ∼,D0) ∈ F(D(Sig, I), ∼) | S ∈ D0}

for the deterministic case addressed in the theorem here. Now we can apply
Theorem 10.1 to conclude that

TS : F→ P(TC(Sig));
(S, ∼,D0) 7→ T ∗(TSDFSM((T(S), ∼,DFSM(I, DO,m))))

is a complete testing theory as well. As stated in Section 10.2, random
selections may be performed from input classes Xi ∈ I, when translating
I/O-traces X/y of FSM test cases U to their RIOSTS counterparts in T ∗(U).

�

Concrete examples of complete test suites for deterministic RIOSTS have
been given in [31, 34, 52].

As discussed in Section 6, S ′ 4 S implies S ′ ∼ S, if S is deterministic and
S ′ is completely specified. Therefore no other theories have to be considered
if both reference model and implementation model are deterministic and
completely specified RIOSTSs.

164

10.4 Nondeterministic Reference Model and

Nondeterministic Implementation

Complete testing assumption The completeness results described below
hold under the complete testing assumption [26]: this is a fairness hypothesis
stating the existence of some k > 0, so that, when applying input sequence x
k times to the SUT, every output sequence y that can be produced with this
x will be observed. It is then required to execute the complete test suites
introduced below at least k times, so that all possible behaviours of the SUT
will be observed.

Testing for reduction

Theorem 10.3 Let D = D(Sig, I,m) ⊆ D(Sig, I) denote the fault domain
of deterministic or nondeterministic RIOSTS, such that for all S ∈ D, the
prime machine T(S) has at most m states.
Let F = {(S,4,D) ∈ F(D(Sig, I),4) | S ∈ D}. Then there exist complete
finite input equivalence class testing theories TS : F → P(TC(Sig)) with
randomised selection of representatives from each input equivalence class.

Proof. We apply the same proof schema as for Theorem 10.2. The image
of D(Sig, I,m) under the model map T is contained in FSM(I, DO,m), the
set of all FSMs whose prime machines have at most m states. It has been
shown in [26, 59] that complete finite test suites exist for fault models of
the type F = (M,4,FSM(I, DO,m)) with M ∈ FSM(I, DO,m)). To this
end, the authors construct suites of adaptive FSM tests and apply the state
counting method. To our best knowledge, the construction method given
in [59] results in the shortest complete test suites that are currently known
for this problem.

Setting FFSM = {(M,4,FSM(I, ΣO,m)) | M ∈ FSM(I, DO,m)}, this in-
duces a complete FSM testing theory TSFSM : FFSM → P(TC(I, DO)). Since
T(S) ∈ FSM(I, DO,m) and T(D) ⊆ FSM(I, DO,m), we can apply Theo-
rem 10.1 to obtain a complete finite testing theory TS : F→ P(TC(Sig)) by
setting TS(S,4,D) = T ∗(TSFSM(T(S),4,FSM(I, DO,m))).

As shown in the proof of Theorem 10.2, randomised selection of repre-
sentatives from each input equivalence class referenced in test cases U ∈
TSFSM(T(S),4,FSM(I, DO,m)) preserves the completeness property.

�

165

Table 10.2: Test cases generated for the alarm indication system from Ex-
ample 7, using the generalised Wp-Method.

Test Case Inputs Expected Outputs
1. 100 {OK, ALARM}

2. 90.100 {OK.OK, OK.ALARM}

3. 95.100 {OK.OK, OK.ALARM}

4. 100.100 {OK.OK, ALARM.ALARM}

5. 101.100 {ALARM.ALARM}

6. 100.50.100 {OK.OK.OK, OK.OK.ALARM, ALARM.OK.ALARM}

7. 100.99.100 {OK.OK.OK, OK.OK.ALARM, ALARM.ALARM.ALARM}

8. 100.100.100 {OK.OK.OK, ALARM.ALARM.ALARM}

9. 100.500.100 {OK.ALARM.ALARM, ALARM.ALARM.ALARM}

Testing for I/O-equivalence We can also translate a theory for check-
ing the I/O-equivalence of nondeterministic (or deterministic) FSMs to a
theory for testing the I/O-equivalence of nondeterministic (or deterministic)
RIOSTS.

Theorem 10.4 Let D = D(Sig, I,m) ⊆ D(Sig, I) denote the fault domain
of deterministic or nondeterministic RIOSTS, such that for all S ∈ D, the
prime machine T(S) has at most m states.
Let F = {(S, ∼,D) ∈ F(D(Sig, I), ∼) | S ∈ D}. Then there exists a com-
plete finite input equivalence class testing theory TS : F→ P(TC(Sig)) with
randomised selection of representatives from each input equivalence class.

Proof. For nondeterministic FSM, an extension of the Wp-Method origi-
nally described in [19] has been presented in [45]. This extension describes
the generation of a complete testing strategy for checking I/O-equivalence
in presence of nondeterministic, completely specified reference models. The
remainder of the proof is the same as for Theorem 10.3. �

Example 16. We apply the generalised Wp-Method (see Section 4.8.1)
to the alarm indication system S introduced in Example 7, using concrete
values max = 100 and δ = 10. For the fault domain D = D(Sig, I,m)
we assume m = 3, that is, the prime machines of all FSM abstractions

166

s(x) < max ^ s(m) = 0 ^ s(y) = OK

s(x) = max
s(m) = 0
s(y) = OK

s(x) = max
s(m) = 1
s(y) = OK

s(x) > max
s(m) = 1
s(y) = OK

s(x) > max
s(m) = 0
s(y) = OK

s(x) < max
s(m) = 1
s(y) = OK

s(x) � max
s(m) = 2
s(y) = ALARM

s(x) < max
s(m) = 2
s(y) = ALARM

S0
1 S0

2

S0
3 S0

4S0
5 S0

6

S0
7

S0
0

Figure 10.1: Erroneous implementation S ′ of the alarm indication system
shown in Fig. 6.1.

from potential SUT behaviours contained in the fault domain have at most 3
states. Furthermore, we assume that the IECP I elaborated for the system
in Example 8 is already fine-grained enough to serve as an IECP I of each
possible SUT behaviour in the fault domain. Note that the FSM abstraction
M of the alarm indication system shown in Fig. 7.1 is already minimised and
observable.

According to the test suite generation algorithm of the Wp-Method, the
following input sequences are derived first from the FSM abstraction of the
alarm system which was calculated in Example 9 (the FSM is shown in
Fig. 7.1).

1. A state cover Q = {ε, X3} (see Section 4.2). The input sequences in Q
are suitable to reach every state in the reference FSM.

2. A transition cover P = {ε, X1, X2, X3, X4, X3.X1, X3.X2, X3.X3, X3.X4} (see
Section 4.2). A transition cover contains the empty input trace and
input traces suitable to reach every state of the reference FSM and
applying every input to that state. Typically, the transition cover is
constructed from the state cover by appending every input to every
input trace contained in the latter.

3. A characterisation set W = {X3} (see Section 3.7). This set is suit-

167

able to distinguish all states of the reference FSM, in the sense that
applying all input traces of W to each state will lead to different sets
of output traces. For our example, X3 applied to S0 results in output
set {OK, ALARM}. When applied to S1 it yields output {OK}, and applied
to S2 it results in {ALARM}.

4. A set of state identification sets W1 =W2 =W3 =W (see Section 3.7).
Each Wi is a subset of prefixes from input traces in the characterisation
set, suitable to distinguish FSM state i from each other state. In the
example here the Wi already coincide with W.

As specified in Section 4.8.1, the complete test suite is constructed from
the input trace fragments above, and this results in 9 test cases, after deleting
redundant input traces that are prefixes of longer ones contained in the suite.

P.W = {X3, X1.X3, X2.X3, X3.X3, X4.X3,

X3.X1.X3, X3.X2.X3, X3.X3.X3, X3.X4.X3}

Define FSM abstract test cases (see Section 4.1) for M by

UM(X) = (Upass(X), Ufail(X))

with
Upass(X) = Z(X) ∩ L(M) and Ufail(X) = Z(X) \ L(M),

where Z(X) is defined by

Z(X) = {X/y1 . . . y|X| | y1 . . . y|X| ∈ Σ∗O}.

Using this notation, the complete test suite associated with the set P.W
of input traces may be expressed as

TSFSM = {UM(X) | X ∈ P.W}.

The translated RIOSTS test cases use arbitrary selections from the IEC
referenced in the input traces from TSFSM. For example, the translated
RIOSTS test suite could apply the input sequences specified in the second
column of Table 10.2, expecting the output sets specified in the third column.

Consider now the erroneous implementation S ′ of the alarm indication
system, as shown in Fig. 10.1. It performs illegal transitions from quiescent
states S ′2 via transient states S ′6 to quiescent states S ′0: the OK-indication is

168

already given, when after an alarm the input x drops below threshold max,
instead of max−δ. This error is identified, for example, by Test Case 7 in
Table 10.2, which is generated by random selection from the FSM test case
UM(X3.X2.X3) as

WS(100.99.100) = (Wpass,Wfail)

Wpass = {100.99.100/OK.OK.OK, 100.99.100/OK.OK.ALARM,

100.99.100/ALARM.ALARM.ALARM}

Wfail = {100.99/OK.ALARM, 100.99/ALARM.OK}

The SUT S ′ fails the test case WS(100.99.100) because 100.99/ALARM.OK ∈
L(S ′) ∩Wfail. �

10.5 Nondeterministic Reference Model and

Deterministic Implementation

It is interesting to note that the knowledge about SUT determinism can be
exploited to obtain shorter and simpler complete test suites.

Theorem 10.5 Let D = D(Sig, I,m) ⊆ D(Sig, I) denote the fault domain
of deterministic or nondeterministic RIOSTS, such that for all S ∈ D, the
prime machine T(S) has at most m states. Let D0 be the restriction of D
to deterministic RIOSTS as defined in Theorem 10.2. Let F = {(S,4,D0) ∈
F(D(Sig, I),≤) | S ∈ D}. Then there exists a complete finite input equiva-
lence class testing theory TS : F→ P(TC(Sig)) with randomised selection of
representatives from each input equivalence class.

Proof. In [54] the authors introduce a complete testing theory for
fault models (M,4,DFSM(I, DO,m)) with M ∈ FSM(I, DO,m). Since
T(D0) ⊆ DFSM(I, DO,m) and T(D) ⊆ FSM(I, DO,m), the proof can now
be completed just as for Theorem 10.3. �

The practical relevance of testing deterministic SUTs against nondeter-
ministic reference models with respect to reduction4 is high: even in the case
of safety-critical systems, reference models may be nondeterministic, because
design options are left open or external components can only be modelled
as nondeterministic black boxes. The SUT itself, however, will be usually

169

deterministic for safety-critical applications. In contrast to this, testing de-
terministic implementations S ′ for I/O-equivalence against nondeterministic
reference models S is not of interest: nondeterminism of S implies the exis-
tence of I/O-traces x/y,x/y ′ ∈ L(S) with y 6= y ′. Since the implementation
S ′ is deterministic, it can perform at most one of these traces, so S ′ 4 S
may hold, but never S ′ ∼ S if S is truly nondeterministic.

Analogously, testing nondeterministic SUTs against deterministic refer-
ence models is not of interest: if an implementation model S ′ is truly nonde-
terministic, it will contain I/O-traces x/y,x/y ′ ∈ L(S ′) with y 6= y ′, where
at least one of those traces is not contained in S since it is deterministic.
Therefore neither S ′ 4 S, nor S ′ ∼ S can hold.

10.6 Weaker Test Strategies: Single Output

Fault

We present an example how FSM testing theories with lesser test strength
can be transformed into corresponding input equivalence class testing theo-
ries. Here “lesser” means that the test suites associated with such a theory
can only prove conformance under additional assumptions regarding the ad-
missible fault domains.

Theorem 10.6 For S ∈ D0(Sig, I), let Ds(S, I) ⊆ D0(Sig, I) denote the
single output fault domain of deterministic RIOSTS S ′ whose prime ma-
chines T(S ′) are isomorphic to T(S) after replacing at most one output label
at a single transition. Let F = {(S, ∼,Ds(S, I)) ∈ F(D(Sig, I),≤) | S ∈
D0(Sig, I)}. Then there exists a complete finite input equivalence class test-
ing theory TS : F→ P(TC(Sig)) with randomised selection of representatives
from each input equivalence class.

Proof.
The so-called T-Method [47] generates test suites for a given reference

model M that perform transition tours on the model, that is, the test cases
are selected in such a way that each transition of the reference DFSM is tested
at least once. It is easy to see that this induces a complete testing theory TS :
F → P(TC(I, DO)) with F = {(M, ∼,DFSMs(M)) | M ∈ DFSM(I, DO)},
where DFSMs(M) is the fault domain of DFSMs M ′ ∈ DFSM(I, DO) whose

170

prime machines are isomorphic to that of M, up to a change of at most one
output signal.

As in the proofs of the theorems above, this induces a complete finite
testing theory for RIOSTS with random selection of inputs from each IEC.

�

10.7 Complexity Considerations

As seen in the proofs of the theorems above, the mapping of complete FSM
test suites to complete RIOSTS test suites preserves the number of test cases.
Moreover, the lengths of maximal I/O-traces of FSM test cases U are equal
to the maximal numbers of test steps to be performed by the translated test
case T ∗(U): the functions fU used in the transformations T ∗(U) map FSM
I/O-traces X/y to RIOSTS traces x/y of the same length. As a consequence,
complexity results about both number and length of test cases can be directly
transferred from the FSM test suite to the associated RIOSTS suite.

171

Chapter 11

Related Work

The proof strategy applied in the chapters above and described in Chapter 2
is inspired by the theory of institutions introduced in [22]. There the con-
cepts of model maps, sentence translation maps (these are generalisations
of the test case map constructed in this article), and the satisfaction condi-
tion have originally been introduced for formally establishing the fact that
“truth is invariant under change of notation” [22, p. 101]. The ‘sentences’
associated with a signature were typically formulas ϕ expressed in a specific
logic, and the satisfaction condition required that models and formulas could
be translated in a way preserving the satisfaction relation, in the sense that
T(M) |= ϕ ⇔ M |= T ∗(ϕ). In our exposition, sentences are represented by
test cases, and the |= relationship is replaced by the pass relationship. It is
possible to translate the “model passes test” terminology M pass U into the
more conventional “model fulfils formula” notation M |= ϕ, but this neither
simplifies the exposition presented here, nor does it yield any additional in-
sight into the field of complete testing theories and their translation between
different signatures. It should be noted further, that the classical theory of
institutions as presented in [22] would only be applicable to signatures Sig1,
Sig2 belonging to a class of closely related models, such as FSMs over differ-
ent input/output alphabets or process algebras from the same formalism, but
with different alphabets (see, for example [46]). In our application, however,
theory translation is performed between quite distinct formalisms (FSMs
and Kripke structures). This situation is more complicated, because we map
models and formulas between signatures of different institutions. This is
typically handled by institutions with many-sorted signatures, and these can
be conveniently represented by Grothendiek Institutions [11, Chapter 12], if

172

a formal model-theoretic underpinning is desired.
The Unifying Theories of Programming (UTP) [27] provide an alternative

to the institution-based approach for translating theories. The UTP is a
relational semantic framework allowing to capture and relate theories for a
variety of modelling and programming formalisms. Each formalism and its
theories are captured in a lattice of logical formulas, and theory translation is
enabled if a Galois Connection between these lattices can be established. An
illustration of the UTP-based approach in the context of testing is given in [7],
where a passive testing theory elaborated in the context of Kripke structures
is translated to a corresponding theory for the CSP process algebra. Further
testing theories for modelling formalisms interpreted in UTP semantics have
been constructed in [6] for the Circus modelling language, which also allows
for the introduction of large and complex data types.

The formal framework for constructing complete test suites in general,
and for introducing equivalence class testing methods preserving complete-
ness in particular, has been laid out in [20]. A more restricted completeness
notion for process algebras over finite alphabets had been investigated in [25],
where it was shown that specific – though infinite – adaptive test suites are
suitable to characterise refinement relations between nondeterministic pro-
cesses. The formal approach to investigate completeness in relation to fault
models has originally been introduced in [56, 57].

In the field of (usually nondeterministic) process algebras, the work
from [25] has been extended in [50, 49]. This resulted in effectively imple-
mentable finite test suites for fault domains specified by an upper bound on
the length of traces after which potential deviations of the SUT from the ref-
erence process could occur. Similar results have been obtained for labelled
transition systems and the ioco conformance relation [67], and for (deter-
ministic) timed I/O-automata in [65]. These results, however, all depended
on the finiteness of alphabets. This changed in [18], where the authors use
symbolic transitions systems to avoid the enumeration of inputs, outputs, or
internal state during test generation. Their completeness results, however,
only apply to test suites that are infinite.

In the FSM world, a multitude of complete test strategies has been
developed over the decades, starting with Chow’s and Vasilevskii’s W-
Method [9, 69] and its optimisations such as [19] for complete DFSMs and
covering a wide variety of test configurations involving nondeterministic
FSMs; we name [26, 45, 57, 54, 55] for some of the more prominent re-
sults. Extended finite state machines (EFSMs) add variables to the notion

173

of FSMs, and this leads to investigations about equivalence class partitions in
a natural way. In [40] the authors advocate genetic algorithms for constraint
solving. In contrast to this, [28] consider test generation for EFSMs as a
witness generation problem for global CTL model checking and apply this
technique to EFSMs with finite variable domains. EFSMs can be encoded as
STS in a straight-forward way. Indeed, the authors of [28] provide such an
encoding and extend it to Kripke Structures by adding a labelling function
for atomic propositions, as required by the classical CTL model checking
algorithms [10]. As a consequence, the equivalence class testing strategy
presented here can be directly applied to testing EFSMs with large or infi-
nite input data domains and finite outputs and I/O-equivalence classes. Our
general approach to model-based test generation differs from [40, 28] in the
way that test objectives are encoded as bounded model checking instances,
and we use an SMT solver to calculate concrete test data [53, 51], because –
here we follow [2] and the numerous references to model-based testing ap-
proaches given there – MBT test generation tasks can be regarded as variants
of constraint solving problems. The calculation of representatives of input
equivalence classes not only works for integral data types, but for floats as
well, because the SMT solver SONOLAR integrated in RT-Tester supports
floating point datatypes and operations [43].

An early formalised presentation of equivalence class partitioning algo-
rithms has been given in [12] for testing against VDM models. The au-
thors already point out the role of DNF representations which are also used
during an intermediate transformation step in the implementation of our
strategy [31, Section 3]. They also use finite state machines to generate the
sequences of processing steps which are necessary to apply equivalence class
testing in presence of internal state. They do not, however, give any proofs
about the completeness of their test suite which, from our understanding,
is only ensured when performing grey-box tests allowing to analyse internal
SUT states and in case of deterministic operations. The black-box equiv-
alence class testing problem addressed in our article is not covered in [12].
Similar results (also without completeness proofs) have been achieved in [24]
for testing against Z specifications. There the automated test generation has
been mechanised using theorem prover support.

The authors of [23] investigate refined data abstraction techniques for
the purpose of equivalence class definition, where the classes are denoted
as hyperstates, and the concept is applied to testing against abstract state
machine models. They sketch for white box tests, how a complete test suite

174

could be created [23, Section 4]: the transition cover approach discussed there
is applicable for SUT where the internal state (respectively, its abstraction)
can be monitored during test execution.

Adaptive random testing [8] focuses on techniques to evenly spread the
test cases over the complete input domain. Most research presented by other
authors so far concentrates on testing non-reactive software modules, where
test cases are specified by single input vectors instead of the input sequences
considered in our reactive systems setting. An example of the application
of adaptive random testing and search-based testing to realtime embedded
systems is given in [3].

175

Part IV

Fuzz Testing

176

Chapter 12

Fuzz Testing

12.1 Objectives

There is currently (2020) quite a hype about fuzz testing. At first glance,
this may come as a surprise, since fuzzing is just yet another random testing
method. The hype, however, is well-justified, because fuzz testing

• has helped to uncover quite a number of infamous bugs in important
software packages,

• is simple to use in comparison to, for example, code verification by
means of provers, bounded or global model checking,

• can be applied to large software packages that could not be handled by
model checkers.

In this chapter, we focus on the practical application of fuzz testing and
less on its underlying methods. For tool support, the LLVM libFuzzer library
is used, since it seems to be the most mature fuzzing tool currently available
and definitely fit for application in an industrial context.

12.2 LLVM libFuzzer – Capabilities

The fuzzing library libFuzzer is part of the well-known LLVM compiler frame-
work. It is integrated in the Clang compiler since version 6.0. The library
contains an in-process fuzzing engine. This means that the SUT must be

177

linked as (a library of) object files to the fuzzing engine. In particular, the
main program for executing the the fuzz tests is provided by libFuzzer: if
you wish to test your own main program, the entry point

int main(int argc, const char* argv[])

needs to be renamed, for example in

int my_main(int argc, const char* argv[])

The fuzzing process implemented in libFuzzer is coverage guided. This
means that the random data selection is influenced by the yet uncovered
code portions: input data promising to cover new branches of the software is
preferred to input data leading to re-execution of branches already explored
before. In this sense, the fuzzing method implemented in libFuzzer is a (very
special) variant of adaptive random testing : the random input data selection
is “biased” towards input data promising to drive the software under test
into new branches that have been uncovered so far.

The coverage guidance is accelerated by means of a corpus. This is a
collection of sample inputs to the SUT that help to cover specific portions
of the code. By mutating the elements of the corpus, the fuzzer detects new
test cases that are able to cover new portions of the code, and can therefore
be added to the corpus.

Furthermore, the fuzzing process is evolutionary : test cases are produced
in successive generations, each new generation produced from the previous
ones by application of genetic algorithms. This algorithm lets some test
cases of the previous generation “die” in favour of new test cases to become
members of the next generation.

12.3 libFuzzer – Interface to the SUT

The libFuzzer requires a C-procedural interface to the SUT. Typically, this
is realised as a wrapper calling the SUT provided via the fuzzer interface.
The library expects the SUT to be reachable by means of a user-provided
interface

1 int LLVMFuzzerTestOneInput (const u i n t 8 t ∗Data , s i z e t S i z e) {
2 map Data to r e a l inputs o f the SUT;
3 c a l l the SUT;
4 return 0 ;
5 }

178

If used for testing C++ code, users need to provide an interface

1 extern ”C” int LLVMFuzzerTestOneInput (const u i n t 8 t ∗Data ,
2 s i z e t S i z e) {
3 map Data to r e a l inputs o f the SUT;
4 c a l l the SUT;
5 return 0 ;
6 }

Typically, this interface is provided by the test harness, so that the SUT
code remains unchanged. When the LLVMFuzzerTestOneInput() function
returns, the LLVM fuzzer calls the function again, but now with a new input
data chunk Data with random contents and random length Size. This goes
on until the function terminates (a conditional call to exit() can be made
after the SUT has been called) or crashes anywhere in the SUT code, for
example, due to a segmentation fault, due to an arithmetic exception, or due
to a failed assertion1.

Example 17. Suppose you wish to test the following function getMin()

which is meant to return the smallest value in a buffer of integers. The length
of the buffer (number of int-cells provided) is passed as the second parameter.
For the boundary case where the buffer length is 0, we wish to return the
maximum signed integer (just for the sake of this example).

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
5 i f (numIntElements == 0) return INT MAX;
6 int idx ;
7 int min = b u f f e r [0] ;
8 for (idx = 1 ; idx < numIntElements ; idx++) {
9 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;

10 }
11 return min ;
12 }

Suppose further that this function resides in file mylib.c, and that the proto-
type is declared in header file mylib.h. To separate the test harness from the
SUT, we create an additional file testharness.c where the fuzzer interface
is implemented:

1Recall that in C and C++, logical checks can be inserted into code using the assert

macro (see ASSERT(3) in the manual pages)

179

1 #include ”mylib . h”
2
3 int LLVMFuzzerTestOneInput (const u i n t 8 t ∗Data , s i z e t S i z e) {
4 s i z e t idx ;
5 // Adapt data to SUT input format
6 const int ∗ b u f f e r = (const int ∗) Data ;
7 s i z e t numIntElements = S i z e / s izeof (int) ;
8 // C a l l the SUT
9 int r e s u l t = getMin (bu f f e r , numIntElements) ;

10 return 0 ;
11 }

Here, the mapping from the byte-data buffer Data provided by the fuzzer
to the int-buffer required by the SUT is straight forward: it just requires a
cast to the int-datatype and a transformation of byte-length to int-length of
the buffer. In other situations, the following more complex transformations
will become necessary:

• Mapping of the Data buffer into the components of an input structure
of the SUT.

• Padding the rest of a structure with default values if Data is shorter
than the structure.

• Mapping of the Data buffer into several input parameters and global
variables representing the SUT input interface.

Moreover, if the Data buffer is longer than the SUT input interface, one
execution of LLVMFuzzerTestOneInput() should lead to several SUT calls,
each call using a new portion of Data as input. �

12.4 Creating a Fuzzer Program With Clang

After having prepared the test harness as described above, the SUT and the
harness are compiled and linked with libFuzzer. To this end, clang offers
the following variants of compiler calls.

Basic fuzzing. In the simplest case, the compiler is called as follows.2

2It is also possible to use other optimisation options, but -O0 guarantees that all vari-
ables can be inspected in the debugger, after an error has been detected.

180

clang -o <fuzzer-executable-name> \

-g -O0 -fsanitize=fuzzer \

<further options> \

<testharness>.c \

<sut-file1>.c <sut-file2>.c ...

All variants of fuzzer compilation use the option -fsanitize=fuzzer

to indicate that a “fuzzable” program should be generated. Under
<further options> additional compiler options that are unrelated to
fuzzing are specified, such as -I options do indicate paths where to for header
files. Next, all C-files to be compiled, including the harness file, are added.
The SUT may consist of several files.

Create a fuzzer with address checks. Compiling with options

clang -o <fuzzer-executable-name> \

-g -O0 -fsanitize=fuzzer,address \

<further options> \

<testharness>.c \

<sut-file1>.c <sut-file2>.c ...

will produce an executable which performs additional address-related checks
and aborts the program execution if one of these checks fail.

1. Out-of-bounds accesses to heap, stack and globals (this includes array
boundary checks)

2. Use-after-free

3. Use-after-return

4. Use-after-scope

5. Double-free, invalid free

Create a fuzzer with integer overflow checks. Compiling with options

clang -o <fuzzer-executable-name> \

-g -O0 -fsanitize=fuzzer,signed-integer-overflow \

<further options> \

<testharness>.c \

<sut-file1>.c <sut-file2>.c ...

181

will produce an executable which performs additional checks for overflows in
signed integers. All fuzzer-related options can be combined, so that compi-
lation command

clang -o <fuzzer-executable-name> \

-g -O0 -fsanitize=fuzzer,address,signed-integer-overflow \

<further options> \

<testharness>.c \

<sut-file1>.c <sut-file2>.c ...

generates an executable where all the checks described above are made.

12.5 Executing a Fuzzer Program Created

With Clang

12.5.1 Simple Execution

The fuzzer executable created with one of the clang-commands described
above is now executed in the simplest case by starting the program executable
without additional parameters, like

./<fuzzer-executable-name>

This will lead to a program execution where the
LLVMFuzzerTestOneInput()-function is repeatedly called with varying
random inputs, guided by the coverage achieved so far (the coverage is
internally monitored during program execution). The program will only
stop when it crashes due to a segmentation fault, a failed assertion, or due
to address violations or signed integer overflows detected by libFuzzer. If
one of these abort situations occur, a file named

crash-<identification-string>

is created in the working directory where the program had been started.
The crash file can then be used as a parameter to a new start of the fuzzer
program – potentially in debug mode – and will use exactly the same data
leading to the abort situation. The associated fuzzer call looks like

./<fuzzer-executable-name> crash-<identification-string>

182

Example 18. Suppose that the small library function getMin() introduced
in Example 17 would be buggy as follows (we are sure that you can see the
programming error at once!).

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
5 int idx ;
6 int min = b u f f e r [0] ;
7 for (idx = 1 ; idx < numIntElements ; idx++) {
8 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;
9 }

10 return min ;
11 }

We create the fuzzer program with command

clang -o getMinFuzzer \

-g -O0 -fsanitize=fuzzer,address,signed-integer-overflow \

testharness.c \

mylib.c

Then the execution of the fuzzer with command

./getMinFuzzer

leads to a program abortion with outputs similar to

INFO: Seed: 1500934536

INFO: Loaded 1 modules (13 inline 8-bit counters): 13 [0x10d7b35c8, 0x10d7b35d5),

INFO: Loaded 1 PC tables (13 PCs): 13 [0x10d7b35d8,0x10d7b36a8),

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes

===

==13089==ERROR: AddressSanitizer: heap-buffer-overflow

on address 0x602000000150 at pc 0x00010d770e06 bp 0x7ffee2490430 sp 0x7ffee2490428

READ of size 4 at 0x602000000150 thread T0

#0 0x10d770e05 in getMin mylib.c:6

#1 0x10d770e75 in LLVMFuzzerTestOneInput testharness.c:15

. . .

==13089==ABORTING

. . .

artifact_prefix=’./’; Test unit written to

./crash-da39a3ee5e6b4b0d3255bfef95601890afd80709

12.5.2 Replay Run to Found Bug

As you have guessed already, the error found refers to line 6 of the source
code of getMin(): there, in the case that the buffer length is zero, the illegal

183

int-memory cell buffer[0] is accessed. If the situation is not quite clear to
you, you can re-run the program in the debugger3, using the crash-file. Of
course, you need to use the LLVM debugger lldb, since the program has
been compiled with clang – the gdb debugger would not work.

% lldb ./getMinFuzzer

(lldb) target create "./getMinFuzzer"

. . .

(lldb) b mylib.c:6

Breakpoint 1: where = getMinFuzzer‘getMin + 36 at mylib.c:6:15, address = 0x0000000100001d04

(lldb) r ./crash-da39a3ee5e6b4b0d3255bfef95601890afd80709

Process 13136 launched:

. . .

Running: ./crash-da39a3ee5e6b4b0d3255bfef95601890afd80709

Process 13136 stopped

* thread #1, queue = ’com.apple.main-thread’, stop reason = breakpoint 1.1

frame #0: 0x0000000100001d04 getMinFuzzer

‘getMin(buffer=0x0000602000000190, numIntElements=0) at mylib.c:6:15 [opt]

3

4 int getMin(const int* buffer, size_t numIntElements) {

5 int idx;

-> 6 int min = buffer[0];

7 for (idx = 1; idx < numIntElements; idx++) {

8 if (buffer[idx] < min) min = buffer[idx];

9 }

(lldb) p (size_t)malloc_size(buffer)

(size_t) $1 = 1

(lldb) n

===

==13136==ERROR: AddressSanitizer: heap-buffer-overflow

on address 0x602000000190 at pc 0x000100001e06 bp 0x7ffeefbff3d0 sp 0x7ffeefbff3c8

. . .

In this debugger run, we have set a breakpoint at the offending line 6 of the
getMin() function and then activated the fuzzer executable with the crash
file as parameter. Reaching the breakpoint, we can analyse the situation
more closely: the debugger tells us that getMin() has been invoked with a
non-null buffer pointer, but the value of parameter numIntElements is zero,
indicating that buffer is too short to accommodate an int-value. Indeed,
using the Libc function malloc_size()4, we can print the actual length of
the buffer (which was allocated on the heap by libFuzzer before calling
LLVMFuzzerTestOneInput()), and we find out that only 1 byte had been
allocated. Consequently, reading four bytes from the address of buffer in
line 6 is a violation of heap memory boundaries. �

3Re-running a program with the same test data that has lead to an error before is often
called replay.

4size t malloc size(void *ptr) is the function to use on Mac OS platforms; with
Linux it’s size t malloc usable size(void *ptr).

184

12.5.3 Using a Corpus

When performing coverage-guided random testing, libFuzzer is able to record
information which input data to the SUT is useful to cover certain portions of
code. If this information is available, later runs checking for different errors
may re-use this to cover these code portions more quickly. The collection of
information recorded from previous fuzzer runs is called corpus.

If the fuzzer executable is started like

./<fuzzer-executable-name> <name-of-existing-directory>

with name of an existing empty directory as first parameter, this directory is
used to set up a corpus, consisting of different binary files containing coverage
information.

When running the fuzzer program again (typically with other verification
objectives specified as assertions as explained below), providing the name of
corpus directory again has the effect that the new fuzzer run exploits the
information stored there about how to reach certain portions of the code.
Again, the name of the corpus directory must be given as first parameter.

Using a corpus usually speeds up the fuzzing process in a considerable
way. It is, however, only useful if the SUT code remains mostly unchanged
for the different fuzzer runs.

12.5.4 Useful Call Parameters

The generated fuzzer program (in our example, this was getMinFuzz) can
be invoked with many different parameters; these are listed when giving
command

./<fuzzer-executable-name> -help=1

In the following paragraphs, we describe two very useful parameters, but
make sure to inspect the full list, using the help command.

Setting a Timeout. As mentioned above, the fuzzer program runs “for-
ever” when called without a parameter bounding its execution time, and if
no crashes or termination commands are encountered. As long as errors are
found quickly, this is not a problem. If the SUT is assumed to be correct (or
“mostly correct”), however, it is useful to set time bounds making the fuzzer
stop after a certain period of fruitless search for further bugs.

When calling the fuzzer program, the time bound is set with command

185

./<fuzzer-executable-name> -max_total_time=<value-in-seconds> ...

The <value-in-seconds> needs to be positive, value zero is interpreted as
“no time bound”. Called like this, the fuzzer program will terminate after
the specified value in seconds, unless the detection of an error leads to an
earlier termination.

Setting a Seed. Without setting a specific parameter, the fuzzer program
uses new random data on every run. To create the random data, however,
pseudo random values are used. The seed for creating these values is printed
as

INFO: Seed: <seed-value>

to standard error, when executing the fuzzer program. Calling the fuzzer
with command

./<fuzzer-executable-name> -seed=<seed-value> ...

leads to re-using the <seed-value>, so that a kind of replay is performed,
including all the LLVMFuzzerTestOneInput() calls that did not lead to un-
covering an error and ending at the last LLVMFuzzerTestOneInput() call
where an error was uncovered or the execution time ran out.

12.5.5 Parallelisation for Finding Multiple Errors

The generated fuzzer program can be started in multi-processing mode, each
process executing a copy of the fuzzer and the SUT and hunting for errors
concurrently to the others. A job terminates if an error occurred. Meanwhile,
the still living jobs continue operating. The multi-process version of the
fuzzer program is activated by command

./<fuzzer-executable-name> \

-jobs=<number-of-jobs> -workers=<number-of-workers> ...

If n = <number-of-workers> is smaller that <number-of-jobs>, only n
jobs will be executed at a time, the remaining jobs will be processed when a
worker becomes free since its previous job has been completed.

The output produced by each job process is written to a file
fuzz-<job-number>.log. All concurrent jobs use the same corpus, if such
a directory exists.

This variant of multi-process execution of the fuzzer program is useful if

186

• the fuzzer is executed on a multi-core machine, and

• it is useful to hunt for different errors in a concurrent way.

Quite often, one would rather speed up the process for exploring the SUT
and stop after having found just one error. This variant of parallelisation is
described next.

12.5.6 Parallelisation for Speeding up Error Detection

For speeding up the detection of just one error, it is useful to start concurrent
fuzzers as well. In contrast to the parallelisation discussed in the previous
section, however, we wish to terminate the remaining processes as soon as the
first has found an error. This feature is currently not supported by libFuzzer,
but it is rather straightforward to implement.

1 #include <s t d i o . h>
2 #include <uni s td . h>
3 #include <s t d l i b . h>
4 #include <s t r i n g s . h>
5 #include <s i g n a l . h>
6 #include <sys / time . h>
7 #include <sys / wait . h>
8
9 /∗∗

10 ∗ Main program f o r cuncurrent a c t i v a t i o n o f a f u z z e r program . I t
11 ∗ e x p e c t s the f o l l o w i n g parameters .
12 ∗ @param argc number o f arguments passed to the main program ,
13 ∗ must be >= 3
14 ∗ @param argv [1] path to the f u z z e r program to be s t a r t e d
15 ∗ @param argv [2] number o f concurrent f u z z e r p r o c e s s e s
16 ∗ to be a c t i v a t e d
17 ∗ @param argv [3] f i r s t op t ion to be passed on to each
18 ∗ f u z z e r p roc es s i n s t a n c e
19 ∗ @param argv [argc −1] l a s t op t ion to be passed on to each
20 ∗ f u z z e r p roc es s i n s t a n c e
21 ∗ Def in ing o p t i o n s i s o p t i o n l .
22 ∗/
23 int main (int argc , const char ∗ argv []) {
24
25 i f (argc < 3) e x i t (1) ;
26
27 int i ;
28

187

29 const char∗ theProgramToStart = argv [1] ;
30 int numberOfCopies = a t o i (argv [2]) ;
31 p i d t pidArray [numberOfCopies] ;
32
33 // C a l l the f u z z e r wi th the f o l l o w i n g arguments :
34 // c a l l A r g s [0] name o f f u z z e r program
35 // c a l l A r g s [1 . . (argc −3)] argv [3 . . (argc −1)] i f argc > 3
36 // c a l l A r g s [argc −2] = NULL
37 char∗ c a l l A r g s [argc −1] ;
38
39 // F i r s t argument i s the program name
40 c a l l A r g s [0] = strdup (theProgramToStart) ;
41
42 // Copy o th er o p t i o n s prov ided in argv []
43 for (i = 3 ; i < argc ; i++) {
44 c a l l A r g s [i −2] = strdup (argv [i]) ;
45 }
46 // Terminate opt ion array wi th NULL p o i n t e r
47 c a l l A r g s [i −2] = NULL;
48
49 // S t a r t r e q u i r e d number o f f u z z e r p r o c e s s e s
50 for (i = 0 ; i < numberOfCopies ; i++) {
51 i f (0 == (pidArray [i] = fo rk ())) {
52 i f (execve (theProgramToStart , ca l lArgs ,NULL) < 0) {
53 pe r ro r (” execve ”) ;
54 }
55 }
56 }
57
58 // Wait f o r f i r s t f u z z e r proc es s to terminate
59 p i d t f i r s t P i d = wait (NULL) ;
60
61 // K i l l a l l remaining f u z z e r p r o c e s s e s
62 for (i = 0 ; i < numberOfCopies ; i++) {
63 i f (pidArray [i] != f i r s t P i d) {
64 i f (0 == k i l l (pidArray [i] , SIGKILL)) {
65 f p r i n t f (s tde r r , ” K i l l e d %u\n” , (unsigned) pidArray [i]) ;
66 }
67 else {
68 pe r ro r (” k i l l ”) ;
69 }
70 }
71 }
72 return 0 ;
73 }

188

Chapter 13

Property-Based Fuzz Testing

13.1 Property-Based Software Testing

Property-based testing (also called property-oriended testing) checks whether
a violation of a desired system or software property can be uncovered by
tests. Note that this is different from conformance testing discussed in the
previous parts of these lecture notes, where all potential deviations of the
SUT in relation to a reference model are investigated.

In the previous chapter, we have introduced fuzz testing with the LLVM
libFuzzer and explained that – among other conditions – the fuzzing process
always stops when an assertion fails. If we specify a desired program property
in an assertion, we can obviously apply fuzz testing to property-based testing.

The standard approaches to property specifications in software testing
are

• pre-conditions and post-conditions,

• invariant specifications,

• observers, and

• temporal logic specifications.

In the remainder of this chapter, we will introduce each of these concepts
and explain how the can be applied using the LLVM libFuzzer.

189

13.2 Pre-Conditions and Post-Conditions

Recall that behaviour of terminating software operations can be specified
by means of pre-conditions and post-conditions. The pre-condition specifies
under which conditions concerning global variables, input parameters, and
system resources (e.g. semaphores, available files, shared memory, . . .) a
well-defined result can be expected to be produced by the unit under test
(UUT). The post-condition specifies the relation between program pre-state
and program post-state, to be established by the UUT, provided that the
pre-condition held at the point in time when the UUT was called.

Pre-conditions and post-conditions are Boolean conditions with global
variables, operation parameters and return values, and system resource iden-
tifiers as free symbols. Representation formalisms for pre-and post-conditions
are widely discussed in the literature. We use a very straight-forward ap-
proach that is most appreciated by practitioners:

Pre-conditions and post-conditions are Boolean functions without
side effects, evaluating input parameters, global variables and
operating system resources that are defined in the scope where
they are compiled.

This is best illustrated by an example

Example 19. Consider again the function getMin() used in the examples
above.

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
5 i f (numIntElements == 0) return INT MAX;
6 int idx ;
7 int min = b u f f e r [0] ;
8 for (idx = 1 ; idx < numIntElements ; idx++) {
9 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;

10 }
11 return min ;
12 }

A more systematic requirements analysis for this function leads to the
following desired properties.

Prop. 1 The function shall return INT_MAX in the case of a zero-length
buffer.

190

Prop. 2 The function shall never change the contents of the buffer1

Prop. 3 If the buffer has positive length, the function shall return a smallest
element contained in the buffer.

As pre-condition, we require that buffer must be non-null.
These consideration lead to modified version of the fuzzer interface func-

tion which looks as follows.

1 #include <s t d l i b . h>
2 #include ”mylib . h”
3
4 int LLVMFuzzerTestOneInput (const u i n t 8 t ∗Data , s i z e t S i z e) {
5
6 // Don ’ t c a l l t he UUT i f p r e c o n d i t i o n i s not f u l f i l l e d
7 i f (! preCnd (Data)) return 0 ;
8
9 s i z e t idx ;

10 // Adapt data to SUT input format
11 const int ∗ b u f f e r = (const int ∗) Data ;
12 s i z e t numIntElements = S i z e / s izeof (int) ;
13
14 // Create a copy o f the b u f f e r −
15 // t h i s i s needed f o r check ing pro per t y 2
16 int∗ bufferCopy = (int ∗) mal loc (numIntElements∗ s izeof (int)) ;
17 memcpy(bufferCopy , bu f f e r , numIntElements∗ s izeof (int)) ;
18
19 // C a l l the SUT
20 int r e s u l t = getMin (bu f f e r , numIntElements) ;
21
22 // Check the post−co nd i t io ns , us ing C a s s e r t i o n s
23 a s s e r t (property1 (numIntElements , r e s u l t)) ;
24 a s s e r t (property2 (bu f f e r , numIntElements , bufferCopy)) ;
25 a s s e r t (property3 (bu f f e r , numIntElements , r e s u l t)) ;
26 // Free the b u f f e r copy
27 f r e e (bufferCopy) ;
28 return 0 ;
29 }

1You might object that this property is not necessary, since getMin() declares buffer
as a constant int pointer. Unfortunately, this const declaration does not protect against
pointers of, for example, character type. If we let a char pointer c point to an address
inside buffer and then assign a new value to *c, this will remain undetected at compile
time, though it changes buffer. Therefore, Prop. 2 is well-justified and should always be
checked for UUTs operating on a buffer that is not allowed to change.

191

As can be seen in line 7, the data provided by the fuzzer is discarded if
the pre-condition (applied by a call to function preCnd()) is not fulfilled. As
the only input parameter, the pre-condition function needs the Data input,
so that it can check this parameter to be non-NULL. Note that we do not
use a C-assertion here, because the test should not be aborted if the pre-
condition is not fulfilled: if !preCnd(Data) holds, this just implies that we
cannot work with this data on the UUT, but this is not the UUT’s fault.

The three post-condition properties, however, are checked using C-
assertions calling functions property1,2,3() in lines 23—25. The param-
eters used by these functions depend (of course) on the symbols needed to
check the respective property.

• Prop. 1 just needs the buffer length to decide whether INT_MAX should
be returned and the actual return value to check whether it contains
this value if the buffer length is zero.

• Prop. 2 is more subtle: it needs a copy of the original buffer passed on to
the UUT, so that it can check whether the original buffer has not been
changed by getMin(). Consequently, original buffer, its length, and the
buffer copy (which has the same length) are passed to property2().
The buffer copy is created before the UUT is called in lines 16—17.
Note that the buffer copy needs to be freed in line 27, because otherwise
your test may fail with an ‘out-of-memory’ failure which is not caused
by the UUT, but by the test engineer inducing a memory leak in the
test harness.2

• Prop. 3 checks the main requirement. To this end, the buffer, its length,
and the return value are need. Based on these data items, the function
can check whether the UUT really returns a smallest element from the
buffer. Note that this function has nothing to check if the buffer length
is zero.

The implementation of the condition functions should be inserted in to
the test harness. They are shown in the following listing. Please make sure
that you understand why the condition checking code of each function is
adequate!

2This would lead to a so-called false positive: the UUT is ok, but the test environment
is buggy. Therefore the test fails, and the test engineers lose their street credibility.

192

1 stat ic int preCnd (const u i n t 8 t ∗ Data) {
2 return (Data != NULL) ;
3 }
4
5 stat ic int property1 (s i z e t numIntElements , int r e s u l t) {
6 i f (numIntElements > 0) return 1 ;
7 return (r e s u l t == INT MAX) ;
8 }
9

10 stat ic int property2 (const int ∗ bu f f e r ,
11 s i z e t numIntElements ,
12 const int ∗bufferCopy) {
13 s i z e t i ;
14 for (i = 0 ; i < numIntElements ; i++) {
15 i f (b u f f e r [i] != bufferCopy [i]) return 0 ;
16 }
17 return 1 ;
18 }
19
20 stat ic int property3 (const int ∗ bu f f e r ,
21 s i z e t numIntElements ,
22 int r e s u l t) {
23 i f (numIntElements == 0) return 1 ;
24 s i z e t i ;
25 int haveSeenResult = 0 ;
26 for (i = 0 ; i < numIntElements ; i++) {
27 i f (b u f f e r [i] == r e s u l t) haveSeenResult = 1 ;
28 i f (b u f f e r [i] < r e s u l t) return 0 ;
29 }
30 return haveSeenResult ;
31 }

�

13.3 Invariants

Recall that invariants are Boolean conditions that are required to hold always
at the end of logically coherent transactions or at the beginning of each
loop body executed during an iteration. Further invariants specify integrity
constraints of structured data. The symbols occurring free in invariants used
for software testing comprise those occurring in pre-conditions and post-
conditions. However, it is often the case that invariants need to be evaluated
inside the UUT code, since they also refer to symbols (local variables, static

193

functions) that would be out of scope before the UUT is called or after it has
returned.

As a consequence, invariants are typically specified as C-assertions in the
UUT code itself. After testing, the C-assertions can be removed at compile
time without changing the UUT code: setting the option -DNDEBUG (this
sets the “no debug” define) instructs the compiler to not produce any as-
sertion code. As a consequence, it is admissible to have assertions inside C
production source code.

Example 20. Consider again the function getMin() used in the examples
above. We can define an invariant that should hold at the beginning of each
loop cycle performed by getMin():

Inv. 1. The value of local variable min must be a minimum of
the buffer section buffer[0..idx-1].

This invariant is implemented in the following UUT file.

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 // Only f o r i n v a r i a n t t e s t i n g
5 #ifndef NDEBUG
6 int inv1 (const int∗ bu f f e r , int idx , int min) {
7 int i ;
8 int haveSeenMin = 0 ;
9 for (i = 0 ; i < idx ; i++) {

10 i f (b u f f e r [i] == min) haveSeenMin = 1 ;
11 i f (b u f f e r [i] < min) return 0 ;
12 }
13 return haveSeenMin ;
14 }
15 #endif
16
17 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
18 i f (numIntElements == 0) return INT MAX;
19 int idx ;
20 int min = b u f f e r [0] ;
21 for (idx = 1 ; idx < numIntElements ; idx++) {
22 a s s e r t (inv1 (bu f f e r , idx , min)) ;
23 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;
24 }
25 return min ;
26 }

�

194

Chapter 14

Coverage Analysis

This chapter is new in Issue 5.1.

14.1 Objectives and Limitations of Coverage

Analysis

When fuzz testing no longer discovers any errors in the code, it is time to
decide whether we have tested enough. The complete testing methods dis-
cussed in other parts of the document are able to give mathematically proven
guarantees that we have tested enough after having passed a complete test
suite, provided that the hypotheses regarding the SUT’s number of internal
states and granularity of guard conditions are correct.

For fuzz testing, such guarantees cannot be given, since we do not have
a formal reference model of the code’s expected behaviour. But at least,
we can check whether the fuzz tests executed so far have covered all code
portions of interest. While this is definitely better than nothing, please keep
in mind that complete code coverage is worthless if we did not insert correct
and complete assertions about post conditions and invariants into the code.

The LLVM framework offers branch coverage analysis: it is recorded
which arcs of the code’s control flow graph have been covered. This coverage
metric is adequate for standard applications. For safety-critical applications,
however, this is insufficient. For avionic software of design assurance level A,
for example, software tests need to achieve MC/DC coverage [70].

195

14.2 Compile options for Fuzzing With Code

Coverage Profiling

When intending to measure the branch coverage achieved during fuzz testing,
two additional compile options

-fprofile-instr-generate -fcoverage-mapping

are required, so that the complete compile directive now looks as follows.

clang -o <fuzzer-executable-name> \

-g -O0 -fsanitize=fuzzer,address,signed-integer-overflow \

-fprofile-instr-generate -fcoverage-mapping \

<further options> \

<testharness>.c \

<sut-file1>.c <sut-file2>.c ...

The generated executable is now able to record coverage profiling data
while running, provided that the environment variable LLVM_PROFILE_FILE

has been associated with file name for the profiling raw data.
Command

LLVM_PROFILE_FILE="<file>.profraw" \

./<fuzzer-executable-name> -max_total_time=<duration>

will now result in a fuzzer execution of the UUT for <duration> seconds.
After successful termination, coverage raw data will be written into binary
file <file>.profraw.

The raw data file is pre-processed and merged with other data by means
of command

llvm-profdata merge -sparse <file>.profraw -o <file>.profdata

The the coverage achieved is displayed using command

llvm-cov show ./<fuzzer-executable-name> \

-instr-profile=<file>.profdata

Note that the coverage recording fails if the fuzzer aborts due to a crash
or failed assertion. In such a case, the bug causing the crash first has to

196

be fixed. Afterwards, the test can be re-run using the crash-file. If the bug
fix was successful, the run should now terminate without crashing, and the
coverage achieved by this test can be analysed.

Example 21. Consider yet another faulty variant of the UUT getMin()

discussed in the examples above.

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
5 i f (numIntElements == 0) return INT MAX;
6 int idx ;
7 int min = b u f f e r [0] ;
8 for (idx = 1 ; idx < numIntElements ; idx++) {
9 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;

10 }
11 // This i s a d e l i b e r a t e bug which c o r r u p t s
12 // the input b u f f e r i f i t i s l o n g e r than 500 i n t ’ s .
13 // The c e l l b u f f e r [4 0 0] i s corrupted .
14 i f (numIntElements > 500) {
15 char∗ c = (char ∗) (b u f f e r + 4 0 0) ;
16 ∗c = 17 ;
17 }
18 return min ;
19 }

It contains a bug of the “time bomb” type in lines 14 — 17 which might have
been inserted by a malicious programmer. The bug exploits the C language
specification which states that char*-pointers may be placed anywhere, even
into buffers declared as const as is the case in this example. The compiler
will accept this code without warning. The bug only occurs if the buffer is
longer than 500 words, and then it will corrupt the input buffer by assigning
a constant byte-value to some byte address inside the buffer. The bug has
time bomb character, since it does not occur in every run.

This malicious bug is a good example for using parallelisation in fuzz
testing, as described in Section 12.5.6: it takes just about one minute or
even less to uncover it, if we start 8 concurrent copies of the fuzzer.

Based on the violation of post-condition property2() occurring in the
fuzzer run, it is fairly straightforward to uncover the cause of the bug by
replaying the crash-file in the debugger. Suppose we use a minimal fix for
this bug by just commenting out the offending line 16 which corrupts the
buffer:

197

1 #include < l i m i t s . h>
2 #include ”mylib . h”
3
4 int getMin (const int∗ bu f f e r , s i z e t numIntElements) {
5 i f (numIntElements == 0) return INT MAX;
6 int idx ;
7 int min = b u f f e r [0] ;
8 for (idx = 1 ; idx < numIntElements ; idx++) {
9 i f (b u f f e r [idx] < min) min = b u f f e r [idx] ;

10 }
11 // This i s a d e l i b e r a t e bug which c o r r u p t s
12 // the input b u f f e r i f i t i s l o n g e r than 500 i n t ’ s .
13 // The c e l l b u f f e r [4 0 0] i s corrupted .
14 i f (numIntElements > 500) {
15 char∗ c = (char ∗) (b u f f e r + 4 0 0) ;
16 // @bugf ix ∗c = 17;
17 }
18 return min ;
19 }

If we now-recompile the executable with code coverage profiling enabled
and replay the test case using the crashfile, the formatted coverage created
by this test alone is shown in Fig. 14.1.

We expect that there are no further bugs to be found in this function.
The coverage information, however, shows that the

1 return INT MAX;

statement in line 5 has not been executed yet (it is therefore marked in red).
Therefore we start the fuzzer again with a time limit of 60s. The accumulated
coverage displayed in Fig. 14.2 shows that complete branch coverage has been
achieved now.

Since no further bugs have come up and the branch coverage is complete,
we stop testing. �

198

Figure 14.1: Code coverage achieved by replay of crash file for bug from
line 16 of UUT getMin().

Figure 14.2: Code coverage achieved by an additional fuzz test lasting one
minute.

199

Bibliography

[1] Rui Abreu and Arjan J. C. van Gemund. A low-cost approximate mini-
mal hitting set algorithm and its application to model-based diagnosis.
In Vadim Bulitko and J. Christopher Beck, editors, Eighth Symposium
on Abstraction, Reformulation, and Approximation, SARA 2009, Lake
Arrowhead, California, USA, 8-10 August 2009. AAAI, 2009.

[2] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Har-
rold, and Phil McMinn. An orchestrated survey of methodologies for
automated software test case generation. Journal of Systems and Soft-
ware, 86(8):1978–2001, 2013.

[3] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. Black-box
system testing of real-time embedded systems using random and search-
based testing. In Proceedings of the 22nd IFIP WG 6.1 international
conference on Testing software and systems, ICTSS’10, pages 95–110,
Berlin, Heidelberg, 2010. Springer-Verlag.

[4] Cécile Braunstein, Anne E. Haxthausen, Wen-ling Huang, Felix Hübner,
Jan Peleska, Uwe Schulze, and Linh Vu Hong. Complete model-based
equivalence class testing for the ETCS ceiling speed monitor. In S. Merz
and J. Pang, editors, Proceedings of the ICFEM 2014, number 8829
in Lecture Notes in Computer Science, pages 380–395. Springer Berlin
Heidelberg, November 2014.

[5] Cécile Braunstein, Wen-ling Huang, Jan Peleska, Uwe Schulze, Felix
Hübner, Anne E. Haxthausen, and Linh Vu Hong. A SysML test model
and test suite for the ETCS ceiling speed monitor. Technical report, Em-
bedded Systems Testing Benchmarks Site, 2014-04-30. Available under
http://www.mbt-benchmarks.org.

200

[6] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in
circus. Acta Inf., 48(2):97–147, 2011.

[7] Ana Cavalcanti, Wen-ling Huang, Jan Peleska, and Jim Woodcock. CSP
and kripke structures. In Martin Leucker, Camilo Rueda, and Frank D.
Valencia, editors, Theoretical Aspects of Computing - ICTAC 2015 - 12th
International Colloquium Cali, Colombia, October 29-31, 2015, Proceed-
ings, volume 9399 of Lecture Notes in Computer Science, pages 505–523.
Springer, 2015.

[8] T. Y. Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. Adaptive
random testing: the art of test case diversity. JOURNAL OF SYSTEMS
AND SOFTWARE, 83(1):60–66, 2010.

[9] Tsun S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, SE-4(3):178–186, March
1978.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[11] Razvan Diaconescu. Institution-independent Model Theory. Birkhäuser
Verlag AG, Basel, Boston, Berlin, 2008.

[12] Jeremy Dick and Alain Faivre. Automating the generation and sequenc-
ing of test cases from model-based specifications. In James C. P. Wood-
cock and Peter G. Larsen, editors, FME ’93: Industrial-Strength Formal
Methods, number 670 in Lecture Notes in Computer Science, pages 268–
284. Springer Berlin Heidelberg, January 1993.

[13] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An improved
conformance testing method. In Farn Wang, editor, Formal Techniques
for Networked and Distributed Systems - FORTE 2005, 25th IFIP WG
6.1 International Conference, Taipei, Taiwan, October 2-5, 2005, Pro-
ceedings, volume 3731 of Lecture Notes in Computer Science, pages 204–
218. Springer, 2005.

[14] E.J. McCluskey Jr. Minimization of boolean functions. Bell System
Technical Journal, 35(6):1417–1444, 1956.

201

[15] André Takeshi Endo and Adenilso da Silva Simão. Experimental com-
parison of test case generation methods for finite state machines. In
Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche, editors, Fifth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, pages
549–558. IEEE, 2012.

[16] European Committee for Electrotechnical Standardization. EN 50128 –
Railway applications – Communications, signalling and processing sys-
tems – Software for railway control and protection systems. CENELEC,
Brussels, 2001.

[17] European Railway Agency. ERTMS – System Requirements
Specification – UNISIG SUBSET-026, February 2012. Avail-
able under http://www.era.europa.eu/Document-Register/Pages/Set-2-
System-Requirements-Specification.aspx.

[18] Lars Frantzen, Jan Tretmans, and TimA.C. Willemse. Test generation
based on symbolic specifications. In Jens Grabowski and Brian Nielsen,
editors, Formal Approaches to Software Testing, volume 3395 of Lec-
ture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg,
2005.

[19] S. Fujiwara, G. v Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite state models. IEEE Trans-
actions on Software Engineering, 17(6):591–603, 1991.

[20] Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses,
Mogens Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT, vol-
ume 915 of Lecture Notes in Computer Science, pages 82–96. Springer,
1995.

[21] Arthur Gill. Introduction to the theory of finite-state machines. McGraw-
Hill, New York, 1962.

[22] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract Model
Theory for Specification and Programming. J. ACM, 39(1):95–146, Jan-
uary 1992.

202

[23] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus
Veanes. Generating finite state machines from abstract state machines.
ACM SIGSOFT Software Engineering Notes, 27(4):112–122, July 2002.

[24] Steffen Helke, Thomas Neustupny, and Thomas Santen. Automating
test case generation from z specifications with isabelle. In Jonathan P.
Bowen, Michael G. Hinchey, and David Till, editors, ZUM ’97: The Z
Formal Specification Notation, number 1212 in Lecture Notes in Com-
puter Science, pages 52–71. Springer Berlin Heidelberg, January 1997.

[25] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, Cam-
bridge, MA, USA, 1988.

[26] Rob M. Hierons. Testing from a nondeterministic finite state ma-
chine using adaptive state counting. IEEE Transactions on Computers,
53(10):1330–1342, 2004.

[27] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming.
Prentice-Hall, 1998.

[28] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A tem-
poral logic based theory of test coverage and generation. In Joost-Pieter
Katoen and Perdita Stevens, editors, TACAS, volume 2280 of Lecture
Notes in Computer Science, pages 327–341. Springer, 2002.

[29] Wen-ling Huang, Sadik Özoguz, and Jan Peleska. Safety-
complete test suites. Software Quality Journal, Oct 2018.
https://doi.org/10.1007/s11219-018-9421-y.

[30] Wen-ling Huang and Jan Peleska. Exhaustive model-based equivalence
class testing. In Hüsnü Yenigün, Cemal Yilmaz, and Andreas Ulrich,
editors, Testing Software and Systems, volume 8254 of Lecture Notes in
Computer Science, pages 49–64. Springer Berlin Heidelberg, 2013.

[31] Wen-ling Huang and Jan Peleska. Complete model-based equivalence
class testing. STTT, 18(3):265–283, 2016.

[32] Wen-ling Huang and Jan Peleska. Complete model-based equivalence
class testing for nondeterministic systems. Formal Aspects of Comput-
ing, pages 1–30, 2016. Available under http://dx.doi.org/10.1007/

s00165-016-0402-2.

203

http://dx.doi.org/10.1007/s00165-016-0402-2
http://dx.doi.org/10.1007/s00165-016-0402-2

[33] Wen-ling Huang and Jan Peleska. Safety-complete test suites. In Nina
Yevtushenko, Ana Rosa Cavalli, and Hüsnü Yenigün, editors, Testing
Software and Systems - 29th IFIP WG 6.1 International Conference,
ICTSS 2017, St. Petersburg, Russia, October 9-11, 2017, Proceedings,
volume 10533 of Lecture Notes in Computer Science, pages 145–161.
Springer, 2017.

[34] Felix Hübner, Wen-ling Huang, and Jan Peleska. Experimental eval-
uation of a novel equivalence class partition testing strategy. In Jas-
min Christian Blanchette and Nikolai Kosmatov, editors, Tests and
Proofs - 9th International Conference, TAP 2015, Held as Part of STAF
2015, L’Aquila, Italy, July 22-24, 2015. Proceedings, volume 9154 of Lec-
ture Notes in Computer Science, pages 155–172. Springer, 2015.

[35] ISO/IEC/IEEE 29119-1:2013(e): Software and systems engineering –
software testing – part 1: Concepts and definitions, September 2013.

[36] ISO/IEC/IEEE 29119-2:2013(e): Software and systems engineering –
software testing – part 2: Test processes, September 2013.

[37] ISO/IEC/IEEE 29119-3:2013(e): Software and systems engineering –
software testing – part 3: Test documentation, September 2013.

[38] ISO/IEC/IEEE DIS 29119-4.2: Software and systems engineering – soft-
ware testing – part: 4 test techniques, February 2014.

[39] Paul C. Jorgensen. The Craft of Model-Based Testing. CRC Press, Boca
Raton, 2017.

[40] Abdul Salam Kalaji, Robert M. Hierons, and Stephen Swift. Generating
feasible transition paths for testing from an extended finite state machine
(efsm). In ICST, pages 230–239. IEEE Computer Society, 2009.

[41] R. Karp. Reducibility among combinatorial problems. In R.E. Miller and
J.W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, New York NY, 1972.

[42] Donald E. Knuth. The Art of Computer Programming – Volume 1 – Fun-
damental Algorithms. Addison Wesley Longman, Reading, MA, 1997.

204

[43] Florian Lapschies. SONOLAR homepage, June 2014.
http://www.informatik.uni-bremen.de/agbs/florian/sonolar/.

[44] Florian Lapschies. The SONOLAR SMT Solver. PhD thesis, University
of Bremen, 2014. To be submitted in November 2016.

[45] G. Luo, G.V. Bochmann, and A. Petrenko. Test selection based on com-
municating nondeterministic finite-state machines using a generalized
wp-method. IEEE Transactions on Software Engineering, 20(2):149–
162, 1994.

[46] Till Mossakowski and Markus Roggenbach. Structured CSP - A pro-
cess algebra as an institution. In José Luiz Fiadeiro and Pierre-Yves
Schobbens, editors, Recent Trends in Algebraic Development Techniques,
18th International Workshop, WADT 2006, La Roche en Ardenne, Bel-
gium, June 1-3, 2006, Revised Selected Papers, volume 4409 of Lecture
Notes in Computer Science, pages 92–110. Springer, 2006.

[47] S. Naito and M. Tsunoyama. Fault detection for sequential machines
by transition tours. In Proc. IEEE Fault Tolerant Comput. Conf., pages
162–178, 1981.

[48] Object Management Group. OMG Systems Modeling Language (OMG
SysML), Version 1.4. Technical report, Object Management Group,
2015. http://www.omg.org/spec/SysML/1.4.

[49] J. Peleska and M. Siegel. Test automation of safety-critical reactive
systems. South African Computer Jounal, 19:53–77, 1997.

[50] Jan Peleska. Formal Methods and the Development of Dependable Sys-
tems. Number 9612 in Institut für Informatik und Praktische Mathe-
matik, Berichte. Christian-Albrechts-Universität Kiel, December 1996.
Habilitationsschrift.

[51] Jan Peleska. Industrial-strength model-based testing - state of the art
and current challenges. In Alexander K. Petrenko and Holger Schlingloff,
editors, Proceedings Eighth Workshop on Model-Based Testing, Rome,
Italy, 17th March 2013, volume 111 of Electronic Proceedings in The-
oretical Computer Science, pages 3–28. Open Publishing Association,
2013.

205

[52] Jan Peleska, Wen-ling Huang, and Felix Hübner. A novel approach
to HW/SW integration testing of route-based interlocking system con-
trollers. In Thierry Lecomte, Ralf Pinger, and Alexander Romanovsky,
editors, Reliability, Safety, and Security of Railway Systems. Modelling,
Analysis, Verification, and Certification - First International Confer-
ence, RSSRail 2016, Paris, France, June 28-30, 2016, Proceedings, vol-
ume 9707 of Lecture Notes in Computer Science, pages 32–49. Springer,
2016.

[53] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test
case generation with SMT-solving and abstract interpretation. In Mi-
haela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,
editors, Nasa Formal Methods, Third International Symposium, NFM
2011, volume 6617 of LNCS, pages 298–312, Pasadena, CA, USA, April
2011. Springer.

[54] A. Petrenko and N. Yevtushenko. Adaptive testing of deterministic
implementations specified by nondeterministic fsms. In Testing Software
and Systems, number 7019 in Lecture Notes in Computer Science, pages
162–178, Berlin, Heidelberg, 2011. Springer.

[55] A. Petrenko and N. Yevtushenko. Adaptive testing of nondeterministic
systems with fsm. In 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering (HASE), pages 224–28, 2014.

[56] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Fault models for
testing in context. In Reinhard Gotzhein and Jan Bredereke, editors,
Formal Description Techniques IX – Theory, application and tools, pages
163–177. Chapman&Hall, 1996.

[57] A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Testing determin-
istic implementations from nondeterministic FSM specifications. In In
Testing of Communicating Systems, IFIP TC6 9th International Work-
shop on Testing of Communicating Systems, pages 125–141. Chapman
and Hall, 1996.

[58] Alexandre Petrenko and Nina Yevtushenko. Conformance tests as
checking experiments for partial nondeterministic FSM. In Wolfgang
Grieskamp and Carsten Weise, editors, Formal Approaches to Software
Testing, 5th International Workshop, FATES 2005, Edinburgh, UK, July

206

11, 2005, Revised Selected Papers, volume 3997 of Lecture Notes in Com-
puter Science, pages 118–133. Springer, 2005.

[59] Alexandre Petrenko and Nina Yevtushenko. Adaptive testing of nonde-
terministic systems with FSM. In 15th International IEEE Symposium
on High-Assurance Systems Engineering, HASE 2014, Miami Beach,
FL, USA, January 9-11, 2014, pages 224–228. IEEE Computer Society,
2014.

[60] Alexandre Petrenko, Nina Yevtushenko, Alexandre Lebedev, and
Anindya Das. Nondeterministic state machines in protocol conformance
testing. In Omar Rafiq, editor, Protocol Test Systems, VI, Proceed-
ings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol
Test systems, Pau, France, 28-30 September, 1993, volume C-19 of IFIP
Transactions, pages 363–378. North-Holland, 1993.

[61] W. V. Quine. The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531, 1952.

[62] A. W. Roscoe. Understanding Concurrent Systems. Springer, London,
Dordrecht Heidelberg, New York, 2010.

[63] Adenilso Simão, Alexandre Petrenko, and Nina Yevtushenko. On reduc-
ing test length for FSMs with extra states. Software Testing, Verification
and Reliability, 22(6):435–454, September 2012.

[64] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software Testing Foun-
dations. dpunkt.verlag, Heidelberg, 2006.

[65] J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Test-
ing timed automata. Theoretical Computer Science, 254(1-2):225–257,
March 2001.

[66] P. H. Starke. Abstract Automata. Elsevier, North-Holland, Amsterdam,
1972.

[67] Jan Tretmans. Conformance testing with labelled transition systems:
Implementation relations and test generation. Computer Networks and
ISDN Systems, 29(1):49–79, 1996.

207

[68] UNISIG, editor. ERTMS/ETCS System Requirements Specification,
Chapter 3, Principles, volume Subset-026-3, chapter 3. UNISIG, Febru-
ary 2012. Issue 3.3.0.

[69] M. P. Vasilevskii. Failure diagnosis of automata. Kibernetika (Transl.),
4:98–108, July-August 1973.

[70] RTCA SC-205/EUROCAE WG-71. Software Considerations in Air-
borne Systems and Equipment Certification. Technical Report
RTCA/DO-178C, RTCA Inc, 1140 Connecticut Avenue, N.W., Suite
1020, Washington, D.C. 20036, December 2011.

208

Appendix A

Algorithms for Solving the
Minimal Hitting Set Problem

A.1 Problem Statement

Let (W,S) be a set system consisting of a universe W (which is just a finite
set in our case) and a collection S = {z1, . . . , zn} of subsets of W, that is,
∀i ∈ {1, . . . , n} : zi ⊆W. The minimal hitting set (MHS) problem is defined
as the task to identify a subset H ⊆W such that

1. ∀i ∈ {1, . . . , n} : zi ∩H 6= ∅

2. ∀H ′ ⊆ H : (H ′ 6= H⇒ ∃i ∈ {1, . . . , n} : zi ∩H ′ = ∅)

Intuitively speaking, a solution H of the MHS problem has a non-empty
intersection with every set zi contained in the collection S, and H cannot be
further reduced without violating this property.

Since we are dealing with finite universes only, we can assume that W
consists of the natural numbers {1, . . . ,m}, and the zi are always subsets of

209

{1, . . . ,m}.

Example 22. Let W = {1, . . . , 10} and S = {z1, . . . , z5} with

z1 = {1, 2, 3}

z2 = {4}

z3 = {1, 4}

z4 = {3, 5}

z5 = {3, 5, 6}

Then {1, 2, 4, 5} is a non-minimal hitting set of the set system (W,S), because
it can be reduced to, for example, {1, 4, 5} without loosing the hitting set
property. The sets {1, 4, 5} and {3, 4} are minimal subsets; this shows that
MHSs may have different cardinality. �

A.2 A Simple Complete Algorithm for

Determining Minimal Hitting Sets With

Minimal Cardinality

For the purpose of creating state identification sets as described in Sec-
tion 3.7, we have seen there in Algorithm 2 that this task can be formulated
as an MHS problem. It is desirable, however, to identify the smallest state
identification sets possible; this can be rephrased as the problem to find an
MHS with smallest cardinality. To identify such an MHS, all MHSs have to
be determined. Unfortunately, this is an NP-hard problem [41].

Experience shows, however, that in practical applications the characteri-
sation sets W have rather small sizes, so that an explicit enumeration of all
MHSs is possible. The following algorithm describes how such an enumera-
tion can be performed. If this leads to complexity problems, one of the many
existing approximation algorithms should be applied instead; we name [1] as
an example.

1. Input. Set system (U, S).

2. Output. MHS H with minimal cardinality.

210

3. Initialise H :=
⋃
z∈S z. Obviously, H has a non-empty intersection with

every element of S, so it is a hitting set.

4. Initialise tree with root r := H.

5. Set current tree node c := r.

6. While the tree can still be expanded, proceed recursively as follows.

(a) For every a ∈ c, proceed as follows.

i. Set c ′ := c− {a}.

ii. If ∀z ∈ S : c ′ ∩ z 6= ∅ do

• Extend tree by making c ′ a child node of c.

• Set c := c ′.

• If |c| < |H|, set H := c.

• Continue recursively with the new value of c at Step 6a
(the loop for the old node c will be continued after the sub-
tree of the new node c has been completely constructed).

iii. Otherwise continue loop at Step 6a (the tree remains un-
changed, c remains unchanged).

(b) After the loop in Step 6a has been completed for a given node c:
If a parent node exists, set c := ‘parent node’ and continue with
loop in Step 6a of the parent node (which has already been started
before recursively commencing the loop over the old value of c).
Otherwise continue with Step 7.

7. Return H.

Example 23. Consider again the hitting set problem from Example 22.
Applying the algorithm above, the tree depicted in two parts in Fig. A.1 and
Fig. A.2 is generated. Scanning the leaves of the tree shows that the minimal
hitting sets are

{3, 4}, {1, 4, 5}, {2, 4, 5},

and the minimal hitting set with minimal cardinality is {3, 4}. �

211

[1
, 2

, 3
, 4

, 5
, 6

]

[2
, 3

, 4
, 5

, 6
]

[1
, 3

, 4
, 5

, 6
]

[1
, 2

, 4
, 5

, 6
]

[3
, 4

, 5
, 6

]
[2

, 4
, 5

, 6
]

[2
, 3

, 4
, 6

]
[2

, 3
, 4

, 5
]

[3
, 4

, 6
]

[3
, 4

, 5
]

[4
, 3

]
[4

, 3
]

[2
, 4

, 5
]

[3
, 4

, 6
]

[2
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[3
, 4

, 5
]

[2
, 4

, 5
]

[2
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[3
, 4

, 5
, 6

]
[1

, 4
, 5

, 6
]

[1
, 3

, 4
, 6

]
[1

, 3
, 4

, 5
]

[3
, 4

, 6
]

[3
, 4

, 5
]

[4
, 3

]
[4

, 3
]

[1
, 4

, 5
]

[3
, 4

, 6
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[3
, 4

, 5
]

[1
, 4

, 5
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[2
, 4

, 5
, 6

]
[1

, 4
, 5

, 6
]

[1
, 2

, 4
, 5

]

[2
, 4

, 5
]

[1
, 4

, 5
]

[2
, 4

, 5
]

[1
, 4

, 5
]

Figure A.1: First part of tree constructed by the algorithm above for solving
the minimal hitting set problem from Example 22.

212

[1
, 2

, 3
, 4

, 5
, 6

]

[1
, 2

, 3
, 4

, 6
]

[1
, 2

, 3
, 4

, 5
]

[2
, 3

, 4
, 6

]
[1

, 3
, 4

, 6
]

[1
, 2

, 3
, 4

]

[3
, 4

, 6
]

[2
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[3
, 4

, 6
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[2
, 3

, 4
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[2
, 3

, 4
, 5

]
[1

, 3
, 4

, 5
]

[1
, 2

, 4
, 5

]
[1

, 2
, 3

, 4
]

[3
, 4

, 5
]

[2
, 4

, 5
]

[2
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[3
, 4

, 5
]

[1
, 4

, 5
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

[2
, 4

, 5
]

[1
, 4

, 5
]

[2
, 3

, 4
]

[1
, 3

, 4
]

[4
, 3

]
[4

, 3
]

Figure A.2: Second part of tree constructed by the algorithm above for
solving the minimal hitting set problem from Example 22.

213

A.3 The MHS Problem Re-Formulated as a

Minimal SAT Model Problem

Recall that the task to find a Boolean valuation function s : V → B on
variables V = {x1, . . . , xn}, that is a model for a given Boolean formula ϕ
with free variables in V is called the SAT problem. Being a model for a
formula is written as s |= ϕ and defined by

s |= ϕ ≡ ϕ[s(x1)/x1, . . . , s(xn)/xn].

This means that replacing every free variable xi in ϕ by its Boolean value
assignment s(xi) results in a term that is equivalent to true.

The Minimal SAT Model Problem tries to find a minimal subset A ⊆ V
and a valuation function u : A → B such that u is already a model for ϕ,
regardless of the assignments to the variables in V −A. This means that

ϕ[s(x)/x | x ∈ A]

is a tautology, i.e. it evaluates to true in every possible valuation of the
remaining variables from V −A occurring on ϕ.

Let us now reconsider the minimal hitting set problem and encode it as
a minimal SAT model problem. Let (W,S) be a set system with universe
W = {1, . . . ,m} ⊆ N and S = {z1, . . . , zn} with zi ⊆ W for i = 1, . . . , n. Let
V = {x1, . . . , xm} be a set of Boolean variable symbols. Any subset M ⊆ W
induces a valuation function sM : V → B defined by

∀i ∈ {1, . . . ,m} : sM(xi)⇔ (i ∈M).

The hitting set problem

Find H ⊆W such that ∀i ∈ {1, . . . , n} : zi ∩H 6= ∅

can now be re-formulated as the SAT problem in conjunctive form

n∧
i=1

∨
j∈zi

xj

It is easy to see that finding a minimal hitting set corresponds to finding a
minimal SAT model u : A→ B, A ⊆ V for ϕ.

Example 24. Consider again the MHS problem from Example 22 with

214

W = {1, . . . , 10} and S = {z1, . . . , z5} and

z1 = {1, 2, 3}

z2 = {4}

z3 = {1, 4}

z4 = {3, 5}

z5 = {3, 5, 6}

Setting V = {x1, . . . , x10}, the hitting set problem can be re-formulated as
the SAT problem

ϕ ≡
(x1 ∨ x2 ∨ x3)∧
(x4)∧
(x1 ∨ x4)∧
(x3 ∨ x5)∧
(x3 ∨ x5 ∨ x6)

Any valuation s : V → B satisfying, for example,

s(x1) = s(x2) = s(x4) = s(x5) = true

is a model for ϕ, and this is equivalent to the fact that H = {1, 2, 4, 5} is a
hitting set for (W,S).

The valuation function u = {x3 7→ true, x4 7→ true}, for example, is
a minimal model for ϕ, and this corresponds to the minimal hitting set
H = {3, 4}. �

For finding minimal SAT models, the well-known algorithm of Quine and
McClusky [61, 14] can be used, for example. It guarantees to find one minimal
model, but does not enumerate all minimal models. As a consequence, it
is not guaranteed that the solution also has minimal cardinality. On the
other hand, the algorithm will generally be significantly faster and need less
memory than the complete one presented above.

215

Appendix B

Introduction to the FSM
Library

B.1 Overview

The Finite State Machine Library (FSM Library) is a class library contain-
ing essential algorithms for manipulating finite state machines and applying
model-based test generation methods as described in Part II of these lecture
notes. Moreover, the FSM Library contains an executable for test generation
by W-Method or Wp-Method. Finally, the library provides a test harness
for executing test suites against simple software units written in C.

The FSM Library is provided as open source as explained in Section B.2
and can be used free of charge for non-commercial applications, such as
education and research. It is licensed under EUPL V.1.1.1

B.2 Download and Installation

The FSM Library is stored on the GitHub; its repository name is fsmlib-cpp
(there is also a Java implementation of the algorithms contained in the FSM
Library). The HTTPS identification is

https://github.com/agbs-uni-bremen/fsmlib-cpp.git

The source code can be downloaded using the command

1see http://ec.europa.eu/idabc/eupl.html

216

http://ec.europa.eu/idabc/eupl.html

git clone https://github.com/agbs-uni-bremen/fsmlib-cpp.git

For producing the binary code of the library, including the executable,
the cmake tool is used, and the required CMakeLists.txt have already been
prepared in the repository. The scripts

build-for-linux.sh

build-for-osx.sh

provide examples how cmake can be invoked to create makefiles and auxiliary
information for compiling and linking the libraries and executables involved.
The README.md file explains in detail how the cmake configuration, compila-
tion, and linking works under Linux, MacOSX, and Windows.

B.3 Test Generation Support

Users only interested in applying the FSM Library for automated test gen-
eration from FSM models find the test generator executable

fsm-test-generator

in the cmake compilation and linking directory (e.g. Debug.Linux) in sub-
directory generator/. Its source code is contained in file

src/generator/fsm-test-generator.cpp

The test generator is invoked with command

fsm-generator [-w|-wp|-h|-hsi] [-s] [-n fsmname] \

[-p infile outfile statefile] \

[-a additionalstates] [-t testsuitename] \

modelfile [model abstraction file]

The parameters have the following meaning.

modelfile Path to the file containing the model; the file extension and the
contents of the file need to conform to one of the formats specified in
Section B.4. This is the only mandatory parameter to be supplied.

217

-w|-wp|-h|-hsi These optional parameters select the strategy. If none of
them is provided, tests are generated according to the Wp-Method (see
Section 4.8.1); alternatively, parameter -wp can be used for this).

With parameter -w, the W-Method [9, 69] is applied, with -h the H-
Method [13], with -hsi the HSI-Method [60].

-s This parameter may be selected in combination with -w, -wp, -h. It
indicates that the test suite should not aim at I/O-equivalence but at
the weaker goal safety equivalence, as described in [33, 29]. This often
leads to fewer test cases, but only guarantees complete fault coverage
for safety-related requirements.

If parameter -s is selected, then the model abstraction file ex-
plained in [29] needs to be provided as last parameter.

-a additionalstates All selectable test generation methods guarantee to
full fault coverage, provided that

• the true behaviour of the SUT can be expressed by an observable,
minimised FSM with at most m states,

• the reference model, when represented in observable, minimised
form, has n states, and

• the difference (m − n) between implementation FSM states and
reference model states fulfils

m− n ≤ additionalstates.

By default, additionalstates is assumed to be zero.

model abstraction file Only used when parameter -s is set, see expla-
nation for -s above.

-n fsmname Optional name to be associated with the FSM reference model;
this name appears on some graphical representations of the FSM. By
default, the name “FSM” is used.

-t testsuitename By default, the generated test suite is written to file in
the process working directory.

testsuite.txt

218

Using the -t-option, another path/file name can be selected.

-p infile outfile statefile With the low-level FSM format specified
in Section B.4.2, optional presentation layer specifications can be pro-
vided. These three files contain the external names of FSM states,
inputs, and outputs, respectively.

On successful execution, the test generator outputs the following files to
the process working directory.

<testSuiteFileName> The generated test suite, named testsuite.txt by
default or <testSuiteFileName>, if the -t option had been used to
specify another name. The format of the test suite is as follows.

1. One test case per line.

2. Each test case consists of a sequence of (input/output) pairs, such
as

(x0/y0).(x1/y1).(x2/y2)...

where xi is a member of the input alphabet, and yi a member of
the output alphabet.

<FSM-Name>.dot This text file contains a representation of the FSM model
in GraphViz format (“dot-format”), to be displayed by the GraphViz
tools.2 By default, the file name is FSM.dot; if another name has
been selected for the FSM using the -n option, this name is used as
<FSM-Name>.dot.

<FSM-Name>.csv If the FSM model is deterministic, a DFSM representation
in CSV-format as described in Section B.4.1 is produced.

B.4 FSM Model Input Formats

B.4.1 Model Input in CSV-Format

Deterministic and completely specified (see Section 3.2) FSMs can be mod-
elled using CSV-format, exported from tools like Excel or LibreOffice.

2see http://www.graphviz.org

219

http://www.graphviz.org

Fig. B.1 shows a DFSM table for the Garage Door Controller example de-
scribed below in Section B.6. The rules for filling out such a DFSM transition
table are as follows.

1. The leftmost/uppermost field (A,1) is empty.

2. The first column, starting with (A,2), contains the state names, starting
with the initial state in (A,2).

3. The first row, starting with (B,1), contains the identifiers if the input
alphabet.

4. For state s and input x, field (s, x) has syntax s ′/y. s ′ is the post
state of the transition from state s on input x, and y is the correspond-
ing output. s ′ must be a valid state identifier occurring in the first
column A.

5. All identifiers conform to C-variable syntax: start with a character or
an underscore, only characters, underscores, or numbers may follow, no
spaces.

6. If the table field for state s on input x is empty, this is interpreted as a
self-loop s/ nop: a transition with post-state identical to the pre-state,
accompanied by a “no operation” output nop which is always inserted
into the output alphabet. As a consequence, the DFSMs specified in
this way are automatically completely specified.

7. The CSV format needs semicolon “;” as separator. This is important
when exporting from a formatted tabular file format (such as .xlsx or
.ods) to CSV.

An example of an admissible model CSV-format looks as follows, it cor-
responds to the DFSM transition table shown in Fig. B.1.

;e1;e2;e3;e4

Door_Up;Door_closing/a1;;;

Door_Down;Door_opening/a2;;;

Door_stopped_going_down;Door_closing/a1;;;

Door_stopped_going_up;Door_opening/a2;;;

Door_closing;Door_stopped_going_down/a3;Door_Down/a3;;Door_opening/a4

Door_opening;Door_stopped_going_up/a3;;Door_Up/a3;

220

Figure B.1: Tabular format for modelling DFSMs.

B.4.2 Model Input in Low-level FSM Format

The low-level format for FSM models is more flexible than the CSV-format.

• It allows for specification of nondeterministic, even non-observable
FSMs.

• It is possible to specify FSMs that are not completely specified.

• It is possible to specify larger input alphabets, where not every input
is processed by the FSM.

• It is possible to specify larger output alphabets, where the FSM pro-
duces only a subset of actual outputs.

Additionally, if FSMs are the result of another automated generation process,
the low-level format is easier to generate automatically than the other formats
accepted by the generator.

By convention, FSM definition files in low-level format carry the file ex-
tension .fsm. Each line of an FSM definition file specifies one transition by
means of four non-negative numbers

<pre-state> <input> <output> <post-state>

The interpretation of one transition line is: “Starting in state <pre-state>,
the FSM may transit with input <input> to state <post-state>,
producing output <output>.” The states are numbered in range
0, 1, 2, . . . , (NumberOfStates − 1). The inputs are numbered in range
0, 1, 2, . . . , (SizeOfInputAlphabet − 1). The outputs are numbered in range
0, 1, 2, . . . , (SizeOfOutputAlphabet − 1).

221

For every state, all outgoing transitions must be listed in consecutive
lines. The initial FSM state is specified by the <pre-state> of the first line
in the file. Therefore the pre-state is not necessarily the one with number 0.
This is practical when producing different FSMs from the same initial FSM
by changing the initial state, but leaving all other specifications unchanged.
In such a case, the block of lines starting with the new initial state is just
moved to the beginning of the file.

Without further information, the generator will represent the FSM with
numbers 0, 1, 2, . . . for states, inputs, and outputs. The optional presentation
layer files that can be passed to the test generator using the -p option allow
to associate proper names with these items.

<FSM-Name>.state The state files are usually named by the FSM-Name with
file extension .state. The file contents consists of a single text column
with NumberOfStates entries, such as

state0

state1

state2

...

This associates name “state0” with state number 0, name “state1”
with state number 1 and so on. In the dot-graph representation, these
names will be used as state names.

<FSM-Name>.in The input files are usually named by the FSM-Name with
file extension .in. The file contents consists of a single text column
with SizeOfInputAlphabet entries, such as

in0

in1

in2

...

This associates name “in0” with input number 0, name “in1” with
input number 1 and so on. In the dot-graph representation, these
names will be used as input names.

222

<FSM-Name>.out The output files are usually named by the FSM-Name with
file extension .out. The file contents consists of a single text column
with SizeOfOutputAlphabet entries, such as

out0

out1

out2

...

This associates name “out0” with output number 0, name “out1” with
output number 1 and so on. In the dot-graph representation, these
names will be used as output names.

For example, the state machine depicted in transition table format in
Fig. B.1 is specified in low-level format as follows.

fsm-file. The state machine with its transitions is specified by

0 0 1 4

0 1 0 0

0 2 0 0

0 3 0 0

1 0 2 5

1 1 0 1

1 2 0 1

1 3 0 1

2 0 1 4

2 1 0 2

2 2 0 2

2 3 0 2

3 0 2 5

3 1 0 3

3 2 0 3

3 3 0 3

4 0 3 2

4 1 3 1

4 2 0 4

4 3 4 5

223

5 0 3 3

5 1 0 5

5 2 3 0

5 3 0 5

state-file. The state file is specified by

Door_Up

Door_Down

Door_stopped_going_down

Door_stopped_going_up

Door_closing

Door_opening

in-file. The input file is
e1

e2

e3

e4

out-file. The output file is
_nop

a1

a2

a3

a4

B.4.3 RTT-MBT-FSM:
Model Input in Graphical Format

As an alternative to the FSM input formats described above, a simple graph-
ical tool can be used to specify FSMs as graphs, where the graph nodes repre-
sent FSM states and directed, labelled graph edges represent FSM transitions
labelled by inputs and outputs. The tool is called RTT-MBT-FSM and has
been provided by Verified Systems International GmbH3; it does not require
any license fees and can be used free of charge. The tool is programmed in
Java, and it is provided as jar-files in sub-directory

fsm-gui/

The fsm-gui requires some platform-specific graphical libraries, therefore
different jar-files are provided in this directory for running the tool under
MacOSX, Linux, or Windows, respectively.

3https://www.verified.de

224

https://www.verified.de

fsm-gui-1.0-0.cocoa.macosx.x86_64.jar

fsm-gui-1.0-0.gtk.linux.x86_64.jar

fsm-gui-1.0-0.win32.x86_64.jar

A java runtime with version 1.8.0 or newer is required. The fsm-gui is acti-
vated in directory fsm-gui with commands

java -XstartOnFirstThread -jar fsm-gui-1.0-0.cocoa.macosx.x86_64.jar

for MacOSX,

java -jar fsm-gui-1.0-0.gtk.linux.x86_64.jar

for Linux, and

java -jar fsm-gui-1.0-0.win32.x86_64.jar

for Windows platforms. RTT-MBT-FSM provides four pull-down menus:

SWT is for quitting the tool and setting preferences in future versions,

File allows to open existing FSM model files (extension *.fsm), creating new
FSM model files, and saving changed model files,

Manage is for requirements management – this is not supported by the soft-
ware of the FSM Library, but only in the commercial version of the
model-based test generation tool RTT-MBT4,

Help shows the version number and will offer help information in future ver-
sions.

When invoking the tool, an empty canvas is shown, and a new FSM can
be constructed using the four interaction commands on the tool bar above
the canvas, as shown in Fig B.2.

1. Activating the state symbol (circle) allows for creating one or more
FSM states in a row. A single-click on the canvas will place a new
state in the indicated position, and a pop-up menu allows to specify
the state name (C-naming conventions, no blanks allowed) and mark
the initial state. New states can be created while the state symbol is
active.

4https://www.verified.de/products/model-based-testing/

225

https://www.verified.de/products/model-based-testing/

Figure B.2: RTT-MBT-FSM Tool bar for operations on the canvas.

2. Activating the transition symbol (right arrow) allows for creating tran-
sitions by single-clicking the source state and then the target state.
This also works for self-loops: just click the state twice. A pop-up
menu allows to insert input and output associated with this transition.

3. Activating the hand symbol allows to pick a state with the left mouse
button pressed and move the state to another position – the connecting
transitions are re-arranged correspondingly.

4. Activating the edit symbol (pen) allows to edit states by double-clicking
them. The edit window on the right-hand side of the canvas allows
to change the state name, as well as the “initial state” marker. By
clicking the ‘Transition’ button in the edit menu, the state’s outgoing
transitions are listed. By right-clicking such a transition, a context
menu pops up and allows to edit or delete the transition.

When creating such an FSM model, it is assumed that the input alphabet
ΣI consists of the union of all inputs specified in any transition on the canvas.
Likewise, the output alphabet ΣO is assumed to be the union of the outputs
specified in the transitions. Similar to the FSM model definition by CSV-files,
the FSM is automatically completely specified. Consider, for example, the
DFSM specified in Fig B.5. In the initial state Door Up, only one outgoing
transition has been specified which is triggered by input e1. The FSM Library
internally adds self-loops for each of the other input events e2, e3, e4. To
indicate that “nothing happens” when these events occur in this state, an
additional output nop is created which denotes “no operation”.

226

B.5 Test Execution Support

The FSM Library provides a simple test harness5 for executing software unit
tests or module tests of libraries. This can be applied to C-Software with
interfaces whose input and output values can be enumerated with reasonable
effort, so that inputs can be abstracted to events of an input alphabet, and
outputs to events of an output alphabet. The source code of the test harness
can be found in harness/fsm-test-harness.c.

Since a general-purpose test harness cannot anticipate all possible inter-
faces of the software under test, an SUT wrapper needs to be provided, which
acts as an adaptor between the test harness and the SUT (see Fig. B.3). The
SUT wrapper has to provide three standardised interface functions to the
test harness. Their C prototypes, as referenced by the harness, are declared
as

extern void sut_init();

extern void sut_reset();

extern const char *sut(const char *x);

Function sut() is used by the test harness to execute the test cases
against the SUT. On each test step, the harness calls sut() with the exter-
nal C-string representation of the next input event to be processed by the
SUT. The SUT wrapper function has to transform this input string into the
concrete input values associated with this event. Note that the concrete in-
put values can also comprise global variables read by the SUT. The sut()

function then invokes the SUT by its entry function (sw_under_test() in
Fig. B.3). When the SUT returns, the sut() function transforms the return
value, output parameters, and global variables written to by the SUT back
to an output event in string representation. This string is returned to the
harness.

For being able to transform strings of the FSM input alphabet into SUT
input data and SUT return data to FSM output alphabet strings, the SUT
wrapper has to set up data structures carrying mapping information. This
setup has to be performed by function SUT_init() which is called once by
the test harness before the proper test execution begins. If the software under
test needs initialisation actions to be performed before it can be used, these
actions also have to be performed in this function.

5A software program driving a test against a software system under test.

227

Test Harness
fsm-test-harness

SUT Wrapper Software Under Test

void sut_init()

void sut_reset()

const char *sut(const char *x)

provides

provides

providesuses

uses

uses

t0 sw_under_test(t1 x1, t2 x2, …)

uses provides

SUT reset actions

performs

SUT initialisation actions

performs

Figure B.3: Test harness interacting with software under test by means of
an SUT wrapper.

228

Between consecutive test case executions, the SUT has to be reset to its
initial state, since every test case produced by the FSM test generator starts
expects the SUT to be initialised before the first test step is executed. For
this purpose, the SUT wrapper needs to provide the sut_reset() function,
which has to exercise the appropriate reset actions on the SUT.

As soon as the SUT wrapper and the SUT software are available, an
executable test harness can be produced by linking the object files of test
harness, the SUT wrapper, and the SUT itself into one executable. The test
harness is provided by the FSM Library as a sub-library

libfsm-harness.a

Therefore the executable – to be named testproc by default – can be created
by using the command

cc -o testproc <path to the libfsm-harness.a> \

<SUT Wrapper object file> <SUT object files>

where ‘cc’ denotes the local C-compiler. The test procedure is activated by
starting testproc with parameter testsuite.txt, where testsuite.txt

is the name of the test suite to be executed. The test suite file must be
generated by the FSM test generator described in Section B.3 or have the
same format as described there.

An example how to create an executable test procedure from test harness,
SUT wrapper, and SUT library is presented in Section B.6.

B.6 Example: Garage Door Controller

B.6.1 Problem Description

In this section, the application of the FSM test generator and the test execu-
tion by means of the test harness is illustrated, using an example originally
introduced by Paul C. Jorgensen in [39].

The garage door controller (GDC) is a computer managing the up and
down movement of a garage door via an electric motor, as shown in the
overview diagram in Fig. B.4. The GDC outputs commands a1, a2, a3, a4

to the motor, initiating down movement, up movement, stopping the motor,
and reversing its down movement into up movement. As inputs, the GDC
receives a command “button pressed” (e1) from a remote control device,

229

an event “door reaches position down” (e2), and an event “door reaches
position up” (e3). Additionally, a safety device is integrated by means of a
light sensor which sends an event “light beam crossed” (e4) when something
moves underneath the garage door while the door is closing.

Garage Door
Controller

Garage Door
Motor

Remote Control
Device

Light Sensor

Garage Door
Mechanics

e1

a1

a2

a3

a4

mechanical
interaction
up/down/stopped

e4

Door Position Sensor

e1, e2

Input Description Output Description

e1 Event
“Remote Control Button Pressed” a1 Command

“Start down movement”

e2 Event
“Door reaches down position” a2 Command

“Start up movement”

e3 Event
“Door reaches up position” a3 Command

“Stop movement”

e4 Event
“Light beam crossed” a4 Command

“Reverse down movement to up”

Figure B.4: Garage door controller and its operational environment.

230

Figure B.5: Behaviour of the garage door controller, modelled by a DFSM.

231

Door_Up(0) e2/_nop e3/_nop e4/_nop

Door_stopped_going_down(2)

 e1/a1

Door_Down(1) e2/_nop e3/_nop e4/_nop

Door_stopped_going_up(3)

 e1/a2

 e1/a3

 e2/a3

 e3/_nop

 e4/a4

 e3/a3

 e1/a3

 e2/_nop e4/_nop

Figure B.6: Minimised DFSM, equivalent to the GDC model from Fig. B.5.

232

The expected behaviour of the GDC is modelled by the FSM in Fig. B.5.
The FSM states, as shown in this figure, have the meaning

State Description
s1 Initial state Door Up

s2 Door down

s3 Door stopped going down

s4 Door stopped going up

s5 Door closing

s6 Door opening

In the initial state s1, the door is expected to be in the UP position,
and the “button pressed” event from the remote control triggers a “Start
down movement” command to the motor. The GDC transits to state s5. In
this “Door closing” state, an input e4 from the light sensor leads to an a4

command to the motor, with the effect that the down movement of the door
is reversed to up movement. This leads to state s6. During down movement
in state s5, another occurrence of the e1-event leads to a “Stop movement”
command to the motor. Then the downward movement is resumed (output
a1), as soon as another e1-command is given. When the door sensor signals
that the door has reached the sown position (e2), the motor is stopped with
command a3. From the “Door down” state s2, another e1-event triggers the
analogous actions for moving the door up, until the UP position is reached.
During the UP-movement, inputs from the light sensor do not have any effect.

In Fig. B.1 above, the same DFSM is modelled by means of a transition
table. Observe that these two DFSM models are interpreted as completely
specified state machines (see Section 3.2), so every input event e1, e2, e3,

e4 can occur in every state. The unspecified transitions – for example, oc-
currence of event e2 in state s1 – are interpreted as having no effect. To
this end, an auxiliary DFSM output “no operation” (nop) is internally in-
troduced when instantiating the DFSM from either of these models. All
unspecified transitions are internally defined as self-loops with output nop.

Note that the DFSM in Fig. B.5 is not minimal; it has been represented
in this form to optimise the readability. The equivalent minimised machine is
shown in Fig. B.6. This has been calculated using the method minimise()

in the FSM Library class Dfsm. The output graph shown in Fig. B.6 has

233

been created by using the method toDot() in the same class, together with
the GraphViz6 tool.

B.6.2 GDC System Under Test

A sample implementation in C is given in the FSM Library, directory
src/example, in file gdclib.c; the public function interfaces are specified in
gdclib.h as follows.

1 typedef enum {
2 e1 ,
3 e2 ,
4 e3 ,
5 e4
6 } g d c i n p u t s t ;
7
8 typedef enum {
9 nop ,

10 a1 ,
11 a2 ,
12 a3 ,
13 a4
14 } gdc outputs ;
15
16 extern void g d c r e s e t () ;
17 extern gdc outputs gdc (g d c i n p u t s t x) ;

The GDC processes expects its inputs in enumeration format gdc_inputs
and returns actions to the motor in format gdc_outputs. The implementa-
tion in gdclib.c follows the state machine programming paradigm and is
straightforward, so that no further comments are needed.

B.6.3 Test Generation

To generate test cases using the W-Method or the Wp-Method, we call the
the FSM test generator with a model file for the GDC in any of the admis-
sible formats. Prepared files are available in the FSM Library sub-directory
resources:

garage-door-controller.csv contains the GDC model in CSV format, as
specified in Section B.4.1. For experimenting with model changes, the

6http://www.graphviz.org

234

http://www.graphviz.org

file garage-door-controller.xlsx can be used, and its content can
be exported to CSV format.

garage.fsm with presentation layer files garage.in, garage.out,
garage.state contains the GDC model in low-level format as
described in Section B.4.2.

garage-door-controller.fsm contains the model file in JSON format, as
produced by the graphical FSM modelling front-end described in Sec-
tion B.4.3.

Invoking the FSM test generator with command

fsm-test-generator garage-door-controller.csv

for example, creates a test suite testsuite.txt generated using the Wp-
Method, with the following content.

(e1/a1).(e2/a3).(e1/a2).(e2/_nop)

(e1/a1).(e2/a3).(e1/a2).(e1/a3)

(e1/a1).(e2/a3).(e2/_nop).(e1/a2)

(e1/a1).(e2/a3).(e3/_nop).(e1/a2)

(e1/a1).(e2/a3).(e4/_nop).(e1/a2)

(e1/a1).(e4/a4).(e1/a3).(e1/a2)

(e1/a1).(e4/a4).(e2/_nop).(e2/_nop)

(e1/a1).(e4/a4).(e2/_nop).(e1/a3)

(e1/a1).(e4/a4).(e3/a3).(e1/a1)

(e1/a1).(e4/a4).(e4/_nop).(e2/_nop)

(e1/a1).(e4/a4).(e4/_nop).(e1/a3)

(e1/a1).(e1/a3).(e1/a1)

(e1/a1).(e3/_nop).(e2/a3)

(e2/_nop).(e1/a1)

(e3/_nop).(e1/a1)

(e4/_nop).(e1/a1)

The suite contains 16 test cases and has been generated under the as-
sumption that the minimised DFSM representing the unknown implemen-
tation behaviour does not have more states than the minimised reference
model. Each test case consists of a sequence of pairs (x/y) with SUT input
x and expected output y.

235

B.6.4 Creating the SUT Wrapper

As explained in Section B.5, an SUT wrapper has to be provided before the
test suite can be executed using the test harness that comes with the FSM
Library. For the GDC example, the wrapper implementation is provided in
sub-directory src/example, file sut wrapper.c, and it looks as follows.

1 #include <s t r i n g . h>
2 #include ” g d c l i b . h”
3
4 /∗∗
5 ∗ Helper data s t r u c t u r e s and f u n c t i o n s f o r
6 ∗ SUT t e s t wrapper
7 ∗/
8 stat ic const char∗ outputs [5] ;
9 stat ic const char∗ inputs [4] ;

10
11 stat ic g d c i n p u t s t inStr2Enum (const char∗ input) {
12 int i ;
13 for (i = 0 ; i < 4 ; i++) {
14 i f (strcmp (inputs [i] , input) == 0) {
15 return (g d c i n p u t s t) i ;
16 }
17 }
18 return e1 ;
19 }
20
21 void s u t i n i t () {
22 outputs [nop] = strdup (” nop”) ;
23 outputs [1] = strdup (”a1”) ;
24 outputs [2] = strdup (”a2”) ;
25 outputs [3] = strdup (”a3”) ;
26 outputs [4] = strdup (”a4”) ;
27
28 inputs [0] = strdup (”e1”) ;
29 inputs [1] = strdup (”e2”) ;
30 inputs [2] = strdup (”e3”) ;
31 inputs [3] = strdup (”e4”) ;
32 }
33
34 void s u t r e s e t () {
35 g d c r e s e t () ;
36 }
37
38

236

39 const char∗ sut (const char∗ input) {
40 return outputs [gdc (inStr2Enum (input))] ;
41 }

During a test execution, the test harness invokes SUT function sut()

with an input C-string "e1", "e2", "e3", "e4". The SUT wrapper transforms
this into the corresponding enum value expected by the SUT, using auxiliary
function inStr2Enum(). The SUT function gdc() is called with the enum
value, and its enum return is transformed into a string as expected by the test
harness, using the output[] array. To set up the necessary transformation
data structures, function sut init() is called once at start-of-test. Between
test cases, the SUT is reset using wrapper function sut reset().

B.6.5 Test Execution

With SUT and SUT wrapper at hand, the executable test program can be
built. To this end, use command

cc -o testproc <path to test harness library> \

<path to SUT wrapper and SUT library>

This creates an executable testproc in the working directory. Using com-
mand

./testproc <path to test suite file>

runs the test cases against the SUT, and the following output is produced.

TC-1: (e1,a1).(e2,a3).(e1,a2).(e2,_nop) PASS

TC-2: (e1,a1).(e2,a3).(e1,a2).(e1,a3) PASS

TC-3: (e1,a1).(e2,a3).(e2,_nop).(e1,a2) PASS

TC-4: (e1,a1).(e2,a3).(e3,_nop).(e1,a2) PASS

TC-5: (e1,a1).(e2,a3).(e4,_nop).(e1,a2) PASS

TC-6: (e1,a1).(e4,a4).(e1,a3).(e1,a2) PASS

TC-7: (e1,a1).(e4,a4).(e2,_nop).(e2,_nop) PASS

TC-8: (e1,a1).(e4,a4).(e2,_nop).(e1,a3) PASS

TC-9: (e1,a1).(e4,a4).(e3,a3).(e1,a1) PASS

TC-10: (e1,a1).(e4,a4).(e4,_nop).(e2,_nop) PASS

TC-11: (e1,a1).(e4,a4).(e4,_nop).(e1,a3) PASS

TC-12: (e1,a1).(e1,a3).(e1,a1) PASS

TC-13: (e1,a1).(e3,_nop).(e2,a3) PASS

TC-14: (e2,_nop).(e1,a1) PASS

TC-15: (e3,_nop).(e1,a1) PASS

TC-16: (e4,_nop).(e1,a1) PASS

237

The reader is invited to experiment with different SUT implementations,
fault injections into the gdclib.c implementation, and different model vari-
ants. He or she should keep in mind that some fault injections may increase
the number of states in the minimised DFSM corresponding to the true SUT
behaviour. If this is suspected, the parameter -a <additional states>

has to be used for test generation with a suitable estimate (see Section B.3).
Otherwise it is not guaranteed that the test suite will uncover every violation
of language equivalence between implementation and reference model.

B.7 FSM Library Classes and Methods

Overview

In the previous sections it has been shown how the FSM test generator and
test harness can be used to create model-based FSM test suites and execute
them against an SUT implemented as a C-library with simple interfaces.

Alternatively, users can create their own FSM-related applications in
C++, using the static libraries that are part of the FSM Library. When in-
vestigating the build directory – for example, Debug.OSX or Release.Linux
– created for constructing the FSM Library with cmake, the following static
libraries can be found after a successful build.

./example/libfsm-example.a

./externals/jsoncpp-0.10.0/src/libjsoncpp.a

./fsm/libfsm-fsm.a

./harness/libfsm-harness.a

./interface/libfsm-interface.a

./sets/libfsm-sets.a

./trees/libfsm-trees.a

The main library is libfsm-fsm.a with its main class Fsm containing meth-
ods for reading, transforming and creating test suites from arbitrary finite
state machines. The library also provides a derived class Dfsm offering spe-
cial methods operating on FSMs that are already known to be deterministic.
FSMs stored in a file conforming to one of the formats described above are
read by means of the various constructors specified in files

src/fsm/Fsm.h

src/fsm/Dfsm.h

238

To get an overview over the classes and methods provided by the FSM
Library, users may unpack the zip-archive

doc/fsmlib-cpp-doc.zip

in the doc/ sub-directory and open the HTML file

doc/html/index.html

with a browser. There, an overview over the classes, operations, and associ-
ated header files is given. Readers will find that most of the algorithms ex-
plained in Part II of these lecture notes are implemented in these classes. This
documentation has been created using the Doxygen tool.7 For re-generating
this documentation from scratch or adapting the documentation style to your
preferences, a Doxygen documentation file is provided in

doc/Doxyfile

Note that also a visitor framework has been set up for traversing FSMs
and their states (class FsmNode) and transitions (class FsmTransition).
This framework defines visit() methods for these classes in header file
FsmVisitor.h, and the FSM main classes all provide accept() methods as
entry points for these visitors. An example showing how the visitor frame-
work can be used is given by the FsmPrintVisitor which traverses FSMs
using their accept() methods and writing the FSM-related data to standard
output.

As an example about how the FSM Library can be used from other pro-
grams, a C++ main program is provided in

src/main/main.cpp

This main program instantiates various FSMs from files contained in sub-
directory resources and performs tests checking the functionality of FSM
Library methods.

7http://www.stack.nl/∼dimitri/doxygen/

239

http://www.stack.nl/~dimitri/doxygen/

	I Introduction and Background
	Testing – Basic Definitions
	Basic Terms
	Variants of Test Purposes
	Test Levels

	Testing Theories
	Model-based Testing
	Programs are Models
	Fault Models
	Test Cases
	Test Suites and Complete Testing Theories
	Translation of Testing Theories
	Testability Hypothesis
	Uniformity Hypothesis and Regularity Hypothesis

	II Testing Finite State Machines
	Finite State Machines
	FSM Definition
	Basic Properties of FSMs
	Minimisation of DFSMs
	Transition Table Representation of DFSMs
	DFSM Minimisation With Pk Tables

	Characterisation Sets for DFSMs
	Transformation to Observable FSMs
	Minimisation of Nondeterministic FSMs
	Characterisation Set and State Identification Sets of NFSMs
	Characterisation set and State Identification Sets for NFSMs
	Algorithm 1. Calculation of W
	Algorithm 2. Finding Minimal State Identification Sets

	Classification of FSM Fault Models

	Testing Theories for FSM
	FSM Test Cases
	State Cover and Transition Cover
	The T-Method
	Test Oracles for Checking I/O-Equivalence and Reduction
	A Complete Testing Theory Derived From Product Automata
	The W-Method
	The H-Method
	Motivation
	Definitions related to the H-Method
	H-Method Theorems

	FSM Testing Theories for Nondeterministic Systems
	A Nondeterministic Variant of the Wp-Method
	Testing Nondeterministic FSMs for Reduction Using the State Counting Method

	III Equivalence Class Partition Testing
	Introduction to Equivalence Class Partition Testing
	Objectives
	Three Types of Equivalence Classes
	Formal Background
	Main Results
	Proof Strategy and Overview

	State Transition Systems and Kripke Structures
	The Model Map
	Set Partitions
	State Equivalence Class Partitions
	Input Equivalence Class Partitions
	The Transition Index Function
	State Machine Abstraction of Equivalence Class Partitions
	RIOSTS Sub-domains and Associated Model Maps – Proof of SC1
	Practical Calculation of the Model Map
	Objectives
	DNF transformation
	Identification of quiescent states
	Rewriting the representation
	Final RIOSTS Transition Relation
	IECP Identification

	Test Case Map – From FSM Test Cases to RIOSTS Test Cases
	RIOSTS Test Cases
	The Test Case Map

	Proof of the Satisfaction Condition SC2
	Complete Testing Theories for RIOSTS
	Overview
	Theory Translation Theorem – From FSM Theories to RIOSTS Theories
	Deterministic Reference Model and Deterministic Implementation
	Nondeterministic Reference Model and Nondeterministic Implementation
	Nondeterministic Reference Model and Deterministic Implementation
	Weaker Test Strategies: Single Output Fault
	Complexity Considerations

	Related Work

	IV Fuzz Testing
	Fuzz Testing
	Objectives
	LLVM libFuzzer – Capabilities
	libFuzzer – Interface to the SUT
	Creating a Fuzzer Program With Clang
	Executing a Fuzzer Program Created With Clang
	Simple Execution
	Replay Run to Found Bug
	Using a Corpus
	Useful Call Parameters
	Parallelisation for Finding Multiple Errors
	Parallelisation for Speeding up Error Detection

	Property-Based Fuzz Testing
	Property-Based Software Testing
	Pre-Conditions and Post-Conditions
	Invariants

	Coverage Analysis
	Objectives and Limitations of Coverage Analysis
	Compile options for Fuzzing With Code Coverage Profiling

	Bibliography
	Algorithms for Solving the Minimal Hitting Set Problem
	Problem Statement
	A Simple Complete Algorithm for Determining Minimal Hitting Sets With Minimal Cardinality
	The MHS Problem Re-Formulated as a Minimal SAT Model Problem

	Introduction to the FSM Library
	Overview
	Download and Installation
	Test Generation Support
	FSM Model Input Formats
	Model Input in CSV-Format
	Model Input in Low-level FSM Format
	RTT-MBT-FSM: Model Input in Graphical Format

	Test Execution Support
	Example: Garage Door Controller
	Problem Description
	GDC System Under Test
	Test Generation
	Creating the SUT Wrapper
	Test Execution

	FSM Library Classes and Methods Overview

