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Chapter 1

Preface

In this document, the material for Session 2 of the course Specification
of Embedded Systems is provided.

This document is structured as follows. Overview

• We give a short overview over the language structure of SysML in
Chapter 2, as far as it is helpful for the material presented in Session 2.

• In Chapter 3, a typical package structure for system models is intro-
duced.

• Structural modelling in general is introduced in Chapter 4.

• As a first application of structural modelling, the context of a the
system to be developed, that is, its interfaces to the operational en-
vironment, are modelled by means of a block definition diagram and
an internal block diagram, each diagram containing blocks, ports, and
various associations. This is explained in Chapter 5.

• SysML contains a comprehensive concept for introducing physical en-
tities (time, electrical current, . . . ) and their concrete units (ms, mA,
. . . ). It is explained in Chapter 6, how this is introduced for each
project in a systematic way.
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Chapter 2

A Short Overview of the
SysML Language Structure

Like most of the system or software modelling formalisms, the SysML has
language constructs for specifying structure and behaviour. An important
addition which is not available in other formalisms is the explicit introduction
of crosscutting constructs.

2.1 Structural Constructs

The basic element to express structure in SysML is the block which can Blocks,

ports,

flows

be used to represent both hardware and software entities of the system to
be modelled. Just like classes in the UML, blocks may represent a single
instance of a system component to be developed, or represent a type of
which several instances can occur inside the system. Blocks may contain
other blocks, thereby allowing the representation of system structures where
subparts are contained in superparts. For making interfaces explicit, ports
may be connected to blocks, and the transport of data is modelled by means
of flows connecting ports.

A special variant of blocks are constraint blocks; these are used to Constraint

blocksencapsulate logical conditions – from physical laws to application-specific
rules – for restricting the structural or behavioural properties in a well-defined
and re-usable way.

To facilitate the analysis of system structure, the modelling elements Diagrams

named above can be graphically depicted and related to each other in 3
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types of diagrams.

Block definition diagram (BDD) This diagram contains blocks and as-
sociated relationships and is used to depict the top-down decomposition
of a system in an intuitive way.

Internal block diagram (IBD) This diagram depicts how instances of
various blocks exchange data via ports and flows.

Parametric diagram This diagram relates general constraints specified in
constraint blocks to concrete parameters of behavioural constructs, vi-
sualising where the constraints are applied to.

It should be noted that SysML diagrams do not really add structural or Diagrams

do not

add

semantics

behavioural semantics to a model, because this is completely expressed by
the textual representation of model constructs.1

In this session, we will study blocks, ports, and flows in detail, together
with bbd’s and IBDs. Constraint blocks and parametric diagrams will be
discussed in Session 4.

2.2 Behavioural Constructs

Behaviour, that is, the transformation of input data to outputs or the reaction
to events, is modelled by four sub-languages.

Activities generalise the concept of classical flow charts by introducing par- Four sub-

languages

to specify

behaviour

allel threads, complex interface specifications, and constructs to acti-
vate other behaviours during flow chart execution.

Interactions are used for specifying messaged-based behaviour of commu-
nicating system components.

State machines specify reactive behaviour in terms of states and transi-
tions.

1From the tool perspective, this means that all model semantics can be understood from
analysing the model explorer and the textual information associated with each element
visible in the explorer. The creation of diagrams is helpful, but not mandatory.
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Use cases describe behaviour in terms of the high level functionality and
uses of a system, that are further specified in the other behavioural
diagrams referred to above. They are used to support requirements
modelling and the description of system tests, but do not carry suffi-
cient information to develop a system on this basis alone. Typically,
use cases are refined by activities, interactions, or state machines.

Each of these behavioural sub-languages is associated with its own diagram Diagrams

type: activity charts, sequence charts, state charts (or state machine
diagrams), and use case diagrams.

We will study activities in Session 4 and state machines in Session 3.
Interactions will not be covered during this course, since they can always
be modelled by concurrent state machines. Use cases will only be touched
briefly; there is one exercise concerning use cases in Chapter 7.

2.3 Crosscutting Constructs

The term crosscutting construct denotes language elements that are nei-
ther structural nor behavioural, but may relate to both structural and be-
havioural elements. The crosscutting constructs of the SysML are

Allocations are language elements specifying relationships between other Allocations,

require-

ments,

Profiles,

Libraries

elements. The most important application is to allocate behaviour (e.g.
a state machine) on structure (e.g. a block representing a controller).

Requirements are specifications for structural or behavioural model ele-
ments to be created later on, or about non-functional system proper-
ties to be “implemented” by means of combinations of structural and
behavioural model elements.

Profiles&Model Libraries help to introduce domain-specific re-usable
modelling constructs and model fragments. The former introduces spe-
cialised elements from more general SysML constructs. For example,
blocks might specialised with some stereotype, say, �DoorController� to
represent door controllers. The latter may contain, for example phys-
ical entity specifications with physical units that where modelled in
another project and should be reused in the current one.

Requirements concerning allocation, profiles, and libraries are non-
functional requirements.
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Chapter 3

Package Structure for System
Models

As mentioned before, models are structured into packages.1 A suitable model
structure which fits to most modelling tasks in the cyber-physical systems
domain is as follows.

requirements This package contains the requirements, as discussed in Ses- Top-level

packagession 1.

context The context package contains information about the system to be
developed is embedded into its operational environment. This will be
described in more detail in Chapter 5.

System package A package carrying the name of the system to be devel-
oped (without uppercase letters) contains the proper structural, func-
tional, and non-functional model parts of the target system to be de-
veloped.

systeminterfaces This package contains information about the data types
used to exchange information between the system to be developed and
its environment.

1We will see later, when covering more of the UML/SysML language theory, that
models are specialisations of packages. Therefore, it is syntactically correct to place all
structural, functional, and non-functional submodels directly underneath the model. This
however, is considered as bad style, since it leads to unstructured models that are difficult
to maintain.
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projecttypes Throughout the project, special data types may be used
(e.g. enumerations and structured data types modelled by blocks) will
be used to specify interfaces and value properties. Since different in-
terfaces and properties may use the same data types, it is useful to put
such type declarations into a separate package.

physicalunits SysML allows to introduce physical entities (say, electrical
current I) in a systematic way and introduce associated concrete phys-
ical units (say, mA). These specification should be contained in a sep-
arate package. These entities and units can often be imported as an
existing model library, it is discussed in Chapter 6 how to do this.

test The test package contains test design submodels and system test sub-
models. Typically, lower-level tests like software integration tests and
unit tests are not described by a SysML submodel, since there are
testing tools performing these duties in an optimised manner.

Imported packages Further model components existing already in re-
usable model libraries can be imported. At the moment, we see al-
ready libraries like PrimitiveBlocks:ValueTypes that are automatically
imported by the Papyrus tool when creating a new SysML model.

Packages may be structured into sub-packages, if more than just the top- Sub-

packageslevel model-structure shown above is needed. Typically, the system package
is structured into sub-packages containing structural, functional, and non-
functional information.
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Chapter 4

Structural Modelling With
SysML

4.1 Blocks

The central structural modelling element of SysML is the block which has
been derived from the UML modelling element class.1 Blocks can be used
to represent

• structural system components,

• containers of behavioural system components,

• constraints,

• interfaces,

• structured datatypes,

and other structure-related artefacts needed in the modelling process. Just
like a class, a block is a type of a collection of similar components, data
items etc. In the discussion of internal block diagrams below, it will be seen
how concrete system components are represented by parts, that is, instances
of blocks.

Just like a class, a block may be associated with the following information.

1The Derivation is performed by introduction of the stereotype �block� which will
be explained later when exploring the UML/SysML language theory.
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• Attributes (or, synonymously, properties),

• Operations,

• Signal receptions,

but this basic information structure is detailed further: the attributes are
structured into

• value properties,

• part properties, and

• reference properties,

• ports, and

• constraints.

Value properties are used to model quantifiable characteristics of a block. Value

propertiesFor example, the current speed of a train on a linear track section may be
specified by a value property of type speed and physical unit km/h. The
Value properties need not be primitive2, if they are composed of several data
components, the structured type is again modelled by a block. For example,
the position of an aircraft flying in 3-dimensionsional space may be given by
(x, y, z) coordinates in some coordinate system. Position would be modelled
by a block with 3 value properties of primitive type real and physical unit
m. Just as in programming languages, value properties may also be typed by
enumerations which are already introduced in UML and used in SysML as
well.

Some more details regarding value properties are given in [1, 7.3.4].
Parts describe composition relationships between blocks. A part specifies Part

propertiesan instance (or several instances) of a block in the context of its com-
posite block. The composite block is the “parent block” where the part
is contained in. The context is usually specified by linking the interfaces of
the part to interfaces of the composite block or interfaces of other parts con-
tained in the same composite block. These interfaces are in turn modelled by

2Recall that a primitive datatype cannot be further decomposed, like int in pro-
gramming languages, or R in mathematics, or any scalar unit (weight, temperature,. . . )
in physics.
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ports to be discussed below. Parts are typically again typed by blocks.3 If a
part occurrs with several instances inside a composite block, then its mul-
tiplicity is greater than 1. Array-like notation in square brackets is used to
indicate the number of instances. If the number of parts should be unlimited,
the asterisk “*” is used to indicate this instead of a concrete number. As an
alternative to using a multiplicity for specifying a small number of instances
in a part, one can specifiy several parts of the same type, each part typed by
the same block, but carrying a different part name.

Since value properties can also be typed by blocks, it is necessary to Distinguish

parts from

values

find another criterion to distinguish value properties from part properties.
This distinction is made by means of composite associations.4 Typically,
these associations are not created in the model explorer, but in block def-
inition diagrams. This is illustrated in the video accompanying Session 2,
which explaines tool-related aspects for structural modelling in general and,
in particular, context modelling. A composite association is an asymmetric
relationship: it has a “part end” pointing to the part which is inside the
composite block. The composite block is referenced by the other end of the
association. The part end of a composite association also specifies a mul-
tiplicity and a role played by the part in the context of the parent block.
In Fig. 5.1, several context associations are shown: they end with a black
diamond symbol at the composite end, and with an arrow at the part end.

The composite association identifies a specific destruction semantics:
the part cannot “live” without its composite, that is, without its parent
block.

Example 1. In the C++ programming language, this is nicely reflected by
defining attributes of class type like

1 class C1 {

2 private:

3 C2 part1;

4 public:

5 ...

6 };

The attribute part1 is automatically created (using the default constructor
of C2) when an instance of C1 is created. Moreover, part1 cannot live without
the declaring class C1: it is automatically destroyed when the C1-instance is
destroyed. �

3In use case diagrams, they may be typed by actors.
4The term ‘association’ is synonymous to the term relationship which you may know

from entity-relationship modelling in the context of databases.
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Some more details regarding part properties are given in [1, 7.3.1]. We
will discuss the introduction of parts in more detail in Chapter 5, when
introducing the context submodel.

Reference properties have another destruction semantics: parent blocks Reference

propertiesrefer to other blocks, but the latter are not destroyed with the former.

Example 2. In the C++ programming language, this is reflected by defining
attributes that are pointers to instances of other class types, like

1 class C1 {

2 private:

3 C2* ptr1;

4 public:

5 ...

6 };

The pointer ptr1 may be defined, for example, in the constructor of C1,
when a pointer to a C2-instance is passed to the C1-constructor. The object
pointed to by ptr1 lives on until a

1 delete ptr1;

command is executed. If the C1-instance is deleted, this does not affect the
C2-instance. �

To distinguish reference properties from part properties, the reference
association is used in analogy to the composite association. Again, reference
associations are typically introduced when drawing block definition diagrams.

More details regarding part properties are given in [1, 7.3.2]. We will dis-
cuss the introduction of parts in more detail in Chapter 5, when introducing
the context submodel.

Typically, blocks only contain operations and/or signal receptions, if they Operations

and signal

receptions

are

associated

with

behaviour

are associated with behaviour. We will therefore skip the specification of op-
erations and signal receptions and handle them in the sessions on behavioural
modelling.

4.2 Ports and Flows

Ports are language elements for specifying interfaces (hardware or software).
SysML distinguishes three variants of ports.

A full port is a “real” part of the boundary of a block. Typically, hardware
interfaces are modelled as full ports.
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A proxy port is complementary to a full port: it is not a part of its parent
block, but provides a “virtual” external access point5 to and from the
features of the parent block or its parts.

A port is used whenever the classification as ‘full’ or ‘proxy’ does not fit.

Proxy ports are typed by interface blocks which cannot have internal
parts or behaviour. A typical application for proxy ports is at a “black box”
system boundary6.

Example 3. When modelling the context of our turn indication controller
(see Chapter 5), the controller is represented as a black box, where its inter-
nal structure is invisible to the operational environment. This black box is
purely virtual, since the “real” turn indication controller consists of 4 con-
trollers, each servicing a subset of interfaces to the operational environments.
Therefore, proxy ports are used to model the interfaces of the virtual black
box, and full ports are used to model the hardware interfaces of 4 controllers.

�
Ports are connected to other ports by means of connectors, representing

the flow of data. One port may be connected to more than one other port;
this applies to situations where data flows from one source to several sinks,
or where one sink aggregates data from several sources. A more specific
version of a connector is an item flow which, in particular, associates a flow
direction for the data to be passed between ports.

In this course, we always use item flows to connect ports, and we always
pass exactly the data items across the flow that are specified by the port.
Therefore, item flows need no further specification in our context. Read [1,
pp. 142] for understanding the more powerful features of item flows which
are not used in our course.

Please read [1, 7.6] for more details about ports.

4.3 Block Definition Diagrams

The BDDs are used to visualise decomposition and reference relations. Typ-
ically, they contain a tree-like structure with the block to be decomposed as

5similar to a pass through or relay
6If the type is atomic, it is not necessary to create an interface block with just one

component; the atomic type may be used directly as the type of the proxy port.
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root. Blocks that are part of the root or subordinate parts of parts closer to
the root are displayed underneath their parents. The links in the composite-
part decomposition tree are realised by composite associations. Part names
are specified by the role names at the part-end. The number of object in-
stances associated with a part is specified by the multiplicity at the part-end.

A typical BDD is shown in Fig. 5.1 and further discussed in Chapter 5.
Please read [1, 7.2] for more details about BDDs.

When visualising the compartments of a block on a BDD, tools offer Compartments

of a blockto display the block properties and operations in different compartments
structuring the various types of attributes a block may have. The SysML
standard [2] defines many compartment types, but is slightly vague about
whether these are mandatory or whether tools may introduce their own com-
partments. Therefore, Papyrus allows for manual association of properties
to compartments. The video shows how to do this. Like diagrams, compart-
ments do not add semantics to the operations and properties of a block: the
semantics is completely fixed by parameter types and associations.

4.4 Internal Block Diagrams

While BDDs are used to display the hierarchy of blocks and their parts, IBDs
are used to show how parts of a block interact with each other. We can say
that an IBD associated with a given block is an exploded view showing its
internal structure up to a certain point. Please read [1, 7.3] for a detailed
explanation of the various possibilities to display parts and various types of
associations on an IBD. Throughout this course, we will use the following
reduced set of elements on IBDs:

• Parts

• Ports

• Flows

Moreover, we use the convention that flows may only connect to ports, but
not directly to parts.

An (incomplete) IBD is contained in the sample model which is provided
for the this session.
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Chapter 5

The Context Submodel

5.1 Context Model Ingredients

The context submodel specifies the interfaces beween the system to be
modelled and its operational environment. Moreover, it is usually helpful
to impose some top-down structure on the components of the operational
environment, if there are many of them. With these objectives in mind, the Blocks in

the

context

model

context should be modelled by means of blocks representing

• the system to be developed,

• each component in the operational environment which has an interface
to our target system, and

• some auxiliary blocks creating a sub-structure for the operation envi-
ronment, if desirable.

Interfaces are modelled by means of ports and item flows connecting ports. Ports and

Flows
The top-down structure of the operational environment, together with the BDDs and

IBDstarget system are visualised in a BDD, and the detailed interface structure
with connecting flows is depicted in one or more IBDs.

5.2 Context BDD

The context model is associated with one or more BDDs showing the target
system and the components in the operational environment in a top-down
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tree view. An example is shown in Fig. 5.1, where the context BDD of the
turn indication controller is specified.

Since the context is a conceptual entity and not something to be actually
built, the reference association introduced in Chapter 4 is used to refer to the
environment elements and to the target system: a battery, for example, exists
independently of the notion of the turn indication controller context. After
these associations have been established, the components become reference
properties of the context block.

In Fig. 5.1, additional top-down structure has been introduced by using
the blocks Dashboard and TurnIndicationLights as reference properties of the
context. Since the dashboard LEDs cannot exist without a dashboard (the
Dashboard is a real physical entity), the composite association is used here.
The TurnIndicationLights, however, are a conceptual entity. Therefore, the
reference association is used again.

Figure 5.1: Context BDD for the turn indication function.

The association names at the part/reference property ends define the
names of the corresponding instances. For example, there is one instance of
Battery in the context, and the instance is called bat. There are 6 instances
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of block TurnIndicationLight, denoted by FL (“forward left”), . . . , RR (“rear
right”).

5.3 Context IBDs

In Fig. 5.2, the top-level context IBD is shown. It is still incomplete, its com-
pletion should be performed by the readers (Exercise 7.2.2). Note that the
IBD has an outer frame like a block, labelled by context. This is to indicate
that this IBD is the explosive view of the internal structure of the context.
From Fig. 5.1 we know that the sub-components of Context are all reference
properties. This is reflected in the IBD by letting these reference properties
occur as dashed-line boxes. In contrast to this, the subordinate IBD present-
ing the dashboard explosive view (Fig. 5.3) has the LEDs integrated as parts
via composite association. Therefore, the LED parts are drawn as solid-line
boxes.

Figure 5.2: Top-level context IBD (incomplete) for the turn indication func-
tion.
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Figure 5.3: Dashboard IBD.

All interfaces of the tiCtrl instance are proxy ports, since they do not exist
in HW, but are just used as intermediate points to connect flows from/to the
outside world with “real” ports inside tiCtrl. For the dashboard interfaces,
also proxy ports have been chosen, though the dashboard exists as a real
entity. The reason is, that these interfaces just have a relay function. The
full ports are connected to the TurnIndicationLED instances L and R.

A further sub-ordinate IBD is used to represent the 6 turn indication
lights with their ports.
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Chapter 6

Introducing Enumerations,
Physical Entities and Units

It is very important to be able to introduce project-specific datatypes, be-
cause this facilitates the proper use of data. In SysML, project-specific types
are created along the following lines.

1. Atomic project-specific types can be created as enumerations.

2. Further atomic project-specific types can be created as ValueTypes
that are derivations from the primitive value types

• Boolean,

• Complex,

• Integer,

• Number,

• Real,

• String

provided by the SysML.

3. Composite data types (e.g. vectors of components with primitive types)
can be specified as blocks whose components have known types.

4. Physical units can be specified by creating instances of Unit1.

1These are just blocks labelled with the stereotype �Unit �.
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5. Physical entities (Speed, temperature, voltage, . . . ) are introduced by
creating instances of QuantityKind.

6. Primitive or composite types can now be typed by means of a value
type which has a certain value range and a physical unit.

A video shows the details how to create new physical units, quantity
kinds, and value types.

The resulting project-specific types for the turn indication controller are
shown inFig. 6.1.

Figure 6.1: Project types for the turn indication controller.
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Chapter 7

Questions and Exercises

7.1 Questions

7.1.1 Associations Modelling Java Attributes

In Example 1 and Example 2, we have explained how either composite asso-
ciations or reference associations should be used to model the integration of
objects as class attributes in C++. Now consider a Java program which is
analogous to the C++ program shown in Example 1.

1 public class C1 {

2 ...

3 public C2 part1;

4 ...

5 }

When modelling C1 and C2 in a BDD, would you use a composite associ-
ation or a reference association? Explain your decision.

7.2 Exercises

7.2.1 Use Cases for Requirements

Study Chapter 12, Sections 12.1 — 12.4 in [1] about use cases. Extend your
requirements package by use cases illustrating the following requirements.

1. Turn indication flashing on left-hand side and right-hand side, and the
effect of the ignition switch.
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2. Emergency flashing, overridden by turn indication flashing.

Insert the use cases and associated use case diagrams as “illustrations” un-
derneath the related requirement.

7.2.2 Interfaces and Internal Block Diagrams for the
System Context

In the context IBD which already exists in the sample model provided for
Session 2, specify the missing ports for all system interfaces, together with
suitable data types and associate them with their blocks in the operational
environment and the turn indication controller itself.

In the existing IBD, the dashboard and the tiLights appear as black boxes,
containing LEDs and lamps, respectively. Create the missing IBDs for dash-
board and tilLights, together with the required ports and connectors.

7.2.3 Block Definition Diagram for the
Turn Indication Controller

Create a BDD showing the internal top-down decomposition of the turn
indication controller, down to the level of the four controllers that together
implement the turn indication controller hardware.

7.2.4 Internal Interfaces and Internal Block Diagram
for the Turn Indication Controller

Create the necessary ports and flows so that the interfaces between the four
controllers of the turn indication function, as well as their connections to the
proxy ports can be modelled. Create an IBD where the four controllers, their
ports, and their flows are shown.
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