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Abstract. Starting from the perspective of safety-critical systems de-
velopment in avionics, railways and the automotive domain, we advocate
an integrated verification approach for C/C++ modules combining ab-
stract interpretation, formal verification and conventional testing. It is
illustrated how testing and formal verification can benefit from abstract
interpretation results and, vice versa, how test automation techniques
may help to reduce the well known problem of false alarms frequently
encountered in abstract interpretations. As a consequence, verification
tools integrating these different methodologies can provide a wider va-
riety of useful results to their users and facilitate the bug localisation
processes involved. When applied to C/C++ software, the problems of
aliasing, type casts and mixed arithmetic and bit operations have to be
handled on the level of constraint generation. We cope with this problem
by using a symbolic interpretation method operating on an abstracted
memory model. We describe the available tool support developed by the
author, his research group and industrial partners.

1 Introduction

1.1 Objectives

In this contribution an integrated approach to static analysis by abstract inter-
pretation, formal verification by model checking and testing is described. The
focus of our contribution is on the verification of C/C++ functions and methods
(we use the general term modules to denote both functions and methods). Mod-
ule verification1 has its well-defined place in the development life cycle, and static
analysis, testing and – though less frequently used in today’s industrial practice
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1 Following [21], we use the term verification for all activities where a development
artefact is checked for compliance with respect to a given specification. In particular,
reviews, inspections, formal verifications, static analyses and testing are verification
activities.



– formal verification are recommended techniques for this purpose. From the
verification specialists’ point of view it is advisable to perform these techniques
in an integrated manner:

– Test cases can serve as useful counter examples for violated assertions, thereby
supporting the formal verification and static analysis processes,

– static analyses frequently uncover non-functional defects2 which are unlikely
to be detected during functional testing,

– formal verification is the “last resort” when algorithms are too complex to
be tested and analysed in an exhaustive way.

To our best knowledge, however, tools supporting these activities in an inte-
grated manner do not exist until today. It is therefore the purpose of this paper
to outline how such an integration can be performed and to present the asso-
ciated tool support developed by author’s research group in cooperation with
industrial partners. Indeed, it will become apparent that such an integration is
also beneficial from the tool builders’ point of view:

– As will be outlined in Section 2, both functional and structural testing can
be regarded as reachability problems as they are typically explored in formal
verification by (bounded) model checking.

– Static analysis by abstract interpretation is a powerful means to reduce the
state space to be explored for the purpose of test case generation or formal
verification.

– Test case generation and the under-approximation techniques used in the
constraint solving activities involved are useful for verifying potential errors
uncovered by (over approximating) static analyses.

1.2 Background and Motivation: Industrial Safety-Critical Systems

Development and the Deployment of Formal Methods

According to the standards [21, 8, 1] the generation of 100% correct software
code is not a primary objective in the development of safety-critical systems. This
attitude is not unjustified, since code correctness will certainly not automatically
imply system safety. Indeed, safety is an emergent property [14, p. 138], resulting
from a suitable combination of (potentially failing) hardware and software layers.
As a consequence, the standards require that

– the contribution of software components to system safety (or, conversely, the
hazards that may be caused by faulty software) shall be clearly identified,
and

– the software shall be developed and verified with state-of-the art techniques
and with an effort proportional to the component’s criticality.

2 In particular, the so-called runtime errors, such as division by zero, array bounds
violations, out-of-bounds pointers, unintended endless loops etc.



Based on the criticality, the standards define clearly which techniques are
considered as appropriate and which effort is sufficient. The effort to be spent
on verification is defined most precisely with respect to testing techniques: Tests
should (1) exercise each functional requirement at least once, (2) cover the code
completely, the applicable coverage criteria (statement, branch, modified condi-
tion/decision coverage) again depending on the criticality, (3) show the proper
integration of software on target hardware. Task (3) is of particular importance,
since analyses and formal verifications on source code level cannot prove that
the module will execute correctly on a specific hardware component.

These considerations motivate the main objectives for the tool support we
wish to provide:

1. Application of the tool and the results it provides have to be associated
clearly with the development phases and artifacts to be produced by each
activity specified in the applicable standards.

2. Application of the tool should help to produce the required results – tests,
analysis and formal verifications – faster and at least with the same quality
as could be achieved in a manual way.

Requirement 1. is obviously fulfilled, since the tool functionality described here
has been explicitly designed for the module verification phase, as defined by the
standards mentioned above. Requirement 2 motivates our bug finder approach
with respect to formal verification and static analysis: These techniques should
help to find errors more quickly than would be possible with manual inspec-
tions and tests alone – finding all errors of a certain class is not an issue. As a
consequence the tool can be designed in such a way that state explosions, long
computation times, false alarms and other aspects of conventional model check-
ers and static analysis tools, usually leading to user frustration and rejection of
an otherwise promising method, simply do not happen: Instead, partial verifica-
tion results are delivered, and these – in combination with the obligatory tests
– are usually much better than what a manual verification could produce within
affordable time.

1.3 Related Work

The work presented here summarises and extends results previously published
by the author and his research team in cooperation with Verified Systems Inter-
national GmbH [3, 18, 19, 17].

Many authors point out that the syntactic richness and the semantic ambigu-
ities of C/C++ present considerable stumbling blocks when developing analysis
tools for software written in these languages. Our approach is similar to that
of [12] in that we consider a simplified syntactic variant – the GIMPLE code –
with the same expressive power but far more restrictive syntax than the original
language: GIMPLE [11] is a control flow graph representation using 3-address
code in assignments and guard conditions. Since the gcc compiler transforms ev-
ery C/C++ function or method into a GIMPLE representation, this seems to be



an appropriate choice: If tools can handle the full range of GIMPLE code, they
can implicitly handle all C/C++ programs accepted by gcc. Therefore we ex-
tract type information and GIMPLE code from the gcc compiler; this technique
has been described in [15]. In contrast to [12], where a more abstract memory
model is used, our approach can handle type casts.

The full consideration of C/C++ aliasing situations with pointers, casts and
unions is achieved at the price of lesser performance. In [7, 5], for example, it is
pointed out how more restrictive programming styles, in particular, the avoid-
ance of pointer arithmetics, can result in highly effective static analyses with
very low rates of false alarms. Conversely it is pointed out in [25] that efficient
checks of pointer arithmetics can be realised if only some aspects of correctness
(absence of out-of-bounds array access) are investigated. As another alternative,
efficient static analysis results for large general C-programs can be achieved if a
higher number of false alarms (or alternatively, a suppression of potential fail-
ures) is acceptable [9], so that paths leading to potential failures can be identified
more often on a syntactic basis without having to fall back on constraint solving
methods.

On the level of binary program code verification impressive results have been
achieved for certain real-world controller platforms, using explicit representation
models [22]. These are, however, not transferable to the framework underlying
our work, since the necessity to handle floating point and wide integer types
(64 or 128 bit) forbids the explicit enumeration of potential input values and
program variable states.

All techniques described in this paper are implemented in the RT-Tester tool
developed by the author and his research group at the University of Bremen
in cooperation with Verified Systems International GmbH [26]. The approach
pursued with the RT-Tester tool differs from the strategies of other authors [7,
5, 25]: We advocate an approach where verification activities focus on small pro-
gram units (a few functions or methods) and should be guided by the expertise
of the development or verification specialists. Therefore the RT-Tester tool pro-
vides mechanisms for specifying preconditions about the expected or admissible
input data for the unit under inspection as well as for semi-automated stub
(“mock-object”) generation showing user-defined behaviour whenever invoked
by the unit to be analysed. As a consequence, programmed units can be verified
immediately – this may be appealing to developers in favour of the test-driven
development paradigm [4] – and interactive support for bug-localisation and fur-
ther investigation of potential failures is provided: A debugger supports various
abstract interpretation modes (in particular, interval analysis) and the test case
generator can be invoked for generating explicit input data for reaching certain
code locations indicating the failure of assertions.

With the recent progress made in the field of Satisfiability Modulo Theory [20]
powerful constraint solvers are available which can handle different data types,
including floating point values and associated non-linear constraints involving
transcendent functions. The interplay between path generator, interpreters and
solver as handled within the RT-Tester tool has been described in [3]. The solver



implemented in the tool relies on ideas developed in [10] as far as Boolean and
floating point constraints are involved, but uses additional techniques and under-
lying theories for handling linear inequations, bit vectors, strings and algebraic
reasoning, see, e. g. [23]. Most methods for solving constraints on interval lattices
used in our tool are based on the interval analysis techniques described in [13].

1.4 Overview

In section 2 an overview over the tool architecture and the methods involved is
given. The next two sections describe two of the main techniques that are pre-
requisites for abstract interpretation, property checking and testing: Symbolic
interpretation techniques (Section 3) are used to create memory models, sym-
bolically describing the state transitions performed by the UUT along a single
path or a whole portion of the code. The constraint generator (Section 4) eval-
uates the memory model in order to resolve expressions in such a way that the
resulting reachability constraints are suitable for the tool’s solver component.
Section 5 presents a conclusion.

2 Abstract Interpretation, Formal Verification and
Testing – an Integrated Approach

2.1 Specification of Analysis, Verification and Test Objectives

In our approach functional requirements of C/C++ modules are specified by
means of pre- and post-conditions (Fig. 1). Optionally, additional assertions can
be inserted into an “inspection copy” of the module code. The Unit Under Test
(UUT)3 is registered by means of its prototype specification preceded by the
@uut keyword and extended by a {@pre: ... @post}; block. Pre- and post-
conditions are specified as Boolean expressions or C/C++ functions, so that –
apart from a few macros like @pre, @post, @assert and the utilisation of the
method name as place holder for return values – no additional assertion language
syntax is required. The pre-condition in Fig. 1, for example, states that the spec-
ified module behaviour is only granted if input i is in range 0 ≤ i ≤ 9 and inputs
x, y satisfy exp(y) < x. The post-condition specifies assertions whose applica-
bility may depend on the input data: The first assertion globx == globx@pre

states that the global variable globx should always remain unchanged by an
execution of f(). The second assertion (line 9) only applies if the input data
satisfies −10.0 < y ∧ exp(y) < x. Alternatively (line 12), the return value of f()
shall be negative.

It is well-known that pre-/post-condition specifications are considerably facil-
itated by the optional utilisation of auxiliary variables [2, p. 192]: These variables
are characterised by the fact that they are never read in control conditions or
assignments to non-auxiliary variables. As a consequence, the existence of aux-
iliary variables and their associated assignments does not change the (untimed)

3 We use this term in general for any module to be analysed, verified and/or tested.



1 double globx;

2 ...

3 @uut double f(double x, double y, int i) {

4 @pre:

5 0 <= i and i <= 9 and exp(y) < x;

6 @post:

7 @assert( globx == globx@pre );

8 if ( -10.0 < y and exp(y) < x ) {

9 @assert( f == 1.0/(x - exp(y)) );

10 }

11 else {

12 @assert( f < 0 );

13 }

14 };

15

Fig. 1. Example: Module specification by pre- and post-conditions.

behaviour of the UUT. Assignments can either be directly inserted into the UUT
code (so-called code instrumentation) or into the UUT specification by way of
pre- and post-processing statements: Figure 2 shows an example of the latter
variant, where the two previous return values of function g() are related to the
actual function return: The @aux section is used to declare auxiliary variables.
The @preprocess statements are executed before each call to the UUT, the
@postprocess statements are executed after the UUT has terminated and the
post-condition has been evaluated.

Since module behaviour is not only defined by its input-output relation but
also by the sequence of sub-function and method invocations, it is necessary to
specify

– the expected number and sequence of sub-function invocations,
– the expected input data to be passed by the UUT to its sub-functions,
– constraints about the sub-function behaviour, depending on the input data

it receives.

Sub-functions are specified in the same way as the UUT itself. Using auxiliary
variables and associated assignments recording the calls and their parameters,
the assertions related to sequencing of sub-function calls can be expressed by
means of predicates referring to these auxiliary variables. For test purposes, our
system automatically generates test stubs (also called mock objects in object-
oriented settings): These are functions replacing the original sub-functions in-
voked by the UUT, and showing the specified sub-function behaviour. The utili-
sation of stubs has the advantage, that exceptional behaviour which rarely occurs
in the original sub-function (e. g. report of an arithmetic exception or a hardware
error) can easily be simulated in the stub, so that execution of the associated



1 @uut double g(double x) {

2 @aux:

3 double z0;

4 double z1 = 0;

5 @preprocess:

6 z0 = z1;

7 @pre:

8 0 < x;

9 @post:

10 @assert( fabs( 1.0 - (g + z1 + z0)/3.0 ) < 0.1 );

11 @postprocess:

12 z1 = g;

13 };

14

Fig. 2. Module specification using auxiliary variables.

code sections in the UUT can be triggered in a simple way. For structural test-
ing, the desired coverage can be specified. Currently, we support the coverage
criteria required in the standards [21, 8]:

– Statement coverage (C0): Every statement is executed at least once.

– Decision coverage (C1): C0 coverage plus the requirement that every decision
is evaluated at least once with result true and at least once with result false.
This is required, for example, for testing avionic software of criticality level
B (A = highest criticality level).

– Multiple condition/decision coverage (MC/DC): C1 coverage plus the re-
quirement that every condition in a decision in the module has taken all
possible outcomes at least once, and each condition in a decision has been
shown to independently affect that decision’s outcome. A condition is shown
independently to affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions. This is required, for exam-
ple, for testing avionic software of criticality level A.

The specification of pre-/post-conditions and internal assertions, in com-
bination with the optional utilisation of auxiliary variables, allows to specify
safety conditions about the module behaviour. As a consequence, the verifi-
cation goals are represented by reachability problems which are very similar
to the structural coverage test goals: If we consider augmented module ver-
sions where each safety condition ψ is represented by an auxiliary code branch
if ¬ψ then { raiseError(); } located at the appropriate place in the code, a
test reaching the raiseError();-statement would uncover the violation of ψ
and at the same time provide a counter example. Conversely, if this statement
can be proven to be “dead code”, this proves validity of ψ.



Furthermore, the objective to achieve functional test coverage can also be
reduced to the problem of achieving structural test coverage, that is, it can also
be transformed into a set of reachability problems. To illustrate this we consider
a typical post-condition pattern

Q ≡
∧

i

(Ci(v,v
′) ⇒ Qi(v,v

′))

Given variable vector pre-states v and post-states v
′, this post-conditions states

a number of conditions Ci(v,v
′) about the situations to be distinguished. De-

pending on the applicable situation Ci(v,v
′), additional assertionsQi(v,v

′) shall
also hold. Functional test coverage would now require to create each of the situ-
ations Ci(v,v

′), so that the expected outcome Qi(v,v
′) can be checked. Instead

of UUT f(), we now consider the augmented function faug() shown in Fig. 3.
Obviously, statement coverage of faug() implies functional coverage of f() in the
sense exemplified above.

1 void f_aug(t1 x1, ..., tn xn) {

2 t r;

3 if ( P(v) ) {

4 // This branch is entered when input data

5 // satisfied pre-condition P(v)

6
7 v0 = v; // Create copy of pre-states

8 r = f(x1, ...,xn); // Call the UUT

9
10 // Post-state has changed variable vector v,

11 // pre-state is saved in auxiliary variable v0.

12
13 if ( C_1(v0,v) ) {

14 assert( Q_1(v0,v) );

15 }

16 ...

17 if ( C_k(v0,v) ) {

18 assert( Q_k(v0,v) );

19 }

20 }

21 }

22

Fig. 3. Branch coverage of f aug() implies functional test coverage of f().

For the static analysis objective “Absence of run-time errors” no user-defined
specifications are required, since the analysis obligations can be directly ex-
tracted from the code. It is possible, however, to choose between bug finder



mode and proof mode: The former mode only uncovers run-time errors along the
module paths which have been investigated in order to reach the specified test
coverage and verification goals. Each uncovered run-time error is associated with
a test case uncovering the erroneous module state; potential runtime errors for
which no test cases could be constructed are not reported. The proof mode tries
to prove the absence of any runtime error within the module, provided that the
specified pre-conditions are met.

2.2 Building Blocks of the Tool Platform

Figure 4 shows the major building blocks of the tool platform which are described
in the subsequent paragraphs.
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Fig. 4. Building blocks of test automation, static analysis and property verification
tool platform.

Intermediate Model Representation and Parser Front-Ends. In order to
support various specification formalisms and test paradigms, such as code-based
white-box and model-based black-box testing, the system under test and/or
its specification are first transformed into an intermediate model representation
(IMR) which is independent on the concrete SUT code or specification syntax:
The IMR consists of a class library allowing to encode hierarchic hybrid transi-
tion systems. For testing C/C++ modules, a compilation front-end derived from
gcc [15] parses the UUT code and generates (1) a control flow graph (CFG) rep-
resentation in 3-address code of the UUT and (2) a detailed information base
supporting queries about types, variables/objects and their sizes. Based on these
information, the IMR model of the UUT is instantiated. For model-based test



and verification parsers for UML2.0 and domain-specific languages (railways and
automotive) are available.

The CFG representation of C/C++ modules uses GIMPLE syntax [11] which
has the same expressiveness as C/C++ but uses a very restricted syntax for
expressions. This facilitates the parsing and the IMR generation process, as well
as the constraint generation process.

Path Selector. The path selector controls the lazy “on-demand” expansion of
the symbolic models described in more detail in Section 3: For a given edge e in
the CFG, it constructs paths from the initial CFG node to e and submits them
to the constraint generator as sequences or trees of CFG nodes and edges. CFG
cycles representing unbounded loops in the UUT code are gradually expanded.
Cycles representing simple for-loops with fixed numbers of cycles are identified
by means of the interpreters (see below) and directly expanded to their specified
limit. With information provided by the abstract interpreters or the solver, the
path selector learns about infeasible paths, so that they are never extended.
Further details are described in [3].

Interpreters and the Generation of Models. As depicted in Fig. 4, three
types of interpreters are used to support the testing, verification and abstract
interpretation activities. (1) The concrete interpreter evaluates the module with
concrete input data, following the rules of the GIMPLE operational semantics,
as described in [17]. This interpreter is used to investigate the paths through
the GIMPLE module which are covered by given concrete sets of data. If, for
example, concrete test data has been generated in order to reach a CFG edge

p
g

−→CFG q, then the concrete interpreter is applied to determine the consecutive
transitions q −→CFG . . . to be performed with these data until the module’s exit
point is reached. (2) The symbolic interpreter performs symbolic computations
on the CFG, recording the effect of GIMPLE statements by means of predicates
in a symbolic memory model, whose details are described in Section 3. This
interpreter is the core component for generating the constraints to be solved
for the inputs to the module in order to reach a given edge or location in the
CFG. Observe that, since the symbolic interpreter does not check whether the
constraints recorded along an “interpretation route” through the CFG are sat-
isfiable, the generated computations are a superset of the ones really possible.
(3) The abstract interpreters evaluate one or more abstractions of the memory
model. Starting with (lattice) abstractions of the module’s input data, they oper-
ate on abstractions of the symbolic memory model. The purpose of this activity
is threefold:

– Identification of runtime errors.
– Using over-approximation, an abstract interpreter can find sufficient condi-

tions to prove that a computation “suggested” by path generator and sym-
bolic interpreter is infeasible. Since abstract interpretation can be performed
at comparably low cost this is more effective than waiting for the constraint
solver to find out that a path cannot be covered.



– Using under-approximation, the abstract interpreters speed up the solution
process for non-linear constraints involving floating point variables and tran-
scendent functions.

In order to prove the correctness of interpreters – this is an ongoing activ-
ity in the author’s research group, but beyond the scope of this paper – it is
helpful to analyse the formal rôle of these interpreters: The concrete interpreter
obviously generates the concrete transition system representing the behaviour
of the GIMPLE module. Hypothetically it could be used to generate a global
model for a concrete model checker, but in practice these models would be far
too large for any module of realistic complexity. As a consequence, the concrete
interpreter unfolds the model in a lazy manner, only along the paths through the
CFG where concrete investigations (e. g. for determining the effect of a concrete
data set on the module portion to be covered) are required.

The symbolic interpreter unfolds a memory model which implicitly specifies
the power set lattice over the concrete model. Each state of this power set lattice
is represented by a set of pairs (l, s) where l is a location in the module’s CFG
and s is an interpretation of symbols (variables, pointers, function pointers) in
location l. As will become apparent in Section 3, a symbolic memory state mem
generated during a symbolic computation for a location l defines a constraint φ
over symbols xi ∈ V such that the set of all possible concrete symbol valuations
in this state is given by {s : V 6→ D | φ[s(x1)/x1, . . . , s(xn)/xn]}, that is, the set
of valuations where φ becomes true.

Each abstract interpreter is instantiated according to the following recipe:

1. For every datatype t in the concrete program component chose a suitable ab-
straction lattice (L(t),⊑), so that a Galois Connection (see, for example [6,

p. 201]) (P(t),⊆)
⊳

←−
−→

⊲

(L(t),⊑) between powerset lattice and abstraction lat-

tice exists.
2. Lift each operation ♦ defined on t to L(t) by means of the canonic con-

struction ♦L : L(t) × L(t) → L(t); p1♦Lp2 =def (p1
⊳♦Pp2

⊳)
⊲

. In this def-
inition, ♦P denotes the canonic lifting of ♦ to the powerset lattice over t:
a1♦Pa2 =def {x1♦x2 | xi ∈ ai, i = 1, 2}.

3. Having defined all abstraction lattices L(t), lift all Boolean operators
△ : t× t′ → B to [△] : L(t) × L(t′) → L(B) by

p1[△]p2 =

8

<

:

⊤ if {x1△x2 | x1 ∈ p1
⊳ , x2 ∈ p2

⊳} = {false, true}
false if {x1△x2 | x1 ∈ p1

⊳ , x2 ∈ p2
⊳} = {false}

true if {x1△x2 | x1 ∈ p1
⊳ , x2 ∈ p2

⊳} = {true}

4. Based on steps 1 — 3, lift the symbolic state space SS defined in Section 3

to a lattice representation SL, together with a Galois Connection SS

⊳

←−
−→

⊲

SL.

5. Introduce an abstract transition relation −→L⊆ SL×SL by requiring (−→P

denotes the transition relation on the powerset lattice over SS)

(a) p⊲⊳
−→Pp′

p⊲
−→Lp′⊲

(b) a⊳
−→Pp′

a−→Lp′⊲



This transition relation −→L satisfies the consistency condition

(c) ∀a, a′, b ∈ L : (a −→L a′ ∧ b ⊑ a⇒ ∃b′ ∈ L : b −→L b′ ∧ b′ ⊑ a′)

Properties (a—c) can be used to identify infeasible transitions on symbolic
interpretation level, without having to consult the constraint solver: If abstract
interpretation can show that p⊲ 6−→L p′

⊲
, this implies p⊲⊳

6−→P p′. (For further
details, see the lecture notes [16]).

Constraint Generation. The partial symbolic model expanded by the sym-
bolic interpreter according to guidelines of the path selector already contains
the constraints to be fulfilled in order to reach a given edge in the CFG on a
(set of) pre-defined paths. These constraints, however, still refer to pointer and
array expressions which have to be resolved before passing the constraints to
the solver. This resolution process is performed by the constraint generator. The
resulting constraint φ only refers to atomic variables which are derived from the
program variables, address offsets and length expressions. The representation
of φ in conjunctive normal form is structured in such a way that each atomic
condition is represented in 3-address code (such as x < y+ z), as long as it does
not involve calls to n-ary functions with n > 2 (e. g., x = f(u, v, w, y)).

Constraint Solver. The solver handling conditions prepared by the constraint
generator has been developed according to the Satisfiability Modulo Theory
(SMT) paradigm [20]. It uses a combination of techniques for solving partial
problems of specific type (e. g., constraints involving bit vector arithmetic,
strings, or floating point calculations). For the solution of constraints involving
floating point expressions and transcendent functions the solver applies interval
analysis with sub-paving, bi-partitioning and forward-backward constraint prop-
agation as main techniques [13]. Given a constraint Φ and its solution set S, the
solver constructs a sub-paving P , that is, a collection of interval vectors whose
union C is a subset of S, that is, and under-approximation. As a consequence,
any vector of variable values taken from P is a solution of Φ. Alternatively,
the solver can construct sub-pavings as over-approximations P ′, such that the
union C ′ of P ′-interval vectors satisfies S ⊆ C ′. This is used for the generation of
boundary value and robustness tests, where Φ represents a pre-condition, and we
are interested in finding values close to the boundary (inside or outside) of S. To
speed up the process of finding P , forward-backward constraint propagation is
used to contract interval vectors possessing non-empty intersection with both S

and its complement. Additionally, we use learning strategies as described in [10,
3], where also more details on the solver can be found.

3 Memory Model and Symbolic Interpretation

3.1 Memory Model

As a consequence of the aliasing problems of C/C++ it may be quite complex
to determine the valuation of a variable in a given module state: the memory



location associated with the variable may have been changed not only by direct
assignments referring to the variable name, but also indirectly by assignments
to de-referenced pointers and memory copies to areas containing the variable.
Therefore we introduce a memory model that allows us to identify the pres-
ence of such aliasing effects with acceptable effort. Computations are defined as
sequences of memory configurations, and the memory areas affected by assign-
ments or function/method executions are specified by means of base addresses,
offsets and physical length of the affected area. Moreover, the values written
to these memory areas are only specified symbolically by recording the value-
defining expression (e. g. right-hand side of an assignment or output parameter
of a procedure call) without resolving them to concrete or abstract valuations.
This motivates the term symbolic interpretation. Global, static and stack vari-
ables x induce base addresses &x in the data and stack segment, respectively.
Dynamic memory allocation (malloc(), new ...) creates new base addresses
on the heap. A memory configuration mem consists of a collection of memory
items, each item m specified by base address, offset, length and and value ex-
pression (Fig. 5). Since some statements will only conditionally affect a memory
area, it is necessary to associate memory items with constraints specifying the
conditions for the item’s existence.

m.v0 | m.v1 | m.a | m.t | m.o | m.l | m.val | m.c

m.v0 First computation step number where m is valid
m.v1 Last computation step number where m is valid or ∞ for items valid beyond the

actual computation step
m.a Symbolic base address
m.t Type of specified value m.val

m.o Start offset from base address in bits, where value is stored
m.l Offset from base address to first bit following the stored value, so m.l−m.o specifies

the bit-length of the memory location represented by the item
m.val Value specification
m.c Validity constraint

Fig. 5. Structure of a memory item m.

Symbolic computations – that is, sequences of memory configurations related
by transition relations – are recorded as histories, in order to reduce the required
storage space: Memory items are associated with a validity interval [m.v0,m.v1]
whose boundaries specify the first and last computation step where the item was
a member of the configuration.

Example 1. Suppose that variables float x, y, z; are defined in the stack frame of
the UUT on a 32-bit architecture, and the current computation step n performs



an assignment x = y + z. This leads to the creation of a new memory item

m =def n | ∞ | &x | float | 0 | 32 | yn + zn | true

Item m is first valid from step n on, and has not yet been invalidated by other
writes affecting the memory area from start address &x to &x+31, so m.v1 = ∞.
(Example 3 below shows the effect of C/C++ statements on the invalidation of
memory items.) The value depends on the valuation of y and z, taken in step n.
This is denoted by the version index n in the value expression yn + zn. �

For the representation of large memory areas carrying identical or inter-
dependent values it is useful to admit additional bound parameters in the offset,
value and constraint specifications:

mp0,...,pk
=

v0 | v1 | a | t | o(p0, . . . , pk) | l(p0, . . . , pk) | val(p0, . . . , pk) | c(p0, . . . , pk)

defines a family of memory items by means of the definition

mp0,...,pk
=def {m

′ | m′.v0 = v0 ∧m
′.v1 = v1 ∧m

′.a = a ∧m′.t = t ∧
(∃p′0, . . . , p

′

k : m′.o = o[p′0/p0, . . . , p
′

k/pk] ∧
m′.l = l[p′0/p0, . . . , p

′

k/pk] ∧
m′.val = val[p′0/p0, . . . , p

′

k/pk] ∧
m′.c = c[p′0/p0, . . . , p

′

k/pk])}

Example 2. Suppose that array float a[10]; is defined in the stack frame of
the UUT on a 32-bit architecture, and is currently represented by a family of
memory items

mp =def

n | ∞ | &a[0] | float | 32 · p | 32 · p+ 32 | sinf((float)p) | 0 ≤ p ∧ p < 10

Family m specifies one memory item for each p ∈ {0, . . . , 9}, each item located
at a p-dependent offset from the base address &a[0] and carrying a p-dependent
value. �



More formally, the symbolic interpretation state space SS of a module P is
defined as

SS =def N(P ) × N0 × M

N(P ) =def Nodes of P ’s GIMPLE control flow graph

M =def dataSegment × heapSegment × stackSegment

dataSegment =def M-Item∗

heapSegment =def M-Item∗

stackSegment =def stackFrame∗

stackFrame =def M-Item∗

M-Item =def N0 × (N0 ∪ {∞}) × BaseAddress ×

Types × Offset × OffsetPlusLength × Value × Constraint

BaseAddress =def String

Offset =def OffsetPlusLength =def Value =def Constraint =def Expr(Sym × N0)

Sym =def Symbols of P plus parameters for families of memory items

Each symbolic state consists of a triple (node, n,mem) where node is a node
in the GIMPLE control flow graph representing the current “program counter
state” of the symbolic execution, n serves as a computations step counter and
mem is the current memory configuration. The collection of memory items gen-
erated so far is structured according to their allocation in the data segment,
heap or stack, respectively. The stack is further sub-divided into frames, so that
the validity of stack variables during their associated function executions can be
clearly specified.

For the symbolic specification of offsets, values and constraints GIMPLE
expressions over symbols from the module P , that is, program variables or object
attributes are used. In addition to that, these expressions may refer to parameters
defining families of memory items, as illustrated in Example 2. Each variable
symbol is associated with a version identifier: If x has current version n and the
next computation step processes an assignment x = x+ 1; this generates a new
memory item for version xn+1 with value expression xn + 1.

3.2 Symbolic Interpretation

Symbolic interpretation (denoted below by transition relation −→G, “G” stand-
ing for “GIMPLE operational semantics”) is performed according to rules of the
pattern

n1

g
−→CFG n2

(n1, n, mem) −→G (n2, n + 1, mem′)
,

so a transition can be performed on symbolic level whenever a corresponding

edge exists in the control flow graph (
g

−→CFG denotes the edge-relation in the
module’s CFG, with guard condition g as label). It may turn out, however, on



σ : Symbols × M → M-Item∗ Depending on the current memory state mem,
σ(x, mem) maps a symbol x to the stack frame,
global data or heap section where x is associated
with.

τ : Symbols × M → Symbols Depending on the current memory state m,
τ(x, m) maps a variable symbol x to its type.

β : Selectors → BaseAddress Maps a selector to its base address.

ω : Selectors → Expr Maps a selector to its offset expression.

bitsizeof : Symbols → N Takes a type symbol and returns its length in bits.

bit : Expr × N0 6→ {0, 1} bit(e, b) returns the value of the bth bit of expres-
sion e.

Fig. 6. Auxiliary functions used in the symbolic interpretation algorithms in
Section 3.2.

abstract or concrete interpretation level, that such a transition is infeasible in
the sense that no valuation of inputs exists where the constraints of all memory
items involved evaluate to true. Informally speaking, a statement changing the
memory configuration is processed according to the following steps: (1) For every
base address and offset possibly affected by the statement, create a new memory
item m′, to be added to the resulting configuration. (2) For each new item m′

check which existing items m may be invalidated: Invalidation occurs, ifm′ refers
to the same base address as m and the data area of m′ covers (i. e., has a non-
empty intersection with) that of m. (3) For each invalidated item m create new
ones m′′ specifying what may still remain visible of m: m′′ equals to m if m′

does not exist at all (i. e., constraint m′.c evaluates to false), or m′ and m do
not overlap. Moreover, m′′ specifies the resulting value representation of m in
memory for the situation where m′ and m only partially overlap.

To explain the effect of symbolic transitions on the state space SS more
formally, we present three transition rules explaining stack variable definition,
assignment to a variable and assignment to a de-referenced pointer. In the defi-
nitions and algorithms involved some auxiliary functions are involved which are
defined in Fig. 6.

(1) A stack variable definition, n1 =def typex x;, performed in computation
step n, only affects the current stack frame. Value expression Undef marks that
the value is still undefined. The new memory item is only valid if the guard
condition g, evaluated according to the memory configuration of computation
step n− 1 is true.

m := (n,∞, &x, typex, 0, bitsizeof(typex), Undef, (g, n − 1));
mem′ := (mem.data, mem.heap, front(mem.stack) ⌢ 〈last(mem.stack) ⌢ 〈m〉〉;

(2) The effect of an assignment to a stack or global variable, n1 =def sel = expr;
affects the current stack frame or the global data segment. In this assignment



procedure up=(sel : Selectors; expr : Expr; n : N0; g : Expr; inout mem : M)
m′.v0 := n;
m′.v1 := ∞;
m′.a := &β(sel)
m′.t := τ(sel, mem)
m′.o := (ω(sel), n − 1)
m′.l := (ω(sel) + bitsizeof(sel), n − 1)
m′.val := (expr, n − 1)
m′.c := (g, n − 1)
up(m′, n, mem);

end

Fig. 7. Effect of normal assignments on history of memory items.

expression sel denotes an arbitrary selector, that is an identifier of an atomic
variable, structure component, array element or mixed structure/array identi-
fier, such as a.b[i][j].c.d[k]. The new memory state mem′ is specified by
procedure call

up=(sel, expr, n + 1, g, mem); mem′ := mem;

and its in-out-parameter mem. Procedure up=() (Fig. 7) specifies (a) how a
new memory item m′ is created, carrying the right-hand side expression as its
value and the CFG guard condition as validity constraint and (b) which memory
items m have to be invalidated due to the new assignment, possibly leading to
the creation of “replacements” for these m involving new constraints. The details
of this invalidation/creation process are specified in procedure up() (Fig. 8).

In the loop processed in procedure up(), new memory item m′′ captures
the situation where either m′ is infeasible (i. e. ¬m′.c) or the address range
of m′ does not affect m. The definition of the memory item family m′′′

b in this
specification handles the “worst case” of an assignment, where only one or more,
but not all bits of an existing memory item m are overwritten. This happens,
for example, when working with C/C++ unions or bit-vector operations where
selected bits of an integer variable can be manipulated. Item family m′′′

b specifies
which of the original bits from m are left unchanged by such an operation.
Fortunately, it can be decided in many situations that m′′′

b does not exist, so
that the invocation of bit-vector decision procedures can be avoided. Assume,
for example, that all array indexes involved in expressions a.b[i] and a’.b’[i’]

are within range. Then an assignment to a.b[i] is in conflict with a’.b’[i’]

if and only if a = a′ ∧ b = b′ ∧ i = i′. In this case, a’.b’[i’] is completely
overwritten. Further observe that the offset expressions ω(sel) used in procedure
up=() are constants if the selector does not involve array indexes or only indexes
which are constant.



procedure up(m′ : M-Item; n : N0; inout mem : M)
begin

h := σ(m′.a, mem);
u := 〈 〉;
for m = last(h) downto head(h) do

if (m.v1 = ∞∧ m′.a = m.a) then

m.v1 := n − 1;
c′′ := m.c ∧ (¬m′.c ∨ m′.l ≤ m.o ∨ m.l ≤ m′.o)
m′′ := (n,∞, m.a, m.t, m.o, m.l, m.val, c′′);
c′′′ := m.c ∧ m′.c ∧ 0 ≤ b ∧ b < bitsizeof(m.t) ∧

(b < m′.o − m.o ∨ m′.l − m.o ≤ b);
m′′′

b := (n,∞, m.a, Bit, m.o + b, m.o + b + 1, bit(m.val, b), c′′′);
u := 〈m′′, m′′′

b 〉 ⌢ u;
endif

enddo

h := h ⌢ u ⌢ 〈m′〉;
end

Fig. 8. Effect of new memory item m′ on memory items m ∈M .

Example 3. A stack declaration int a[10]; followed by assignments a[i] = m

+ n; a[j] = 0; is represented in GIMPLE as

1 int a[10];

2 i_0 = i;

3 D_4151 = m + n;

4 a[i_0] = D_4151;

5 j_1 = j;

6 a[j_1] = 0;

After having processed lines 1 — 6, the associated computation results in the
following history of memory items:

m1

p = (1, 3, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10)

m2 = (2,∞, &i 0, 0, 32, int, i1, true)

m3 = (3,∞, &D 4151, 0, 32, int, m2 + n2true)

m4

p = (4, 5, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10 ∧ p 6= i 02)

m5 = (4, 5, &a[0], 32 · i 02, 32 · i 02 + 32, int, D 41513, 0 ≤ i 02 ∧ i 02 < 10)

m6 = (5,∞, &j 1, 0, 32, int, j4, true)

m7

p = (6,∞, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10 ∧ p 6= i 02 ∧ p 6= j 15)

m8 = (6,∞, &a[0], 32 · i 02, 32 · i 02 + 32, int, D 41513,

0 ≤ i 02 ∧ i 02 < 10 ∧ i 02 6= j 15)

m9 = (6,∞, &a[0], 32 · j 15, 32 · j 15 + 32, int, 0, 0 ≤ j 15 ∧ j 15 < 10)



This example illustrates how memory items are invalidated by consecutive writes
to related memory areas: For example, the execution of statements 1 — 4 results
in m1

p.v1 = 3, since the write in statement 4 also affects the memory area starting
at &a[0]. Items m4

p specifies “what is left of” m1
p after execution of statement 4.

�

procedure up=p(p : Symbols; expr : Expr; n : N0; g : Expr; inout mem : M)
begin

h := σ(p, mem);
for m′ = last(h) downto head(h) do

if m′.a = &p ∧ m′.v1 = ∞ then

pl := ξ(m′.val, mem)
foreach m′′ ∈ pl do

m.a := Base address part of address expression m”.val;
m.v0 := n;
m.v1 := ∞;
m.o := Offset part of address expression m”.val;
m.l := m.o + bitsizeof(τ(∗p, mem));
m.val = (expr, n);
m.c := (g, n) ∧ m′.c ∧ m′′.c;
up(m, n, mem);

enddo

endif

enddo

end

Fig. 9. Effect of assignments to de-referenced pointers on history of memory
items.

(3) An assignment to a de-referenced pointer, n1 =def *p = expr; may affect
the data segment, heap or stack, depending on the potential target addresses p
points to. The details are specified by function up=p

(Fig. 9).

up=p(p, expr, n, mem, g)
mem′ := mem;

up=p
loops over all possible pointer valuations represented by memory items

m′. For each valid item, a list pl of all possible pointer targets is generated,
using auxiliary function ξ() (Fig.10): Depending on the possible valuations of
the address expression specified in m.val, p may point to one or more locations
in stack, data segment or heap. For each of these possible situations, the items
m′′ in pl contain value expressions consisting of base addresses and offsets. For
example, if p = q + i ∧ q = &z + k, then ξ returns an item with value expression
&z + k+ i in its list. The effect of each new item on the invalidation of existing



function ξ((expr, n) : Expr × N0; mem : M) : M-Item∗

m := (., ., ., ., ., ., (expr, n), true);
el := 〈m〉;
while have m-item m′ in el with unresolved m′.val do

m′ := next m-item in el with unresolved m′.val;
x := next unresolved identifier from m′.val;
h := σ(x, mem);
for m′′ := last(h) downto head(h) do

if m′′.a = β(x) ∧ m′′.v0 ≤ n ≤ m′′.v1 then

val1 := m′.val;
In val1: exchange each occurrence of x by m′′.val;
el := el ⌢ 〈(., ., ., ., ., ., val1, m

′.c ∧ m′′.c)〉;
endif

enddo

erase m′ from el;
enddo

ξ := el;
end

Fig. 10. Function ξ finds list of base addresses and offsets potentially associated
with a pointer.

items and creation of new ones is performed again as specified by up() and
explained above.

3.3 Optimisation Through Abstract Interpretation

The symbolic interpretation process as described above does not investigate the
feasibility of the memory items associated with a configuration. This can either
be done after constraint generation (see Section 4) by the solver or by more
efficient, though incomplete, abstract interpretations. To this end, we use interval
analysis in order to calculate ranges of possible variable values and pointer target
addresses. These interval interpretations are used to check whether constraints
m.c of memory items m evaluate to false in the interval lattice valuation of
Boolean expressions. Since the interval interpretation is an over-approximation,
a false-valuation of m.c in the interval lattice implies that no concrete valuation
of m.c could evaluate to true either. As a consequence, m can be immediately
dropped, without having to consult the solver.

4 Constraint Generation

As we have seen in the previous section, the guard conditions to be fulfilled in
order to cover a specific path or a sub-graph of a module’s CFG are already



encoded in the memory items associated with the symbolic memory configura-
tions involved. The most important task for the constraint generator is now to
resolve the value components of the memory items involved, so that the resulting
expressions are free of pointer and array expressions, and are represented in an
appropriate format for the solver.

Example 4. Let us extend Example 3 by two additional statements

7 D_4160 = a[i_0];

8 if ( D_4160 < 0 ) { ...(*)... }

and suppose we wish to reach the branch marked by (*). The constraint generator
now proceeds as follows: (1) Initialise constraint Φ as Φ := D 4160 < 0.

(2) Resolve D 4160 to a[i 0], as induced by the memory item resulting from
the assignment in line 7. Since a[i 0] is an array expression, we have to resolve
it further, before adding the resolution results to Φ.

(3) a7[i 07] matches with items m7
p,m

8,m9 for a and m2 for i 0 in Exam-
ple 3, since the other items with base address &a[0] are already outdated at
computation step 7; this leads to resolutions

Φ := Φ ∧ ((D 4160 = Undef ∧ i 07 = p ∧ 0 ≤ p ∧ p < 10 ∧ p 6= i 02 ∧ p 6= j 15) ∨
(D 4160 = D 41513 ∧ i 07 = i 02 ∧ 0 ≤ i 02 ∧ i 02 < 10 ∧ i 02 6= j 15) ∨
(D 4160 = 0 ∧ i 07 = j 15 ∧ 0 ≤ j 15 ∧ j 15 < 10)) ∧
i 07 = i 02 ∧ i 02 = i1

Observe that at this stage Φ has been completely resolved to atomic data types:
The references to array variable a have been transformed into offset restrictions
(expressions over i 07, i 02, j 15, . . .), and the array elements involved (in this
example a[i 0]) have been replaced by atomic variables representing their values
(D 4160). References to C-structures would be eliminated in an analogous way,
by introducing address offsets for each structure component and using atomic
variables denoting the component values.

Further observe that we have already eliminated the factors 32 in Φ, initially
occurring in expressions like 32 · i 07 = 32 · j 15. These factors are only rele-
vant for bit-related operations; for example, if an integer variable is embedded
into a C-union containing a bit-field as another variant, and a memory item
corresponding to the integer value is invalidated by a bit operation.

(4) Prepare the constraint for the solver: Following the restrictions for ad-
missible constraints described in [10], our solver requires some pre-processing of
Φ: (a) Inequalities like i 02 6= j 15 are replaced by disjunctions involving <,>,
e. g. i 02 < j 15 ∨ i 02 > j 15. (b) Inequalities a < b are only admissible if a or
b is a constant. Therefore atoms like i 02 < j 15 are transformed with the aid
of slack variables s, so that non-constant symbols are always related by equality.
For example, the above atom is transformed into i 02 + s = j 15 ∧ 0 < s. (c)
Three-address-code is enforced, so that – with the exception of function calls
y = f(x0, . . . , xn) and array expressions y = a[x1] . . . [xn] – each atom refers to
at most 3 variables. Since the introduction of slack variables may lead to four
variables in an expression originally expressed with three symbols only, auxil-
iary variables are needed to reinstate the desired three-address representation.



For example, x + y < z leads to x + y = z + s ∧ s < 0 which is subsequently
transformed into aux = z+ s∧ x+ y = aux∧ s < 0. (d) The constraint is trans-
formed into conjunctive normal form CNF. Constraint Φ in this example already
indicates a typical problem to be frequently expected when applying the stan-
dard CNF algorithm: Some portions of Φ resemble a disjunctive normal form.
This is caused by the necessity to consider alternatives – that is, ∨-combinations
– of memory items, where the validity of each item is typically specified by a
conjunction. As a consequence, the standard CNF algorithm may result in a
considerably larger formula. Therefore we have implemented both the standard
CNF algorithm and the Tseitin algorithm [24] as an alternative, together with a
simple decision procedure indicating which algorithm will lead to better results.

5 Conclusion

We have described an integrated approach for automated testing, static analysis
by abstract interpretation and formal verification by model checking (reacha-
bility analysis). The techniques described have been explicitly designed for the
verification of C/C++ modules. To cope with the aliasing problems of C/C++,
a memory model for symbolic interpretation of address values, offsets, lengths
and values of memory valuations has been described. The combinatorial com-
plexity of symbolic memory interpretation is considerably reduced by means of
lock-step abstract and symbolic interpretation, using the abstract interpretation
for a priori elimination of infeasible symbolic states. The tasks of functional
and structural testing have been reduced to problems of reachability analysis.
To cope with constraints involving all C/C++ data types, including bit vec-
tor operations, type casts, large integer ranges and floating point variables, an
SMT (Satisfiability Modulo Theory) solver is used which handles floating point
variables and transcendent functions by means of interval analysis.
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15. Helge Löding. Behandlung komplexer Datentypen in der automatischen Testdaten-

generierung. Master’s thesis, University of Bremen, May 2007.
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