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Session 1: Model-Based Development of Safety-Critical
Systems – Concepts – Methodologies

I Model-based development – terms and definitions

I Model-based development – motivation

I Example 1: Refinement of state-machines

I Example 2: Transformational approach for state-machines

I Example 3: Data and data transformation refinement

I Model-Based Development – a survey of formalisms

I A survey of theoretic foundations
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Model-based development – terms and definitions

System Model: abstract representation of a system, usually
constructed by collection of sub-models reflecting different system
properties:

I Functional properties:
I Data (state) model
I Data transformation
I Behaviour

I Causality
I Synchronisation
I Timing
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Model-based development – terms and definitions

System Model (continued):
I Structural properties:

I Components
I Interfaces
I Control structure of algorithms

I Non-functional properties:
I RAMS = dependability (reliability, availability, safety, security) +

maintainability,
I Usability
I Quality of service
I . . .

Peleska et al. 6



Technologie-Zentrum Informatik

Model-based development – terms and definitions

Specification types:

I Explicit (functional) specifications are complete models
describing data, transformations and behaviour

I Implicit specifications or properties are logical assertions about
models – special types of implicit specifications are

I Safety properties always hold during a model execution
I Liveness properties hold finally for each model execution

I Algebraic specifications are models abstracting from data
I Hybrid or discrete-continuous specifcations describe both the

behaviour of observables changing
I only at discrete points in time
I according to piecewise continuous (differentiable, analytic)

functions over time
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Model-based development – terms and definitions

Formalisms for models consist of

I Syntax: the visual representation of models
I Semantics: the meaning of admissible syntactic constructs

I Denotational semantics assigns meaning by mathematical
specification of the effect of specification constructs on model
state and I/O sequences

I Operational semantics assigns meaning by construction of an
abstract interpreter operating on the state space in a way which is
equivalent to the specification behaviour
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Model-based development – terms and definitions

Formalisms may be classified according to their “closeness” to the
application domain

I Domain-specific formalisms use terms and objects of the
application domain – e. g. railway track sections, signals, points

I Wide-spectrum formalisms use abstract language elements which
can be mapped to objects of arbitrary application domains –
e. g. Statecharts, decision tables, logical formulae

I Machine-oriented formalisms use terms and objects of the target
system where the solution to the problem shall be implemented –
e. g. assembler code, CPU models with registers, cache,
microcode
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Model-based development – terms and definitions

Model-based development is a formalism together with a set of rules
how to

I construct executable systems – HW and SW – from models,

I verify that an implementation conforms to the model.

Goal: Derive executable system from model in an automatic way!
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Model-based development – Motivation

I Improve problem understanding by using suitable abstractions in
model

I Generate executable code faster

I Apply automated model-based testing to improve HW/SW
integration quality and speed up the verification process

I Automated code generation ensures
I Unified handling of design patters
I Code compliance with coding standards
I Avoidance of errors during transformation from model to code
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Model-based development – terms and definitions

Two alternative approaches for model-based development:
I Stepwise refinement (invent-and-verify paradigm):

I Invent a more concrete representation Si+1 of the system Si to be
developed

I Prove that Si+1 is equivalent or – slightly weaker – a valid
refinement of Si

I Refine Si+1 . . .
I until most refined version is directly executable.

I Transformational development directly compiles specification
models into executable systems.

Peleska et al. 12



Technologie-Zentrum Informatik

Example 1: Refinement of state-machines

The CSP – Communicating Sequential Processes formalism for
describing networks of cooperating automata with local variables
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Example 1: Refinement of state-machines

CSP representation of FIFO buffer

B0 = app_tx?d −> B1(<d>)

B1(s) = (#s == 0)&B0
             []
             (#s < C)&app_tx? −> B1(s^<x>)
             []
             (0 < #s)&app_rx!head(s) −> B1(tail(s))
             []
             (#s == C)&B2(s)

B2(s) = app_rx!head(s) −> B1(tail(s))

B1

B2

B0
app_tx?d/
s = <d>

[#s == C] [0 < #s] app_rx!head(s)/s := tail(s)

[#s < C] app_tx?x/s := s^<x>

app_rx!head(s)/s := tail(s)

[#s == 0]

FIFO buffer with capacity C

FIFO
app_tx app_rx
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Example 1: Refinement of state-machines

Architecure for Alternating Bit Protocol

CONPROD

app_tx app_rc

Target System

SYS

M1

M1ACK

ABP_TX ABP_RC

abp_ack_txabp_ack_rc

abp_tx abp_rc
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Example 2: Transformational approach for state-machines

Operational semantics of CSP can be interpreted in hard real-time!

I Process states are nodes of transition graph

I Events cause state transitions between nodes

I Transition graph can be generated from CSP model

I Interpreter traverses transition graph

I Interface modules implement mapping between abstract events
and concrete interfaces (refinement – abstraction)
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Example 3: Data and data transformation refinement

Data and data transformation refinement is performed using the
following steps:

I Construct abstraction mapping between abstract and concrete
data structures

I Invent concrete operation

I Verify that – when applying the abstraction mapping – the
concrete operation implements the abstract one
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Example 3: Data and data transformation refinement

A1 x A2  

C1 x C2 C3

A3

a1xa2 a3

abs_op

conc_op

Correctness condition:

      forall (c1,c2) in C1 x C2 . abs_op(a1(c1),a2(c2)) = a3(conc_op(c1,c2))
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Session 2: The UML Approach to
Model-Driven Development
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Model-Driven Development

The Object Management Group¡Çs view on Model-Based
Development:

I Model-Driven Architecture: A framework for transforming
models, for example,

I From UML class diagrams to relational data base schema
I From UML class diagrams+method specifications in OCL to

schema + SQL query code
I From UML Statecharts to C++ code for embedded systems
I From UML Statecharts to UML Sequence Diagrams
I ...
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Model-Driven Development

Standard approach for MDA utilisation:

I Elaborate Platform-Independent Model (PIM)

I Transform PIM to one or more Platform-Specific Models (PSM)

I “Simple Transformation” from PSMs to code
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Session 3: UML2.0-Based Solutions to
Automated Model-Based Development,

Verification, Validation and Testing
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Background – Observations

Today, conventional development of train control systems typically
proceeds along the following lines:

I Specification and design of generic control system which can be
instantiated for concrete domains of control (i. e., railway nets)

I Manual software development in programming languages like
C/C++, Pascal or domain-specific languages (Sternol)

I Generation of executable code using validated compilers

I Full semi-formal verification of generic system (“type
certification”)

I Instantiation of generic system for concrete domain of control by
means of configuration data

I Full semi-formal verification of the configuration data

I Partial verification of the resulting concrete system
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Background – Observations

Today’s development approach frequently encounters the following
problems:

I Too much effort spent in manual coding phase, since re-use and
utilisation of design patterns is not properly managed

I ⇒ Too much effort spent on code verification

I Exhaustive verification of configuration data is expensive and
requires considerable manual effort

I Some errors in the generic system only come up when specific
configuration data is used:

I ⇒ semi-formal verification of a generic system does not ensure
correctness of all instances

I ⇒ semi-formal verification of a generic system does not ensure
correct integration of HW/SW system
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Domain of Control and Controller

I The Domain of Control (Physical Model) specifies the railway net
and the behaviour of trains on the net

I The Controller monitors
I sensors – train locations derived from sensor states
I signal states
I point states

and sends commands to
I signals
I points
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Domain of Control and Controller

Domain of Control Controller

incoming trains

outgoing trains

sensor−states

signal−states

point−states

(Physical Model) (Control Model)

Railway network
+ Trains
+ Safety Condition Φ

point−ctrl−cmds

signal−ctrl−cmds

route−requests
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Machine Code Generation – HW abstraction layer

Dual-ported RAM interface drivers ↔ safety layer:
SAFETY CONTROL LAYER

DRIVER/HARDWARE CONTROLLER LAYER
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ACTUAL
STATESTATE

REQUESTED SWITCHING
DEADLINE

DRIVER INTERFACES FOR SIGNALS AND POINTS

DEADLINE
STABLISATION

STATE
SENSOR

DRIVER INTERFACES FOR SENSORS

DRIVER
INTERFACES:
DUAL−PORTED
RAM

TIMETICK

CLOCK INTERFACE

HW INTERFACES
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V-Model for Model-Based Development and Verification

I Step 1. Manual requirements specification process:
I System requirements for domain of control – static aspects: Net

model + route model
I Architectural specification of controller (= target system to be

developed)
I Physical constraints specification

Specification formalism: UML2.0 with Railway Control System
Domain Profile RCSD
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V-Model for Model-Based Development and Verification

I Step 2. Automated generation of
I Behavioural model for domain of control
I Behavioural model for controller
I Verification conditions for safety properties

Specification formalism:
I Timed state-transition systems – SystemC syntax
I Verification obligations formulated as “simple” temporal logics

assertions over bounded discrete time intervals
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V-Model for Model-Based Development and Verification

I Step 3. Automated verification of controller model:
I Inductive verification strategy
I Bounded model checking

I Step 4. Automated generation of executable code:
I Assembler/machine code generated directly from controller model

– structured as instance of generic interpreter and configuration
data

I Formal proof of equivalence between timed state-transition system
model and machine code interpreter for all admissible instances of
configuration data is feasible

Peleska et al. 30
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Session 3: UML2.0-Based Solutions to Automated
Model-Based Development, Verification, Validation and
Testing

I UML2.0 Profile for train/tram control systems

I Automated transformation of requirements into formal SystemC
low-level model and associated verification conditions

I Automated verification based on bounded model checking
(BMC) and inductive proof strategy

I Automated machine code generation and verification

I Model Validation by property checking – simulation – testing

I System validation by automated HW/SW integration testing

I Motivate where automated HW/SW integration testing is still
needed and explain how full test automation is achieved
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Domain-specific description . . .

. . . consists of

I Net model: required to be correct
I Route model: Tables for

I Route definition
I Specification of conflicting routes
I Required point positions associated with routes
I Required signal settings associated with routes

to be automatically verified with respect to safety properties

I Safety model: consists of net model + transition rules for trains,
depending on point and signal states
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Domain-specific requirements: concrete net model

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
   1: S20−G21.1 (NORTH−SOUTH)
   3: S21−G23.1 (SOUTH−NORTH)

S20−G25.1

S22−G21.1

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21.1

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

ROUTE 0:

ROUTE 3: S21−G25.1

ROUTE 5:

ROUTE4: S22−G23.1

ROUTE 1:

S21−G23.1
ROUTE 2
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Domain-specific requirements: Route model

Route definition table

Route Route Sensor Sequence
0 〈G20.1,G20.2,G21.0,G21.1〉
1 〈G20.1,G20.3,G25.0,G25.1〉
2 〈G22.1,G22.2,G23.0,G23.1〉
3 〈G22.1,G22.3,G25.0,G25.1〉
4 〈G24.1,G24.3,G23.0,G23.1〉
5 〈G24.1,G24.2,G21.0,G21.1〉

Table 1. Route definition table.
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Domain-specific requirements: Route model

Point position table

Route W100 W102 W118

0 — straight —

1 — left —

2 — — straight

3 — — right

4 right — —

5 straight — —

Table 2. Point position table.
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Domain-specific requirements: Route model

Signal setting table

Route Signal Setting
0 S20 go-straight

1 S20 go-left

2 S21 go-straight

3 S21 go-right

4 S22 go-right

5 S22 go-straight

Table 3. Signal setting table.
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Domain-specific requirements: Route model

Route conflict table

Route Conflicts with
0 1 2 3 4 5

0 • ◦
1 • ◦ ◦ ◦
2 ◦ • ◦ ◦
3 ◦ •
4 ◦ •
5 ◦ ◦ ◦ •

Table 4. Route conflict table.

Peleska et al. 37



Technologie-Zentrum Informatik

Domain-specific description as UML2.0 profile

TramSegment
<<Segment>>

trackId:TrackId
crossing:TrackId
maxNumberOfTrains:Integer

TramPoint
<<Point>>

pointId:PointId
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant
delta_p:TimeInterval

<<Signal>>
TramSignal

requestTime:TimeInstant

signalId:SignalId
actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:TimeInterval

<<Sensor>>
TramSensor

sensorId:SensorId
actualState:SensorStateKind
sentTime:TimeInstant

delta_tram:TimeInterval

counter:Integer
delta_l:TimeInterval

routeDefinition:SensorId[0..*]
signalSetting:<<SignalSetting>>
pointPos:<<PointPosition>>[0..*]

routeId:RouteId

routeConflict:<<RouteConflict>>[0..*]

TramRoute
<<Route>>

entry exit

end1Entry

end2Entry end2Exit

end1Exit

stemEntry

lbEntry

rbEntry

mbEntry

rbExit

lbExit

stemExit

mbExit

1 0..1

0..10..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1 0..1

0..1

0..1

0..1
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UML2.0 profile construction

I Step 1. introduction of profile-specific primitive types and
enumerations

I Step 2. introduction of stereotypes an their associations with
elements (“meta-classes”) of the meta-model

I Step 3. definition of properties for each stereotype by means of
OCL

I Step 4. association of domain-specific graphical symbols with
instances of each stereotype
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Specification of Model Behaviour

I Generation of net-specific transition rules: Instantiated from
generic rule patterns and concrete net model.

I Transition rules specify conditions for pre-state −→ post-state
changes.

I Example: Domain of control transition rule for trains passing
sensors:

if ( (c_G221 < c_G220)
&& (sen_G221 == SEN_LOW)
&& (actsig_S21 != SIG_HALT)
&& (c_G221 == c_G222)) {
sen_G221 = SEN_HIGH;
c_G221 = c_G221 + 1;
sentm_G221 = t;

}
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Specification of Model Behaviour

I Example: Controller transition rule for detection of train entering
route 0:

if ( rc_cmv(0) == ALLOCATED
// Route 0 is safe for use

and
cc(G20.1) == cc(G20.2) + cc(G20.3)

// Tram has passed both G20.1 and G20.2
) {

reqsig(S20) = HALT;
// Request for signal S20: switch back to HALT

reqsigtm(S20) = t;

rc_cmv(0) = OCCUPIED;
// Mark route 0 as IN USE

}
Peleska et al. 41



Technologie-Zentrum Informatik

Verification by Bounded Model Checking (BMC)

BMC checks whether properties P hold over a discrete time interval
I = { t, t + 1, . . . , t + c }.

BMC Strategy: check whether

b =
c−1∧
j=0

Tδ( i(t + j), s(t + j), s(t + j + 1) ) ∧

¬ P( i(t), s(t), o(t), . . . , i(t + c), s(t + c), o(t + c) )

can be satisfied for one sequence of transitions consistent with
transition relation Tδ — this falsifies property P in I .
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Verification by Bounded Model Checking

Inductive principle:

I Specify the safety constraints

I Prove that constraints hold in initial state

I Induction hypothesis: Assume that constraints hold in arbitrary
pre-state

I Induction step: Prove that all possible transitions from pre-state
lead to safe post-state

Note: Detailed proof requires to argue over more than one time step –
the longest interval required is I = t, t + 1, t + 2, t + 3, t + 4
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Verification by Bounded Model Checking – Example

SystemC proof obligation for checking assertion

I Sensor counters managed by controller will deviate from real
sensor state by at most one.

I The difference only occurs if physical sensor just changed from
LOW to HIGH.
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Verification by Bounded Model Checking – Example

theorem th_counter is
assume:
during[t,t+1]: <...additional properties...>
at t+1:

(c(g) = cc(g))
or ( sen(g) = HIGH and prev(sen(g)) = LOW

and c(g) = cc(g) + 1 );
prove:
during [t+2,t+4]:

(c(g) = cc(g))
or ( sen(g) = HIGH and prev(sen(g)) = LOW

and c(g) = cc(g) + 1 );
end theorem;
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Machine Code Generation – state/command encoding

Encoding of element states and commands as machine words (32 bits)
ensures

I Interleaving semantics for all transitions – even in presence of
multi threading on several CPUs

I Encoding of all conditions according to pattern

((operand1 & mask1) >> shift1)
comparison_operator

((operand2 & mask2) >> shift2)

I Encoding of all actions as unary or binary operations:

operand1 = 0;
operand1++;
operand1 = clock tick;
operand1 = -operand1;
operand1 = operand2 +/- operand3;
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Machine Code Generation – transition encoding

Transitions are encoded as

m1: loop over number of condition conjuncts,
0 <= i < max

b = evaluation of condition i
according to pattern above

if ( not(b) ) jump m2
i++
if ( i < max ) jump m1
process action associated with transition

m2: continue

Peleska et al. 47
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Machine Code Generation

Considerations above lead to the following strategy:
I Transformation from SystemC model to assembler code can be

performed following a small number of very simple
transformation patterns for

I task main loop
I transition processing
I condition processing
I action processing

I Conditions and actions are encoded as data – to be interpreted
by instance of generic assembler code
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Machine Code Generation

I Interpreter and encodings require very few CPU capabilities: Less
than 10 user registers – bitwise AND – shift etc.

I ⇒ Formal model of CPU behaviour and memory is easy to
construct

I ⇒ Abstraction mapping between SystemC model and assembler
code is straight forward

I ⇒ Behavioural equivalence between timed state transition
systems and machine code/data can be verified universally, that
is, for all legal models.
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Conclusion

I We have presented an automated development and verification
approach for executable code + configuration data of train
control systems

I The verification was based on bounded model checking (BMC),
following an inductive principle for reasoning about safety
properties

I The BMC approach allows to handle verification problems of the
described kind in an efficient way, because it does not require to
explore complete state spaces, starting with system initialisation.

I The feasibility of machine code verification depends on the
applicability of a small number of design patterns in the formal
low-level model
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Ongoing research

I Final versions of generators for SystemC models, verification
conditions and machine code.

I Widening the scope of the domain: Include
I railway crossings
I Railway-specific safety conditions: shunts, flank protection, . . .
I hybrid control aspects – speed, breaking curves
⇒ a UML2.0 profile for specifying hybrid control has already been
established

I CASE Tools: Plug-ins for checking static semantics of
specifications based on profiles

I Automated testing: novel algorithms for model-based test case
generation – can BMC help to find “relevant” test traces?
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