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ABSTRACT: In this article, a collection of major prob-
lems to be solved for automated testing of embedded hard
real-time systems is discussed. It is indicated which solu-
tions are available. Architectural aspects of test automa-
tion systems and approaches for automated on-the-fly test
evaluation are elaborated in detail. Practical examples re-
fer to avionics control systems for the Airbus aircraft fami-
lies which have been tested by the author’s research team at
Bremen University in collaboration with Verified Systems
International.

I. INTRODUCTION

A. Motivation: Formal Methods and Testing

This article discusses issues about automated testing of
reactive hard real-time systems. Systems are called reac-
tive if they are prepared to interact continuously with their
operational environment. Typically, control computers are
designed according to the reactive system paradigm, since
they should always be prepared to adjust ongoing control
activities to user interactions or feed backs from the envi-
ronment they control. The term hard real-time is used in the
sense that the behavioral correctness of a system under test
(SUT) also depends on the time intervals (so-called dead-
lines) when expected SUT outputs occur (a more detailed
discussion of correctness conditions is given in Section II-
E). We consider formal verification and testing as comple-
mentary activities that are both part of the quality assurance
process. Ideally, the product-related quality assurance tasks
would be split between formal verification and testing as
follows:
� Logical correctness properties of requirements specifica-
tions, design specifications and code should be formally
verified.
� The proper integration of software, firmware and hard-
ware should be tested.
� The reliable operation of controllers should be tested by
built-in test equipment which monitors operations and per-
forms on-the-fly checks of compliance with the specified
behavior.
� Completeness properties of requirements specifications
which cannot be deduced from other reference specifica-
tions should be validated by a combination of formal veri-
fication and simulation, that is, testing on symbolic specifi-

cation level.
For today’s reactive real-time systems – at least when

they perform safety-critical or mission-critical control tasks
– a high degree of automation is required. Otherwise it
would be infeasible to achieve the necessary degree of test
coverage and to perform regression testing on new prod-
uct revisions within acceptable time/cost margins. More-
over, timing conditions often require observational resolu-
tions from a few milliseconds down to micro seconds, so
that neither the generation of inputs to the system under test
nor the measurement of SUT reactions could be performed
manually with sufficient precision. As a consequence, test-
ing has to be based on formal specifications which can be
interpreted by computers in an automatic way.

B. Background: Testing Avionics Controllers for the Airbus
Aircraft Family

The theoretical concepts described in this article
have been implemented in the test automation tool RT-
Tester [26] developed in cooperation of Verified Systems
International GmbH and the author’s research team at the
University of Bremen, TZI. The tool has been applied
in practice since the early nineties starting with tests for
tramway control systems [18]. Currently, the tool is mainly
used in the fields of railway control systems, space sys-
tems, avionics systems and telecommunications, see [3],
[4], [22], [23], [24], [29].

The examples presented in this article are derived from
experiences with avionics control systems tested by Veri-
fied Systems for Airbus Deutschland. The systems are inte-
grated in the Airbus A318 and A340-500/600. At present,
test configurations for A380 control systems are designed
and implemented.

C. Related Work

From the theoretical point of view, the problems of auto-
matic test generation, test execution in hard real-time and
test evaluation have been investigated by the author and
his research team at Bremen University in collaboration
with several other scientists. In [17], [19], [20] the the-
ory for automated testing of reactive systems without tim-
ing requirements are described. The foundations of the the-
ory are based on deNicola’s and Hennessy’s testing equiv-
alence elaborated for process algebras with acceptance tree
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semantics [9]. For real-time testing, our formalisms are
based on the semantics of Timed CSP (Communicating Se-
quential Processes with Time, TCSP) as given by Schnei-
der [28]. Comprehensive introductions to CSP are given
in [11], [25]. For the associated algorithms implemented
in the RT-Tester tool we made use of a theorem about the
executability of CSP specifications in hard real-time, which
has been formulated by the author [21] and established in
complete form by Oliver Meyer [15].

The field of test automation based on formal methods
is currently investigated world-wide by several research
groups. We name [6], [16], [27], [30], [5] as a set of
representative publications which also give an extensive
overview of existing publications in this research area.

D. Overview

In this contribution, we describe problems which “natu-
rally” arise in the context of testing for embedded, possibly
safety-critical, controllers and show how these problems
can be solved and implemented by means of approaches
based on Formal Methods. A survey of these problems is
given in Section II. Here we state six tasks to be solved
for efficient hard real-time testing, which are important ac-
cording to our understanding of theoretical foundations and
testing in practice. In the same section, references to re-
search activities and known solutions elaborated by vari-
ous research groups for the problems described are listed.
Analysis of the problem survey of Section II leads to the
proposal of a generic design for test automation systems
applicable in the field of embedded control systems. This
design is described in Section III, and we indicate which
design components should be responsible for implementing
solutions to the problems stated before. In Section IV, so-
lutions for automated test evaluation are discussed in more
detail. Section V contains the conclusion.

II. A PROBLEM SURVEY: SIX REQUIREMENTS FOR

HARD REAL-TIME TESTING

In this section, a number of major problems will be de-
scribed which we consider as crucial for the development
of trustworthy and efficient test automation systems.

A. Re-use of Test Specifications on Different Testing Levels

In this article, the term test specification is used to denote
the collection of (formal or informal) descriptions that are
necessary to perform test executions with well-defined ob-
jectives. Typically, a test specification consists of (see [12]
for a more detailed introduction of testing terminology)
� Test procedure: specification how to perform a test exe-
cution in a step-by-step manner,
� Test data: specification of input data to be passed to the
SUT and of the conditions when each input should be made,
� Expected results: specification of the correct SUT behav-
ior during a test execution with given test procedure and test
data.

A systematic approach to reactive systems testing re-
quires to perform tests on different levels allowing to fo-
cus on complementary aspects of SUT behavior. The usual
levels are
� Module tests: test of isolated functions or methods in a
software test harness,
� Software integration tests: test of cooperating software
components (class instances, threads, processes, software
layers,. . . ) on the target or in a host environment,
� Hardware/software integration tests: hardware-in-the-
loop test of the complete software integrated on the target
hardware,
� System integration tests: test of cooperating sub-systems,
possibly consisting of networks of communicating con-
trollers and original components as peripherals.

In most conventional testing approaches each test level
uses its own data structures – from programming variables
on module level to data bus telegrams on system test level.
As a consequence, specifications cannot be re-used on dif-
ferent levels and test execution data obtained on different
levels are extremely hard to compare.

A solution to this problem consists in using an abstract
formal language for test specification and for the represen-
tation of test executions: Interfaces to the SUT are associ-
ated with abstract names and data is represented in a syntax
which is easy to understand and independent on specific in-
terface format requirements. During test executions, test
system components perform the transformation between
abstract representations and concrete interface data (refine-
ment) and vice versa (abstraction). This concept of inter-
face abstraction is elaborated in more detail in [23], [24].

B. Test configurations as distributed systems

Traditionally, test specifications were written as sequen-
tial scripts describing the inputs to be written to SUT inter-
faces at certain points in time and the expected SUT out-
puts. These sequential scripting techniques have two major
disadvantages:
� The linear script does not reflect the architecture of the
SUT and its surrounding environment. As a consequence,
the relationship between script and system architecture is
difficult to explore.
� Combinatorial patterns are tedious to generate in a linear
script.

To avoid these problems, we consider test configurations
as distributed systems where test data generators are struc-
tured according to the architectural design of the SUT and
its environment. Test evaluation is also performed by dif-
ferent test system components cooperating in parallel and
structured according to the distributionof capabilities as de-
scribed by the SUT design.

These considerations have led to a generic design for test
automation systems consisting of a network of components
which are described in more detail in Section III.
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C. Time Measurement in a Distributed Testing Environ-
ment

Checking the correctness of reactive systems timing be-
havior requires precise measurement of communication
events taking place between SUT and test environment. In
particular, time measurements should be made as close to
the interfaces as possible, since otherwise small measure-
ment errors are propagated through each test execution, ac-
cumulate and may lead to a rejection of SUT executions
even though they are compliant with their timing require-
ments. As a consequence, computers in the testing envi-
ronment need a common time basis which can be synchro-
nized with time stamps generated on interface boards for
high-precision hardware-in-the-loop testing. Furthermore,
feed back from interface boards may be required to indicate
when an input to the SUT really occurred on the hardware
interface.

D. Automated test data generation

A major criticism about conventional testing tools is that
they require to develop test scripts where every input to the
SUT is written down explicitly. This approach is unsuitable
for long-duration testing where millions of inputs may be
involved. The solution to this problem is to use formal spec-
ifications describing the generation rules and executable in-
terpreters performing the actual data generation according
to these rules. Especially in the case of nondeterministic
SUTs these generators should be able to produce appropri-
ate test data on-the-fly: The next input to the SUT often
depends on the the SUT outputs produced so far. An “un-
expected” SUT reaction might therefore invalidate the test
data produced before the test execution started. Instead,
on-the-fly generators may adjust to such a reaction and pro-
duce the following inputs accordingly. Generators fulfilling
these objectives can be developed using suitable encodings
(e. g. as transition graphs) that can be easily evaluated.

As a specification basis for test data generation, two op-
tions are available:
� If the SUT should be capable to run properly in arbitrary
environments, test data has to be derived from the SUT
specification itself, since no specific environment descrip-
tion exists. See [16] for suitable test generation solutions
applicable in this case.
� If the operational environment is well-defined and con-
trols most of the SUT activities, it may be more appropriate
to use specifications of possible environment behaviors as a
basis for test generation. Test generation is now very close
to simulation of environment behavior. This approach has
for example been investigated in [20], [19].

E. Automated test evaluation

E.1 Specification of Correctness Criteria

While correctness criteria for sequential software mod-
ules can be specified as relations between pre- and post-

states of programming variables, more complex criteria
have to be elaborated for (generally non-terminating) reac-
tive hard real-time systems. Initially, the related specifica-
tion formalisms have been developed in the software engi-
neering and formal methods communities to support rigor-
ous development and verification. In the context of testing,
formalisms to specify correctness criteria are needed for the
definition of expected results.

Correctness criteria for reactive hard real-time systems
refer to
1. Discrete data transformations,
2. Causality properties: sequencing and synchronization of
discrete inputs and outputs,
3. Refusal properties: For systems following the syn-
chronous communication paradigm (e. g., OCCAM soft-
ware or Ada software communicating via rendezvous
mechanism), correctness properties also refer to the sys-
tem’s capability to accept or refuse input channels in spe-
cific states,
4. Timing, specifically deadlines required for discrete SUT
outputs,
5. Time-continuous properties: piecewise continuous (of-
ten differentiable) changes of analog data controlled by the
SUT, for example by using analog actuators,
6. Liveness properties: aspects related to discrete in-
put/output sequences of infinite length (e. g. fairness,
see [2]),
7. Asymptotic time-continuous properties: properties of
real-valued observables related to boundary values, inte-
grals etc.,
8. Non-functional properties: Reliability, availability,
maintainability, security, performance, usability etc.

Synchronous communication played a major role in ini-
tial research activities which related testing to the seman-
tic characterization of processes [9]. It has been shown
by several authors (see the literature collected in [5]) for
various synchronous formalisms that implementable algo-
rithms for this so-called refusal testing exist and can be ap-
plied for practical testing purposes. However, refusal test-
ing is of minor importance for HW/SW integration and sys-
tem integration testing, because most hardware communi-
cation interfaces used in practice operate in a non-blocking
mode. Even on the level of software testing refusal test-
ing is seldom required, since programmers still prefer to
use buffered non-blocking communication to synchronous
mechanisms.

Liveness properties are usually investigated with formal
verification techniques instead of testing, since the justifi-
cation that a test execution of finite duration implies prop-
erties about infinite I/O sequences is usually as complex as
a full proof of the property. The same holds for asymptotic
time-continuous properties.

Non-functional requirements require different (e. g., sta-
tistical) specification and evaluation methods which are out-
side the scope of this paper. They often require to analyze
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complete test executions, so that only a posteriori evalua-
tion is possible.

As a consequence, we consider the correctness proper-
ties 1, 2, 4, 5 to be the most important ones in the context
of reactive hard real-time systems testing.

E.2 Automated Evaluation of Test Execution Against Ex-
pected Results

When comparing the different techniques how the above
correctness properties are represented in expected results
specifications, four main approaches can be distinguished
� The sequential test script approach defines correctness
properties using programming variables to store and eval-
uate the values of recent input and output data as well as
timing information.
� The record-and-replay approach requires to analyze one
test execution manually. If this turns out to be correct, it
is stored as the “golden reference” and any regression test
execution is compared against the one originally recorded.
� The SUT specification approach aims at using the same
formal specification of the SUT behavior which has been
used for the SUT development. The sequence of discrete
I/O events, their timing and the time-continues changes of
data observed during a test execution are checked against
SUT specification.
� The assertion approach defines a catalog of correctness
properties which should be fulfilled by the SUT. Not unlike
Use Cases in UML, this catalog is consistent with the full
SUT specification but usually less complete.

The sequential test script approach operates on program-
ming language level: Correctness properties are just spec-
ified as boolean expressions on programming variables. A
definite advantage of this approach lies in the fact that the
testing environment is quite similar to the programming en-
vironment, which is very attractive when only software tests
are performed. Moreover, there is no need to learn a new
test specification language. However, this technique has
several major draw backs: First, properties referring to the
history and the timing of I/Os observed require to introduce
complex data structures to store the history information. It
is necessary to program algorithms evaluating these data
structures in order to check whether the given correctness
property holds. If data structures and algorithms are pro-
grammed in a naive way using loops over all elements of
the I/O sequence, the algorithm will need more execution
time, the longer the test runs. As a consequence it will
be unsuitable for on-the-fly evaluation even in soft real-
time. Second, since properties are defines as expressions
over data structures of the programming language, it may
become very difficult to relate the programmed evaluation
functions to the correctness conditions listed in the SUT
specification using more abstract description formalisms.

The record-and-replay technique has the advantage that
– apart from defining acceptable tolerances for timing de-
viations and time-continuous data – it is not necessary to

specify any correctness conditions at all, since one evalua-
tion was performed manually and others just say “it’s still
the same as before”. Here, the main problems consist in
two facts: First, regression tests with completely unchanged
requirements are far less frequent than project managers
would like them to be. As a consequence, the “golden refer-
ence” becomes soon worthless and a new manual evaluation
has to be done. Second, the simple comparison technique is
insufficient if the SUT may legally show nondeterministic
behavior at its interface: It is often the case that – due to
internal scheduling conditions or slight timing deviations
in the test replay – unrelated outputs are produced by the
SUT in different order for each replay. The test execution
logs will therefore differ in the sequence of I/Os, and the
comparison to the original reference fails. Improving the
comparison technique by defining partial orders specifying
related inputs and outputs turns out to be just as time con-
suming as the elaboration of proper formal specifications.

The SUT specification approach is very attractive, be-
cause no additional effort is required to develop expected
results specifications. If the law “specification change
precedes implementation change” is strictly enforced by
project managers and quality assurance, an updated ver-
sion of the system will be immediately testable. The major
problems with this approach are the following: (1) To use
the SUT specification for automatic test evaluation it has to
be interpreted by the test computer, and therefore it must
be completely formal. To the author’s knowledge, no em-
bedded real-time system of significant size has ever been
completely specified in a formal way and really been used
in practice. (2) Checking all logical conditions contained in
the SUT specification can be very time consuming, so test
designers usually focus on the correctness criteria which are
relevant for the objective to be demonstrated by a specific
test case. (3) Experience shows that many SUT errors are
uncovered because test designers develop expected results
specifications of their own. Theoretically, the expected re-
sults should be consistent with the SUT specification and
would not contain any additional information. In practice,
it turns out that this redundancy frequently helps to uncover
implementation errors which are due to misinterpretations
of the SUT specification.

The assertion approach encourages test designers to de-
rive their own set of correctness properties which are rele-
vant for a certain test objective. The approach can be ap-
plied both to formal and informal SUT specifications, lead-
ing to the redundancy of SUT specification and expected re-
sults specification activities performed by development and
test teams, respectively. Care has to be taken that the set
of assertions applicable to demonstrate a test objective is
really complete and consistent with the original SUT spec-
ification. This requires an additional verification activity,
which is part of the review and analysis of the test cases,
procedures and results process required according to the
development standard RTCA DO178B [8, 6.3.6] which is
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applicable for software development in airborne systems.
Example. A test objective of the initial HW/SW integra-
tion tests for a safety-critical Airbus controller was to check
whether the discrete output driver mapped discrete data
onto the correct output lines. The first assertion checked
was “A state change of discrete variable v�i� from 0 to 1
leads to a change from LOW to HIGH at discrete output
line i and vice versa.” This assertion could be checked
without any errors. Fortunately, also a second assertion
was checked during the test: “A state change of discrete
variable v�i� does not affect any other output line than i.”
It turned out that for a small number of discrete variables
v�i�, the initial driver version illegally changed the state of
other output lines j �� i in parallel to i.

For automatic evaluation of expected results they have to
be specified in a formal way which can be (compiled and)
interpreted by a test computer. It is desirable that this inter-
pretation can be performed at least in soft real-time, so that
deviations of the observed SUT behavior from the expected
results will be uncovered on the fly. This avoids waiting
for the completion of test executions possibly running over
many ours, while errors already occurred during the first
minutes of the execution.

Apart from using standard programming languages, the
following techniques may be distinguished:
� Model based expected results specifications use formal
executable models which input the timed trace of dis-
crete I/Os and the values of time-continuous observables
recorded during a test execution and signal errors as soon
as the expected result is violated by the execution. Typical
models are networks of parallel communicating state ma-
chines or processes from a process algebra. Henzinger’s
Hybrid Automata [10] allow to specify correctness prop-
erties of both discrete I/Os (using networks of automata)
and time-continuous observables (using differential equa-
tions/inequalities, which may change with the state transi-
tions performed by the automata). In the RT-Tester system,
the TCSP [28] process algebra is currently used to specify
hard real-time properties about discrete input/output inter-
faces. Hybrid Automata specifications – the evaluation of
time-continuous aspects has to be supported by numerical
libraries supplied by the user or by standard tools – are cur-
rently implemented.
� Implicit expected results specifications use predicates to
be fulfilled by the timed traces and time-continuous observ-
ables. For time-continuous observables, predicates are the
same as for Hybrid Automata. For the specification of as-
sertions about timed traces, either trace logic (see, e.g. [11])
or a variant of temporal logic may be used.

In Section IV, a model-based test evaluation algorithm
developed by Oliver Meyer [15] and the author is presented.
This algorithm is suitable for on-the-fly evaluation in soft
real-time. It supports both the SUT specification approach
and the assertion approach and can be implemented on a
network of checkers according to the distributed architec-

ture for test automation systems described in Section III.

F. Generic test specifications

Today, many embedded control systems can be config-
ured by tables defining “software switches” that influence
the behavior of the system. This leads to an additional test
objective which is to show that the system under test oper-
ates correctly for all – or, more realistic, for a large variety
of – configuration table settings.

To develop explicit specifications of test data and ex-
pected results for each of these configurations would in-
crease the number of specifications to be written and main-
tained during the testing process in a considerable way. An
alternative approach is motivated by concepts from the field
of object orientation: The controller may be regarded as a
collaboration of generic classes which are instantiated us-
ing specific configuration data, resulting in an executable
system. This suggests to elaborate generic test specifica-
tions which can be instantiated with the same data, resulting
in executable tests “tailored” for the specific SUT behavior
to be expected for this instantiation. Further details about
generic test specifications are given in [23].
Example. For the test of the Airbus A340-500/600 Digital
Cabin Management System CIDS [13], about 3000 generic
specifications – each describing a test data generation pro-
cedure or expected results referring to specific functional
requirements – were used in about 300 HW/SW integra-
tion test cases. On average, each specification was instanti-
ated with 5 different configurations of the CIDS controller.
Therefore, the availability of generic specification tech-
niques reduced the overall amount of test specifications to
be written and maintained from about 15000 to 3000 spec-
ification files.

III. A GENERIC DESIGN FOR TEST AUTOMATION

SYSTEMS

As a first result of the problem analysis above, we pro-
pose a generic design for test automation systems in the
field of reactive systems. Figure 1 shows a layered architec-
ture which will be discussed in the subsequent paragraphs.

IFM

CCL

AML

REAL−TIME TEST SUB−SYSTEM

interpreting
specifications

AM−1 AM−2 AM−n

CCL−1 CCL−2

IFM−2IFM−1 IFM−k

communication via rttiflib

event mapping
via rttemlib

abstract machine

or customised event mapping
via rttemlib
event mapping

System Under Test (SUT)

Fig. 1. Generic design for test automation systems.



6

Abstract Machine Layer (AML). The upper test sys-
tem layer contains a network of parallel abstract machines
which are responsible for test data generation and on-the-
fly test evaluation on an abstract level: Instead of directly
operating on concrete interface data, abstract machines use
the interface abstractions discussed in Section II-A. As a
consequence, the algorithms used for test data generation
and checking do not depend on the concrete SUT interface
format, but are re-usable for all types of interfaces.

Test specifications are collections of formal descriptions
how to generate and evaluate test data and how to control
the test execution in real-time. They refer to interface ab-
stractions and – after compilation into suitable internal rep-
resentation – can be interpreted by the abstract machines.
As a consequence, all test specifications are re-usable, as
long only the interface format changes, but the SUT seman-
tics – i. e. its expected behavior as seen on the abstract level
– stays the same. Typically, this property is applied for re-
use of test specification parts on SW integration, HW/SW
integration and system integration test level.

We further suggest to structure the AML into abstract
machines acting as
� Test generators,
� Checkers (or test evaluation components, also called “test
oracles”),
� Test coordinators.

Test generators can often be designed as simulators of the
real components interacting with the SUT in the operational
environment. In contrast to this, checkers often need global
information about several environment components and the
SUT, in order to decide whether the observed SUT behav-
ior is correct. Moreover, generators and checkers can be
re-used in different situations. In addition, the integrated
specification of test data generation interleaved with ex-
pected results descriptions often becomes highly complex
due to combinatorial effects which have to be taken into ac-
count, so that a separation of concerns into generators and
checkers operating in parallel often facilitates the test spec-
ification process in a considerable way.

Test coordinators have the task of synchronizing other
abstract machines – mostly test generators – for the purpose
of jointly simulating a specific type of behavior, such as
normal or exceptional behavior.
Example. The Airbus A318 smoke detection facility (SDF)
collects and evaluates information from smoke detector
sensors and relays associated alarm messages to other con-
trollers in the aircraft. When polled by the SDF controller,
each detector will answer with state information like “ok”
/ “smoke detected” / “sensor failure”. For HW/SW inte-
gration testing of the SDF, each smoke detector is simu-
lated by an abstract machine acting as test generator. Each
abstract machine can generate all possible behaviors of a
smoke detector. Running in parallel during a test execu-
tion, different behaviors can be simultaneously generated
by these abstract machines. This helps to achieve high test

coverage without specifying the combinatorial possibilities
in an explicit way. However, in order to test a normal be-
havior situation where all smoke detectors respond within
the correct time interval and with an “Ok”-value, an ab-
stract machine acting as test coordinator signals “show nor-
mal behavior” to all test generators. For these coordination
purposes, auxiliary abstract events are used which do not
map onto SUT interfaces but are only exchanged between
abstract machines.
Interface Module Layer (IFML). The Interface Modules
(IFMs) assigned to this layer perform the tasks of refine-
ment and abstraction suggested by the re-use problem de-
scribed in Section II-A. IFMs are used to map abstract
CSP events and time continuous variables given in stan-
dardized format onto concrete SUT interfaces with specific
data formats and vice versa. For checking hard real-time
properties of the SUT, IFMs associate time stamps u to
each I/O passed along the IFM low-level interface between
SUT and test system. The timed traces – i. e. sequences
��e�� u��� �e�� u��� � � �� of I/O events e in abstract represen-
tation and associated time stamps – are relayed to abstract
machines acting as checkers as described in Section IV.
Communication Control Layer (CCL). The communica-
tion control layer (CCL) relays events between abstract ma-
chines and interface modules. Observe that events gener-
ated by one abstract machine may be of interest to several
recipients, so that the CCL should support some kind of
multicast mechanism.
Example. Specific functions – such as switching off the
cabin illumination completely – may only be performed if
the aircraft is on ground. This is indicated by a discrete
sensor value

channel ldg_down_compressed : Bool

which shows whether the landing gears are in state down
and compressed (i. e. the weight of the aircraft can be
sensed by the landing gear control unit). A typical robust-
ness test consists in trying to trigger such a function while
not on ground. To this end, a test generator simulating the
landing gear control unit changes the state to

channel ldg_down_compressed.false

This state change is not only mapped by an IFM to the cor-
responding hardware interface of the SUT, but also relayed
by the CCL to the abstract machines used to check whether
execution of the associated system functions will now be
blocked by the SUT.
Test Data Exchanged Between Abstract Machines and
Interface Modules. Just as in specification languages used
for development purposes, the data items exchanged be-
tween system under test, interface modules and abstract
machines can be classified as events and state information.
Events represent the discrete points in time where informa-
tion is exchanged between senders and receivers. The event
may be atomic (i. e. unstructured information identified by
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the event name) or associated with data. Due to the finite
variability assumption which is well justified when deal-
ing with concrete, finite-speed controllers and peripherals,
only a bounded number of events can be generated and con-
sumed in a given time interval. As long as only discrete data
is processed by the SUT and its environment, events suffice
to model each possible type of operations on data: They
mark the points in time when interfaces or variables change
their state to new discrete values.

In the context of the test system architecture described
here, events may be classified as
� Atomic events that are in one-to-one correspondence with
concrete discrete data passed along specific interfaces,
� High-level events which are abstractions of several
atomic events,
� Auxiliary events which are used to
– Coordinate different abstract machines during the test,
– Generate requirements tracing tags which are used to

relate specific test situations to associated requirements
specifications,
– Generate debugging information indicating specific

states reached by abstract machines during test executions.
If time-continuous data (e. g., speed, thrust, temperature)

is processed by the SUT or its environment, it is helpful
for both system design and test design to describe this in a
hybrid system model where the change of real-valued vari-
ables may be described by continuous (often piecewise dif-
ferentiable) functions over time.

It is the task of the communication control layer to pro-
vide access for abstract machines and interface modules to
both discrete events and time-continuous variables.

IV. AUTOMATED TEST EVALUATION

A. Overview

In this Section, a test evaluation technique is presented
which offers the following features:
� Correctness criteria may be represented by
– A specification of the SUT itself, or
– A collection of assertions describing various behavioral

SUT properties.
� The following formalisms can be used to specify correct-
ness criteria:
– TCSP for all correctness aspects related to the transfor-

mation of discrete data, sequencing, synchronization and
timing of events,
– Numerical conditions (e. g. differential equations or re-

lations between Rn-valued functions over time) about time-
continuous changes of real-valued variables. The condi-
tions must be associated with numerical function libraries
for evaluation.
� The correctness criteria can be allocated on a network of
abstract machines acting as checkers.
� The evaluation technique is suitable for on-the-fly evalu-
ation in soft real-time.

� The on-the-fly evaluation may be performed in hard real-
time, if the following conditions are fulfilled:
– Either the SUT specification is deterministic or only de-

terministic assertions are evaluated.
– All algorithms used to evaluate time-continuous prop-

erties execute in hard real-time.
The technique is based on the results achieved by Oliver

Meyer [15] and previous work on reactive systems testing
without timing requirements by the author in collaboration
with Michael Siegel [17], [19], [20], [21].

We focus on the checking algorithm for timed traces
against model based expected results specifications de-
scribed by TCSP processes P. The algorithm operates
by first lifting the real-time checker process P to an un-
timed abstraction ��P� augmented by auxiliary events rep-
resenting the beginning and ending of specific time inter-
vals that are evaluated by P. This transformation is per-
formed before starting the test execution. The timed trace
s observed during the test execution is lifted to an un-
timed trace over the alphabet of ��P� using an abstraction
� �s���P�� �t�� � � � � tn�� which takes the timed trace s, the
untimed abstraction of P and the durations t i of the timer
intervals used by process P as arguments. The abstractions
� and � are constructed so that s is a timed trace of P if and
only if s� � � �s���P�� �t�� � � � � tn�� is an untimed trace of
��P�. Construction of s� and the check whether s� is in-
cluded in the alphabet of ��P� can be performed on the fly.
To describe this concept in more detail, Section IV-B re-
calls results about trace checking against processes without
timing requirements. Section IV-C introduces a transfor-
mation for TCSP processes P into semantically equivalent
ones possessing a structure which allows us to define the
abstraction mapping��P� in a convenient way. Section IV-
D introduces the on-the-fly checking algorithm against de-
terministic TCSP processes. This version operates in hard
real-time and can be used to check against deterministic
SUT specifications or processes encoding assertions (which
are always deterministic since the evaluation result has to be
deterministic). The extension for checking against nonde-
terministic SUT specifications is described in Section IV-E.

B. Checking Test Traces in Absence of Timing Require-
ments

Suppose we are performing tests where timing can be ne-
glected. Then every test execution can be represented by the
trace u � �e�� � � � � ek� of the atomic, high-level or auxiliary
events ei observed in this order during the test execution,
forgetting about the points in time when the e i occurred.
Since we are dealing with discrete interfaces, it is legal to
assume that each interface can only transmit a finite set of
data values. Therefore, the test execution u may be regarded
as a word of some language � over the finite alphabet �
containing all possible events e which may be observed on
some interface visible in the test configuration.

Now let us assume that � contains exactly the words cor-
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responding to legal test executions in the given configura-
tion. The SUT and all abstract machines used in the test
configuration can be semantically represented as finite-state
labeled transition systems (LTS) [9, pp. 66] whose parallel
composition is again a finite-state LTS. As a consequence,
the language � is regular and can therefore be checked by a
deterministic finite automaton [14]. As a consequence, any
assertion about test execution u we might be interested in
can be checked using a deterministic finite automaton. If
we prefer to use the SUT specification itself as a checker
and this is nondeterministic, it can – at least theoretically –
be transformed into an equivalent deterministic checker.
Example. Suppose a component of the Airbus smoke de-
tection facility SDF implements the task to react on a smoke
alarm (represented by input smk_alarm.on) by switch-
ing on a smoke warning light in the cockpit (represented
by output smk_warn_cpt.on) and sending a message
to the flight warning system FWS (represented by output
smk_warn_fws.on). Then the order in which the mes-
sages are delivered is arbitrary, so the specification in CSP
might look like

SDF = (smk_alarm.on ->
smk_warn_cpt.on ->
smk_warn_fws.on -> SDF’)

[]
(smk_alarm.on ->

smk_warn_fws.on ->
smk_warn_cpt.on -> SDF’)

Then SDF is a nondeterministic process, since in its
initial state SDF, the input smk_alarm.on may lead to
two different transitions as indicated by the external choice
operator []. An associated deterministic checker can be
structured like

SDFCHK =
smk_alarm.on ->

((smk_warn_cpt.on ->
smk_warn_fws.on -> SDFCHK’)

[]
(smk_warn_fws.on ->

smk_warn_cpt.on -> SDFCHK’))

During a test execution, the abstract machine run-
ning SDFCHK receives the restriction of u to events
smk_alarm.on, smk_warn_cpt.on and
smk_warn_fws.on. This subtrace of u is only accepted
by the checker if it is a trace of process SDFCHK.

C. A Structural Decomposition Theorem for TCSP

The definition of Timed CSP shows that basically one
operator suffices to specify real-time conditions about dis-
crete events: The timeout expression P [t> Q denotes a
system which acts as P if this process can be activated (by
receiving an input or being able to produce an output) be-
fore the time interval of duration t elapses. If no initial event
of P happens before timeout t, the system will behave like
Q. The WAIT t operator (wait until t elapses, then skip) is
just an abbreviation for STOP [t> SKIP.

Example. Let us construct a more complex real-time ver-
sion SDF2 of the process SDF introduced above, which
only reacts on a smoke alarm if it remains stable for t time
units:

SDF2 = (smk_alarm.on ->
(smk_alarm.off -> SDF2

[t> (smk_warn_cpt.on ->
smk_warn_fws.on -> SDF2’)))

[]
(smk_alarm.on ->

(smk_alarm.off -> SDF2
[t> (smk_warn_fws.on ->

smk_warn_cpt.on -> SDF2’)))

Application of the structural decomposition theorem
proven in [15] allows us to transform SDF2 into a pro-
cess SDF3 which is semantically equivalent to SDF2 in the
timed failures semantics of TCSP, so that SDF3 has struc-
ture

SDF3 = (SDF4
[| { setTm, elapsedTm } |]

TIMER) \ { setTm, elapsedTm }

where setTm, elapsedTm are new auxiliary events
used for synchronization between the timer management
process

TIMER = setTm ->
((WAIT t; elapsedTm -> TIMER)

[]
TIMER)

and SDF4. TIMER can always be triggered by a setTm-
event. If its is not reset by another setTm-event within time
t, it will “elapse” by generating the elapsedTm event.
The important point of the transformation is that SDF4 does
not contain any [t> or WAIT t operators:

SDF4 =
(smk_alarm.on ->

setTm ->
((smk_alarm.off -> SDF4)

[]
(elapsedTm ->

smk_warn_cpt.on ->
smk_warn_fws.on -> SDF4’)))

[]
(smk_alarm.on ->

setTm ->
((smk_alarm.off -> SDF4)

[]
(elapsedTm ->

smk_warn_fws.on ->
smk_warn_cpt.on -> SDF4’)))

Instead, SDF4 “sets a timer” by issuing setTm events
and detects the timeout by reacting on the elapsedTm
event.

D. An on-the-fly Checking Algorithm for TCSP – Deter-
ministic Case

Let P be a deterministic TCSP process to be used as a
checker. We define an abstraction mapping� from TCSP to
untimed CSP as follows: ��P� is the untimed CSP process
which syntactically equals the process component without
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any timeout or wait operators, as obtained from the struc-
tural decomposition theorem sketched above.
Example. For a deterministic version of SDF2 defined
above, its abstraction into untimed CSP is given by process

SDF5 =
(smk_alarm.on ->

setTm ->
((smk_alarm.off -> SDF5)

[]
(elapsedTm ->

((smk_warn_cpt.on ->
smk_warn_fws.on -> SDF5’)

[]
(smk_warn_fws.on ->

smk_warn_cpt.on -> SDF5’))))

Since the abstraction ��P� is also deterministic, the op-
erator ��P��u denoting the process state of ��P� after hav-
ing run through trace u is well defined as long as u is a trace
of ��P�.
Example. The process state
SDF5/<smk_alarm.on,setTm,smk_alarm.off>
is equal to SDF5.

Let initial���P��u� denote the set of events which may
be accepted by ��P� after having run through valid trace u.
Let out�SUT� denote the set of events which can be gener-
ated by the SUT on its output interfaces. The abstraction
mapping for the timed trace s which is obtained during the
test execution and should be checked against P is defined as
follows:

� �s���P�� �t�� � � � � tn�� �
C�s� �����P�� �t�� � � � � tn�� ��� � � � � �����

C�w� z���P�� �t�� � � � � tn�� �x�� � � � � xn�� x� �
�� w � �� ���� return z
���� ��� �e� t� � head�w�

� Q � ��P��z
� S � �i � setTmi � initial�Q��
� E � �i � xi � min�xj � elapsedTmj � initial�Q���within

��� S 	� � ����

C�w� z� �setTmmin�S�����P��
�t�� � � � � tn�� �x�� � � � � tmin�S� � � � � � xn�� x�

���� �� E 	� � � x� xmin�E� 
 t
���� C�w� z� �elapsedTmmin�E�����P��

�t�� � � � � tn��
�max���x� � xmin�E��� � � � �max���xn � xmin�E����
x � xmin�E��

���� �� e � initial�Q� � out�SUT�
� �E � � 
 t � x � xmin�E��

���� C�tail�w�� z � �e����P��
�t�� � � � � tn��
�max���x� � t � x�� � � � �max���xn � t � x��� t�

���� �� e � initial�Q�� out�SUT� � t � x
���� C�tail�w�� z � �e����P�� �t�� � � � � tn�� �x�� � � � � xn�� x�
���� return error�

� is defined by using a recursive function C which re-
turns an untimed trace of ��P� if the timed trace was suc-
cessfully checked, otherwise error. The parameters of C
are defined as follows: w is the rest of the timed test exe-
cution trace which still remains to be checked. Parameter
z is the untimed trace constructed so far; z is a member of
the trace space of ��P�. As third parameter, C inputs the
untimed abstraction process ��P�. Next parameter is the

constant vector �t�� � � � � tn� of positive timer values, so that
timer i is always set to duration t i (timers of variable dura-
tion could also be handled, but this would require a consid-
erably longer specification of the abstraction mapping � ).
The variable vector �x�� � � � � xn� stores the remaining time
for each timer i until it could produce its elapsedTm i event.
Last parameter x stores the time since start of the test exe-
cution.

C is evaluated as follows: If w is empty, this means
that the whole test execution trace has been successfully
checked, the associated untimed abstraction trace is con-
tained in z and is known to be a trace of ��P�. For non-
empty w, the following abbreviations are introduced: The
pair �e� t� denotes event e and timestamp t which is the next
to be processed from the remaining test execution trace w.
Q denotes the process ��P� after having run through trace
z. S is the set of timer indexes whose associated setTm-
events are accepted by��P� in its actual processing state Q.
E is the set of timer indexes whose associated elapsedTm-
events have minimum time to elapse among those timers
that might elapse in state Q. If S is non-empty, the setTm-
event of the smallest index min�S� from S is appended to
the untimed trace z, and the timer value is set to its initial
value tmin�S�. If no setTm-events are there to process, the
elapsedTm-events accepted in the present process state Q
are analyzed: If E is non-empty, the timer with the smallest
index which is next to elapse and accepted by Q is evalu-
ated: If the time t associated with the head-event of timed
trace w indicates that �e� t� occurred after the timer with in-
dex min�E� elapsed, the associated elapsedTmmin�E�-event
is appended to the untimed trace z, the actual time value x
is increased by the elapsed timer duration xmin�E�, and the
durations of all active timers will be reduced by the same
amount xmin�E�. Intuitively speaking, addition of this auxil-
iary event to untimed trace z indicates that between the pre-
vious event and elapsedTmmin�E� “nothing has happened”.
The next alternative is to investigate events e processed by
the checker which are not outputs of the SUT. If such an
e is a member of initial�Q�, it will be always accepted, as
long as we stay in state Q. If e happened before the short-
est active timer duration elapses in state Q, it will be added
(without its timestamp t) to untimed trace z and the timer
values as well as the actual time x are accordingly adjusted.
Finally, an SUT output e which is accepted in state Q must
occur immediately – otherwise e would be preceded by an
elapsedTm-event. All other pairs �e� t� result in an error: Ei-
ther e is not accepted by Q but occurred before an elapsed
timer triggered a state transition to an after-state of Q, or it
is an SUT output expected in state Q and occurred too late.

Note that this algorithm is suitable for on-the-fly test
evaluation in hard real-time: All sets involved are bounded
by the constant number of timers which are used in P or
by the number of transitions emanating from Q, which is
bounded by the cardinality of Q’s alphabet since it is deter-
ministic. Only the head of the timed trace w has to be ana-
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lyzed, so this is independent on the length of w or z. ��P�
can be represented as the graph of a labeled transition sys-
tem. Therefore finding the post-state of Q after the selected
event is a one-step operation, if suitable graph encodings
have been chosen.

Observe that this algorithm still has to be augmented by
additional timing events to detect situations when the SUT
crashes after having performed a legal sequence of events
so far. Moreover, small timing deviations will be tolerated
instead of using the strict equation t � x. These details have
been omitted here due to the usual space limitations.
Example. Suppose a test execution for the SDF example
introduced above resulted in

<(smk_alarm.on,10),(smk_alarm.off,50),
(smk_alarm.on,70),(smk_warn_fws.on,180)>

and the concrete duration t after which warning messages
are produced is 100 time units. The checking algorithm
based on ��P� � SDF� will detect an error at event
(smk_warn_fws.on,180): It is an output of the SUT
but 10 time units late.

E. An on-the-fly Checking Algorithm for TCSP – Nondeter-
ministic Case

If the abstraction ��P� turns out to be nondeterministic,
we could apply the usual normalization procedure used to
construct the deterministic finite automaton which checks
the same language [14] (Schneider describes an analogous
normalization algorithm for LTS with time [28]). However,
it is well known that the normalization algorithm uses con-
siderable computation time and may lead to state explosions
which cannot be handled by today’s computers.

Observing that we do not require the checkers to detect
errors in hard real-time we advocate another approach: The
algorithm presented in Section IV-D is started as described
above. Whenever more than one transition into post-states
Q�� � � � � Qk of Q can be taken, these are marked as possible
states, and the next round of the algorithm is applied to each
of these states. If one of the marked states cannot handle
the head of the trace, it is deleted from the list, and the
remaining marked states are analyzed. If the set of marked
states is empty, an error has been detected. Note that this
algorithm does not require back-tracking, but the number
of marked states can become quite large. Observe further
that moving to different possible post-states of Q results in
different untimed traces z, but fortunately, the z-traces are
not really needed for a practical test evaluation.

V. CONCLUSION

We have presented a list of problems to be solved for
automated testing of hard real-time systems. Existing so-
lutions have been sketched; a generic architecture for test
automation systems has been proposed, and we have de-
scribed a test evaluation algorithm which is suitable for on-
the-fly evaluation in real-time.

Currently, the underlying theory is enhanced so that the
full range of tests involving time-continuous variables can
be handled in a well-founded manner. Initial results in this
direction have been achieved by Peter Amthor in [1].

The on-the-fly checking algorithm introduced in Sec-
tion IV has been implemented for abstract machines acting
as checkers in the test automation system RT-Tester [26].
Tool qualification according to the regulations of [8] has
been achieved for RT-Tester with respect to test of the CIDS
controller in the A340-500/600 and A318 aircrafts and for
testing the A318 smoke detection facility. Further qualifi-
cation suites for other controllers are currently prepared.
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