
ICTAC 2008

Model-Based Testing for Model-
Driven Development with UML/DSL

Dr. M. Oliver Möller,
Dipl.-Inf. Helge Löding and
Prof. Dr. Jan Peleska
Verified Systems International GmbH and University of Bremen

Möller, Löding and Peleska
ICTAC 2008

Outline

 Model-based testing is ...
 Development models versus test models
 Key features of test modelling formalisms

UML 2.0 models
 Domain-specifc (DSL)-models

 Framework for automated testdata generation
 Test strategies
 Industrial application example
 Conclusion

Möller, Löding and Peleska
ICTAC 2008

Model-Based Testing is ...
 Build a specification model of the system under test (SUT)
 Derive

test cases
test data
expected results
from the model in an automatic way

 Generate test procedures automatically executing the test
cases with the generated data, and checking the expected
results

 To control the test case generation process,
define test strategies that shift the generation focus on specific

SUT aspects, such as specific SUT components, robustness,...

Möller, Löding and Peleska
ICTAC 2008

Model-Based Testing is ...
 Models are based on requirements documents which

may be informal, but should clearly state the expected
system behaviour – e.g. supported by a requirements tracing
tool

 Development model versus test model: Test cases can
either be derived from a
development model elaborated by the development team and

potentially used for automated code generation
test model specifically elaborated by the test team

Möller, Löding and Peleska
ICTAC 2008

Test Case Generation from Development Model

void F() {
 txCtr = txCtr + 1;
 TurnLmpOnDur =
 TurnLmpOnDur - 20;
}

derive development
model

Requirements document

generate code

Generate test data,
test cases and expected results,
test procedures

Development model

Möller, Löding and Peleska
ICTAC 2008

Separation of development and test models

void F() {
 txCtr = txCtr + 1;
 TurnLmpOnDur =
 TurnLmpOnDur - 20;
}

void F() {
 txCtr = txCtr + 1;
 TurnLmpOnDur =
 TurnLmpOnDur - 20;
}

STRATEGY S100
 BEGIN
 Finally in(STABLE)
 and
 Globally not in(ERROR)
 END

derive development
model

derive test
model

Requirements document

generate code Generate test data,
test cases and expected results,
test procedures

Development model Test model

Möller, Löding and Peleska
ICTAC 2008

Development versus Test Model
 Our preferred method is to elaborate a separate test

model for test case generation:
Development model will contain details which are not relevant

for testing
Separate test model results in additional validation of

development model
Test team can start preparing the test model right after the

requirements document is available – no dependency on
development team

Test model contains dedicated test-related information which is
not available in development models: Strategy specifications,
test case specification, model coverage information, ...

Möller, Löding and Peleska
ICTAC 2008

Key features of test modelling formalisms

What should we expect from a suitable test model in addition
to a conventional development model ?

 Structural modelling
aspects:

 Show interfaces
between testing
environment and system
under test (SUT): All
possibilities of
observation and
manipulation available in
the testing environment

Test Engine (TE)

SUT
Component 1

SUT
Component 2

TE can write

TE can observe

TE cannot observe

Möller, Löding and Peleska
ICTAC 2008

Key features of test modelling formalisms

What should we expect from a suitable test model in addition
to a conventional development model ?

 Functional modelling aspects:
 Allow for specification of
expected SUT behaviour and
environment simulations allocated
on test engine
 Allow for specification of
time/data tolerances in SUT
behaviour

Möller, Löding and Peleska
ICTAC 2008

Key features of test modelling formalisms
 Non-Functional modelling
aspects:

 Explicit distinction between
normal and exceptional (=
robustness) behaviour
 Specification of test
strategies: “Which portions of the
model should be visited / avoided
in the test suite to be
automatically generated ? “
 Representation of the model
coverage achieved with a given
collection of test cases
 Tracing from model to
requirements document

Exceptional behaviour transitions
are distinguished from normal
behaviour transitions

Möller, Löding and Peleska
ICTAC 2008

Implementing the key features of test modelling formalisms

 UML 2.0 is a suitable basis for test models:
 Structural model parts are built by UML 2.0 component diagrams
 Functional model parts are built by UML 2.0

 Class diagrams, method specifications
 Object diagrams
 Statecharts

 Test-specific model parts are constructed using UML 2.0 profile
mechanism

 Alternative to UML 2.0: DSLs (Domain-specific languages):
 Meta model of the test modelling language is designed using the
Meta Editor of a design tool for modelling languages, such as
MetaEdit+, Eclipse GMF, ...
 Test-specifc model parts are incorporated a priori in the language
meta model
 Standard modelling features can be “borrowed” from UML 2.0

Möller, Löding and Peleska
ICTAC 2008

Implementing the key features of test modelling formalisms

 Examples from our
DSL: UML 2.0 Component
diagrams are extended by

 Distinction between
SUT and Test Engine
components
 Distinction between
HW components (e.g.
controllers) and function
components

Test engine
 component

SUT HW controller

Möller, Löding and Peleska
ICTAC 2008

Implementing the key features of test modelling formalisms

 Examples from our
DSL: UML 2.0 Statecharts
are extended by

 Invariants, timers and
flow conditions (= time-
continuous evolution of
analog variables)
Attribute to mark
robustness transitions:
Normal behaviour tests
will never trigger
robustness transitions
Attribute to mark safety-
critical sub-components

Möller, Löding and Peleska
ICTAC 2008

Framework for automated testdata generation

Generic class-library for representation of
hierarchic transition systems

Specialisations for
different specification
formalismen

Selection of testcases as traces
through transition systems

family of different type solvers
for constraint solving

Interpreters for different
types of specification
models

Möller, Löding and Peleska
ICTAC 2008

Test Strategies
 Test strategies are needed since exhaustive testing is

infeasible in most applications
 Strategies are used to “fine-tune” the test case generator
 We use the following pre-defined strategies – can be

selected in the tool by pressing the respective buttons on
the model or in the generator:

Möller, Löding and Peleska
ICTAC 2008

Test Strategies
 Pre-defined strategies (continued):

Maximise transition coverage: In many applications,
transition coverage implies requirements coverage

Normal behaviour tests only: Do not provoke any transitions
marked as “Robustness Tansition” – only provide inputs that
should be processed in given state

Robustness tests: Focus on specified robustness transitions
– perform stability tests by changing inputs that should not
result in state transitions – produce out-of-bounds values – let
timeouts elapse

Boundary tests: Focus on legal boundary input values –
provide inputs just before admissible time bounds elapse

Avalanche tests: Produce stress tests

Möller, Löding and Peleska
ICTAC 2008

User-Defined Test Strategies
 Users can define more fine-grained strategies:

Theoretical foundation: Linear Time Temporal Logic
LTL with real-time extensions

Underlying concept: From the set of all I/O-test traces
possible according to the model, specify the subset of
traces which are useful for a given test objective by
means of an LTL formula

Examples: Strategy 1 wants tests that always stop in one of
the states s1, s2,...,s3 and never visit the states u1,...,uk:

(GLOBALLY not in { u1,....,uk }) and (FINALLY in {s1,...,sn})

 Strategy 2 wants tests where button b1 is always pressed
before b2, and both of them are always pressed at least once:

(not b2 UNTIL b1) and (FINALLY b2)

Möller, Löding and Peleska
ICTAC 2008

Industrial application example
 Software tests for railway control system: level crossing

controller
 Specification as Moore-automata

Atomic states
Boolean inputs and outputs – disjoint I/O variables
Assignment of outputs when entering states
Evaluation of inputs within transition guards

 Special handling of timers
Simulation within test environment
Output start timer immediately leads to input timer running
Input timer elapsed may be freely set by test environment
Transient states: States that have to be left immediately

Möller, Löding and Peleska
ICTAC 2008

Example:

DSL-Statechart for
traffic light control at
level crossings

DSL-Statechart-
Semantics: Moore-
Automata

Complete model for
railway level crossing
control consists of 53
automata

Möller, Löding and Peleska
ICTAC 2008

Example:

Statechart for
traffic light control at
level crossings:

• Entry actions show
 signal
changes to be
performed when
entering the state

• Example:
LZ_SRT = 1:

„Switch traffic lights to
red“

Möller, Löding and Peleska
ICTAC 2008

Example: (continued)

Guard conditions
specify the required
input values enabling
the associated state
transition

 Example: Guard
[an_s = 1]

Input command
„Perform YellowRed
switching sequence for
traffic lights“ leads to
transition into state
LAN_01

Möller, Löding and Peleska
ICTAC 2008

Teststrategy for Level Crossing Tests

 Strategy: Complete coverage of all edges
 Implies complete coverage of all states and full

requirements coverage
 Testcases: Traces containing uncovered edges
 Within a selected trace:

Avoid transient states / enforce stable states
Test for correct stable states (white box)
Test for correct outputs in stable states
Robusness tests in stable states

 Set inputs which do not activate any leaving edge
 Test for correct stable state again (white box)

Möller, Löding and Peleska
ICTAC 2008

Symbolic Test Case Generator

 Management of all uncovered edges
 Mapping between

uncovered edges and
all traces of length < n reaching these edges
dynamic expansion of trace space until testgoal / maximum

depth is reached

 Algorithms reusable
Automata instantiated as specialisation of IMR transition

systems
Symbolic Test Case Generator applicable for all IMR

transition systems

Möller, Löding and Peleska
ICTAC 2008

Constraint Generator / Solver
 Given: Current stable state and possible trace reaching

target edge
 Goal: Construct constraints for partial trace with length n

and stay in the stable state which is as close as possible to
the edge detination state

 SAT-Solver to determine possible solutions
Constraints from trace edges unsolvable: target trace

infieasible
Stability constraints unsolvable: increment maximal

admissible trace length n

Möller, Löding and Peleska
ICTAC 2008

Constraint Generator / Solver: Example

 Stable initial state:
[A=1]

 Target edge:
from
to

 Generator will establish that
closest stable target state is
HERE – this is explained on

the following slides
 Observe that this approach

generalises the W-method
to automata with guard
conditions

B=0
T1=1

A=0

B=1
C=1

...

...

...

...

... ...

...

A=1

x=1, y=0

x=0, y=1

t1=0

y=1

x=1

t1=1

y=0, z=0

...

z=0

y=1

Möller, Löding and Peleska
ICTAC 2008

Constraint Generator / Solver: Example

Step 1: check whether
direkt target state of
destination edge is stable

Constraints:
 Target edge:

x Λ ¬y

 Trace enforcement:
y V z

 Timerstart:
¬t1

 Stability of target state:
t1

Solution:
 Unsolvable (¬t1 Λ t1)

A=0

B=1
C=1

...

...

...

...

... ...

...

A=1

B=0
T1=1

x=0, y=1

y=1

x=1

t1=1

...

x=1, y=0

t1=0

y=0, z=0

z=0

y=1

Möller, Löding and Peleska
ICTAC 2008

Constraint Generator / Solver: Example

Step 2: Check whether next
state is stable

Constraints:
 Target edges:

x Λ ¬y

¬t1

 Trace enforcement:
y V z

 Timerstart:
¬t1

 Stability of target state:
¬y

¬x

Solution:
 Unsolvable (x Λ ¬x)

B=1
C=1

...

...

...

...

... ...

...

A=1

B=0
T1=1

A=0

x=0, y=1

t1=1

...

x=1, y=0
y=0, z=0

t1=0

x=1

y=1

z=0

y=1

Möller, Löding and Peleska
ICTAC 2008

Constraint Generator / Solver: Example
Step 3: Try next target state
Constraints:

 Target edges:
x Λ ¬y
¬t1
x

 Trace enforcement:
y V z
¬y

 Timerstart:
¬t1

 Stability of target state:
¬t1
z
¬y

Solution:
 x Λ ¬y Λ z Λ ¬t1

...

...

...

...

... ...

...

A=1

B=0
T1=1

A=0

B=1
C=1

x=0, y=1

...

x=1, y=0
y=0, z=0

t1=0

y=1

x=1

t1=1
z=0

y=1

Möller, Löding and Peleska
ICTAC 2008

Symbolic Interpreter

 Execute specification modell
Evaluate edge guards according to given inputs
Manage current stable state
Determine outputs to be expected from system under test

 Vector over current state of all outputs
 Update vector using actions of all visited states

 Generate testprocedures for test environment
Statements for assignments of inputs (trace / robustness)
Statements to trigger execution of system under test
Statements to verify current system under test state
Statements to verify output from system under test

Möller, Löding and Peleska
ICTAC 2008

Symbolic Interpreter

 Asserts the following expected
results:

Correct SUT target state
 White box

Expected Outputs:
 A=0
 B=1
 C=1

Robustness
 Keep t1=0, y=0, z=1
 Assign x=0
 Trigger sut execution
 Check current SUT state:

shall remain unchanged

...

...

...

...

... ...

...

A=1

B=0
T1=1

A=0

B=1
C=1

x=0, y=1

...

x=1, y=0

t1=0

x=1

y=0, z=0

y=1

t1=1
z=0

y=1

Möller, Löding and Peleska
ICTAC 2008

Generated Testprocedure

Set inputs to SUT

Check expected
target state

Check expected
 outputs

Robustness
 inputs

Check: SUT
remains in
target state

Möller, Löding and Peleska
ICTAC 2008

Evaluation Results
 Evaluation results for railway crossing software tests

Model used for test case generation: Development model
Number of tested automata: 50
Largest automaton:

 36 states
 125 transitions
 123 testcases
 Generation time: < 2 sec

Types of detected faults
 Unreachable transitions
 Inconsistencies between specified and observed outputs
 livelocks in automata

Increase of efficiency in comparison to manually-
developed test scripts: > 60 %

Möller, Löding and Peleska
ICTAC 2008

Conclusion
 Currently, we apply automated model-based testing for

Software tests of Siemens TS railway control systems
Software tests of avionic software

 Ongoing project with Daimler:
Automated model-based system testing for networks of

automotive controllers

 Tool support:
The automated test generation methods and techniques

presented here are available in Verified System’s tool
DSL modelling has been performed with MetaEdit+ from

MetaCase

Möller, Löding and Peleska
ICTAC 2008

Conclusion
 Future trends: We expect that ...

Testing experts’ work focus will shift from
 test script development and input data construction

to
 test model development and analysis of discrepancies

between modelled and observed SUT behaviour

The test and verification value creation process will
shift from
 creation of re-usable test procedures

to
 creation of re-usable test models

Möller, Löding and Peleska
ICTAC 2008

Conclusion
 Future trends: We expect that ...

development of testing strategies will continue to be a high-
priority topic because the consideration of expert knowledge
will increase the effectiveness of automatically generated test
cases in a considerable way

the utilisation of domain-specific modelling languages will
become the preferred way for constructing (development and)
test models

future tools will combine testing and analysis (static analysis,
formal verification, model checking)

Acknowledgements: This work has been supported by
BIG Bremer Investitions-Gesellschaft under research grant

2INNO1015A,B.
The basic research performed at the University of Bremen has also

been supported by Siemens Transportation Systems

