A Formal Introduction to Model-Based Testing Part I: Exhaustive Testing Methods
Jan Peleska
jp@verified.de
Verified Systems International GmbH and University of Bremen
ICTAC 2008

Zi Technologie-Zentrum Informatik

Why will testing remain a crucial verification and validation activity?

- Simple answer: because standards for safety-critical systems development will never allow certification without testing
- More elaborate answers:
- Complex HW/SW systems cannot be captured in a completely formal way - therefore at least HW/SW integration and system integration testing will remain important for system verification
- Software testing plays an increasingly important role for the verification of automatic code generators
- 100% software correctness is not always the main issue, because
- 100% software correctness does not imply system safety (recall

Leveson: " Safety is an emergent property")

- Systems containing software bugs can still be safe

Zi Technologie-Zentrum Informatik

Model-based equivalence testing . . .

... is a variant of exhaustive testing:

- The goal of the test suite is to establish an equivalence relation between specification model and implementation
- Typical equivalence relations are
- Bi-similarity
- Failures equivalence
- From a practical point of view, proof of refinement properties by means of exhaustive testing is often more relevant than equivalence testing

1i Technologie-Zentrum Informatik

Model-based equivalence testing versus model checking

- White-box equivalence testing identical to model (equivalence) checking
- Grey-box equivalence testing differs from model checking:
- The implementation model is only partially known, e. g., the maximal number of states and the interface latency of the implementation
- Black-box equivalence testing is impossible, due to the time-bomb problem: The SUT may behave properly for an unknown number of execution loops and fail after some hidden state condition (e. g., a counter overflow) arises
- In principle, all tests could be assumed to be grey box, since hardware limitations always impose a finite state system. This limit, however, will be so large that no practical application of equivalence testing is feasible.

Zi Technologie-Zentrum Informatik

Chow's Theorem (1)

- Tsun S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE Transactions on Software Engineering SW-4, No. 3, pp. 178-187(1978).
- Equivalence testing for deterministic Mealy automata
- One of the first contributions showing that equivalence proof by grey-box testing is possible with a finite number of test cases
- The test case construction method according to Chow is also called W-Method
- For a more detailed error classification extending the examples below see Chow's paper and Robert. V. Binder: Testing Object-Oriented Systems. Addison Wesley (1999).

Zi Technologie-Zentrum Informatik

Chow's Theorem (2): Pre-requisites

- A and B are Mealy automata over the same alphabet $\Sigma=I \cup O$
- I contains input symbols, O output symbols
- Transition functions
$\delta_{A}: Q(A) \times I \rightarrow Q(A) \times O$ and $\delta_{B}: Q(B) \times I \rightarrow Q(B) \times O$ are total functions
- For $\delta\left(q_{1}, x\right)=\left(q_{2}, y\right)$ we also write $q_{1} \xrightarrow{x / y} q_{2}$.
- If input sequence $p=\left\langle x_{1}, \ldots, x_{k}\right\rangle$ leads from state q_{1} to final state q_{2}, we write $q_{1} \stackrel{p}{\Longrightarrow} q_{2}$.
- We require A and B to be minimal (this simplifies the proof, but is not essential)
- A is used as the model, B as the implementation.

Zi Technologie-Zentrum Informatik

Chow's Theorem (3): Pre-requisites

- The set of states $Q(A)$ has cardinality $n, \operatorname{card}(Q(B))=m$
- Initial states: q_{A}, q_{B}.
- Test cases are input traces $p \in I^{*}$.
- The specification automaton A serves as test oracle: The generated input trace, when exercised on B, leads to an output trace which can be observed, and the resulting I/O-trace $u \in \Sigma^{*}$ can be automatically checked against A, whether it is a word of $\mathcal{L}(A)$
- $P \subseteq I^{*}$ is called transition cover of A, if:

$$
\forall q_{1} \xrightarrow{x / y} q_{2} \in \delta_{A}: \exists p \in P: q_{A} \xrightarrow{p} q_{1} \wedge p \frown\langle x\rangle \in P
$$

Technologie-Zentrum Informatik

Chow's Theorem (4): Pre-requisites

- $W \subseteq I^{*}$ is called characterisation set of A if for all $q_{1}, q_{2} \in Q(A)$, there exists a $w \in W$ distinguishing q_{1} and q_{2}, i. e.: w applied to q_{1} results in an output trace which differs from the one resulting from application of w to q_{2}.
- Define $X^{n}=\left\{p \in I^{*} \mid \# p=n\right\}$ for $n \geq 0$.
- Define $U_{1} \cdot U_{2}=\left\{u_{1} \frown u_{2} \mid u_{i} \in U_{i}, i=1,2\right\}$ for $U_{1}, U_{2} \subseteq I^{*}$.
- Define $\mathcal{W}(A)$, the set of \mathbf{W}-test cases of A by

$$
\mathcal{W}(A)=P \cdot\left(\bigcup_{i=0}^{m-n}\left(X^{i} \cdot W\right)\right)
$$

Zi Technologie-Zentrum Informatik

Chow's Theorem (5)

Chows Theorem If B passes all W-test cases from $\mathcal{W}(A)$ then A and B are bi-similar (written $A \approx B$).

Remarks.

- "Passing a test case from $\mathcal{W}(A)$ " means to generate the same outputs as A for every input sequence $w \in \mathcal{W}(A)$
- Bi-similarity for finite deterministic Mealy automata just means language equivalence.
- Bi-similarity of minimal Mealy automata is equivalent to the existence of an isomorphism $f: A \longrightarrow B: f$ is bijective and satisfies $f\left(q_{A}\right)=f\left(q_{B}\right)$ and

$$
\forall q_{1}, q_{2} \in Q(A): q_{1} \xrightarrow{x / y} q_{2} \Longrightarrow f\left(q_{1}\right) \xrightarrow{x / y} f\left(q_{2}\right)
$$

Zi Technologie-Zentrum Informatik

Chow's Theorem (5b) - Illustration

Characterisation set W
W = $\{\mathbf{c}\}$
Assume $\operatorname{card}(Q(B))<=\operatorname{card}(Q(A))+1$
$X^{1}=\{a, c\}$
$P=\{\langle>, a, c, c a, c c\}$
$\mathrm{PXX}^{0} \mathrm{~W} \quad \begin{aligned} & \text { Test Cases: } \\ & \mathrm{c} \text { ac cc cac ccc }\end{aligned}$
P X ${ }^{1}$ W: ac aac cac caac ccac
$P X^{1} W$: cc acc ccc cacc cccc

Zi Technologie-Zentrum Informatik

Chow's Theorem (5c) - Illustration: Time Bomb

$$
\begin{array}{|ll}
\hline & \text { Test Cases: } \\
P X^{0} W & \text { c ac cc cac ccc } \\
P X^{1} W: & \text { ac aac cac caac ccac } \\
P X^{1} W: & \text { cc acc ccc cacc cccc }
\end{array}
$$

Failure is found by caac
(last c input not needed to uncover failure)

Zì Technologie-Zentrum Informatik

Chow's Theorem (5d) - Illustration: Output failure

$$
\begin{array}{ll}
& \text { Test Cases: } \\
\mathrm{P} \mathrm{X}^{0} \mathrm{~W} & \mathrm{c} \text { ac } \mathrm{cc} \text { cac ccc } \\
\mathrm{PX}^{1} \mathrm{~W}: & \text { ac aac cac caac ccac } \\
\mathrm{PX} \mathrm{~W}: & \text { cc acc ccc cacc } \mathrm{ccc}
\end{array}
$$

Failure is found by $\mathrm{ca}(\mathrm{c})$
Only transition cover is required to uncover output failures

Zi Technologie-Zentrum Informatik

Chow's Theorem (5e) - Illustration: Transition failure

B

$$
\begin{array}{ll}
& \text { Test Cases: } \\
\mathrm{P} \mathrm{X}^{0} \mathrm{~W} & \mathrm{c} \text { ac cc cac coc } \\
\mathrm{P} \mathrm{X}^{1} \mathrm{~W}: & \text { ac aac cac caac ccac } \\
\mathrm{PX} \mathrm{~W}: & \text { cc acc ccc cacc cccc }
\end{array}
$$

Failure is found by ac

Zi Technologie-Zentrum Informatik

Chow's Theorem (6): Preparations for the proof

Definition 1: Let $V \subseteq I^{*}$ a set of input traces

1. Two states $q_{i} \in Q(A), q_{j} \in Q(B)$ are \mathbf{V}-equivalent $\left(q_{i} \sim_{v} q_{j}\right)$, if each $p \in V$ produces the same outputs when exercised from q_{i} as when exercised from q_{j}.
2. Automata A and B are V-equivalent $\left(A \sim_{V} B\right)$, if their initial states are V -equivalent, i. e., $q_{A} \sim_{V} q_{B}$
Obviously \sim_{v} is an equivalence relation on $Q(A) \times Q(B)$

Zi Technologie-Zentrum Informatik

Chow's Theorem (7): Proof

Obviously,

$$
A \approx B \Longrightarrow\left(\forall V \subseteq I^{*}: A \sim_{V} B\right)
$$

holds for all bi-similar automata ($A \approx B$). Therefore we can re-write Chow's theorem as

Chow's Theorem - Variant 2: $A \sim_{\mathcal{W}(A)} B \Longrightarrow A \approx B$
The proof of variant 2 results from the lemmas below. We assume that A has n states and $B m \geq n$ states and that both are minimal. The characterisation set of A is denoted by W.

Zi Technologie-Zentrum Informatik

Chow's Theorem (8): Proof

Lemma 1: Suppose characterisation set W of A partitions $Q(B)$ into at least n equivalence classes. Then $Z=\bigcup_{i=0}^{m-n}\left(X^{i} \cdot W\right)$ partitions $Q(B)$ into m classes. This means that every two states $Q(B)$ can be distinguished by $\mathcal{W}(A)$

Proof.: Define $Z(\ell)=\bigcup_{i=0}^{\ell}\left(X^{i} \cdot W\right)$. Obviously $Z(m-n)=Z$.
Perform induction proof for $\ell=0,1, \ldots m-n$:
$Z(\ell)$ partitions $Q(B)$ into $\ell+n$ classes
Choosing $\ell=m-n$ implies the lemma.

Zi Technologie-Zentrum Informatik

Chow's Theorem (9): Proof of Lemma 1

Proof of $(*)$ - induction start: For $\ell=0(*)$ coincides with the assumptions of the lemma.
Assumption: For given $\ell \in\{0,1, \ldots m-n-1\} Z(\ell)$ partitions $Q(B)$ into at least $\ell+n$ classes
Induction step: We show that $Z(\ell+1)$ partitions $Q(B)$ into at least $\ell+n+1$ classes
If $Z(\ell)$ already partitions $Q(B)$ into $\ell+n+1$ or more classes then we have nothing to prove. Otherwise there exists $k>\ell$ such that (observe that $Z(k)=Z(k-1) \cup X^{k} \cdot W$)

$$
\exists r_{1}, r_{2} \in Q(B): r_{1} \sim_{Z(k-1)} r_{2} \wedge r_{1} \not \chi_{\left(X^{k} \cdot W\right)} r_{2}
$$

Zi Technologie-Zentrum Informatik

Chow's Theorem (10): Proof of Lemma 1

If $k=\ell+1$ there is nothing more to show since $(*)$ holds for $Z(k)=Z(\ell+1)$.
Otherwise, if $k \geq \ell+2$, let $p=\left\langle x_{1}, \ldots, x_{k}\right\rangle \frown w, w \in W$ the input sequence distinguishing r_{1} and r_{2}.
Choose $r_{1}^{\prime}, r_{2}^{\prime}$ such that $r_{1} \stackrel{\left\langle x_{1}, \ldots . x_{k}-\ell-1\right\rangle}{\Longrightarrow} r_{1}^{\prime}, r_{2} \xrightarrow{\left\langle x_{1}, \ldots . x_{k}-\ell-1\right\rangle} r_{2}^{\prime}$. Then $r_{1}^{\prime}, r_{2}^{\prime}$ can be distinguished by $Z(\ell+1)$.

Technologie-Zentrum Informatik

Chow's Theorem (11): Lemma 2

Lemma 2: Let $Z=\bigcup_{i=0}^{m-n}\left(X^{i} \cdot W\right)$ as introduced in Lemma 1. Then $A \approx B$ if and only if the following conditions are fulfilled

1. The initial states of A and B are Z-equivalent: $q_{A} \sim_{Z} q_{B}$.
2. For all $a \in Q(A)$ exists $b \in Q(B)$ such that $a \sim_{Z} b$.
3. For all $a_{i} \xrightarrow{x / y} a_{j}$ in A exists $b_{i}, b_{j} \in Q(B)$, such that $a_{i} \sim_{z} b_{i}$, $a_{j} \sim_{z} b_{j}$ and $b_{i} \xrightarrow{x / y} b_{j}$.

Zi Technologie-Zentrum Informatik

Chow's Theorem (12): Proof of Lemma 2

Proof Step (a). If $A \approx B$, then $(1,2,3)$ are directly implied by the existence of an isomorphism $f: Q(A) \longrightarrow Q(B)$.
Proof Step (b). Suppose $(1,2,3)$ hold. We have to establish the existence of an isomorphism $f: Q(A) \longrightarrow Q(B)$. To this end we will show that function f specified by

$$
\begin{aligned}
& f\left(q_{A}\right)=q_{B} \\
& \left(q_{A} \stackrel{\left\langle x_{1}, \ldots x_{\ell}\right\rangle}{\Longrightarrow} a \wedge q_{B} \stackrel{\left\langle x_{1}, \ldots x^{x_{\ell}}\right\rangle}{\Longrightarrow} b\right) \Longrightarrow f(a)=b
\end{aligned}
$$

is well-defined, one-one and surjective. Then (3) additionally implies that $\forall a \in Q(A): a \sim_{z} f(a)$ holds, too.

Zi Technologie-Zentrum Informatik

Chow's Theorem (13): Proof of Lemma 2

Well-definedness of f. It has to be shown that different input traces $q_{A} \stackrel{\left\langle x_{1}, \ldots, x_{\ell}\right\rangle}{\Longrightarrow} a, q_{A} \stackrel{\left\langle x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\rangle}{\Longrightarrow} a$, leading to the same target state a in A will also lead to the same target state in B.
Therefore suppose $q_{B} \stackrel{\left\langle x_{1}, \ldots, x_{\ell}\right\rangle}{\Longrightarrow} b$ and $q_{B} \stackrel{\left\langle x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\rangle}{\Longrightarrow} b^{\prime}$ in B. It has to be shown that $b=b^{\prime}$.
Because of (3) we can conclude

$$
\begin{equation*}
a \sim_{Z} b \wedge a \sim_{Z} b^{\prime} \tag{**}
\end{equation*}
$$

We will now show that Z distinguishes every pair of states in B, so that $\left({ }^{* *}\right)$ implies $b=b^{\prime}$. This establishes well-definedness of f.

Zi Technologie-Zentrum Informatik

Chow's Theorem (13): Proof of Lemma 2

Z distinguishes every pair of B-states. The characterisation set W of A partitions $Q(A)$ into $n=\operatorname{card}(Q(A))$ classes (since A is minimal).
Now (2) and (3) imply that W also partitions $Q(B)$ into at least n classes: Suppose a_{1} and a_{2} are distinguished by $w \in W$. Suppose $q_{A} \stackrel{\left\langle x_{1}, \ldots \ldots x_{\ell}\right\rangle}{\Longrightarrow} a_{1}$ and $q_{A} \stackrel{\left\langle x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\rangle}{\Longrightarrow} a_{2}$. These two input traces will lead us according to (3) to states $b_{1}, b_{2} \in Q(B)$ such that $a_{i} \sim_{z} b_{i}, i=1,2$.

Zi Technologie-Zentrum Informatik

Chow's Theorem (14): Proof of Lemma 2

Because of (3) and $W \subseteq Z$, sequence $b_{1} \xlongequal{w}$ has to generate the same outputs as $a_{1} \stackrel{w}{\Longrightarrow}$ and $b_{2} \xlongequal{w}$ the same outputs as $a_{2} \xlongequal{w}$. Since w produces different outputs when applied to a_{1} and a_{2}, respectively, the same has to hold for $b_{1} \xlongequal{w}$ and $b_{2} \xlongequal{w}$. Therefor w also distinguishes b_{1} and b_{2}, and therefore $b_{1} \neq b_{2}$.
Since $W \subseteq Z$ and since W partitions $Q(B)$ into at least n classes, we can apply Lemma 1 to conclude that Z distinguishes all states of B. Let $b \in Q(B)$, then $b \sim_{Z} b^{\prime}$ implies $b=b^{\prime}$ which shows well-definedness of f.

Zi Technologie-Zentrum Informatik

Chow's Theorem (15): Proof of Lemma 2

f is one-one. Let $a_{i} \in Q(A), i=1,2, a_{1} \neq a_{2}$ and $b_{i}=f\left(a_{i}\right) \in Q(B)$. We have to show that $b_{1} \neq b_{2}$. Since $a_{1} \not \chi_{W} a_{2}$ and $W \subseteq Z$ we conclude $a_{1} \not \chi_{Z} a_{2}$. (3) implies $a_{i} \sim_{z} f\left(a_{i}\right)=b_{i}, i=1,2$ and therefore $b_{1} \not \chi_{z} b_{2}$, and therefore also $b_{1} \neq b_{2}$.

Technologie-Zentrum Informatik

Chow's Theorem (16): Proof of Lemma 2

f is surjective. Given $b \in Q(B)$ and an input sequence $q_{B} \stackrel{\left\langle x_{1}, \ldots . x_{\ell}\right\rangle}{\Longrightarrow} b$. Since A and B are deterministic, the target states $b \in Q(B), a \in Q(A)$ are uniquely determined by $q_{B} \stackrel{\left\langle x_{1}, \ldots, x_{\ell}\right\rangle}{\Longrightarrow} b$ and $q_{A} \stackrel{\left\langle x_{1}, \ldots, x_{\ell}\right\rangle}{\Longrightarrow} a$. Since we already know that that f is well-defined this implies $f(a)=b$.

Zi Technologie-Zentrum Informatik

Chow's Theorem (17): Lemma 3

Lemma 3: Let $\mathcal{W}(A)=P \cdot Z$, where P is the transition cover of A and $Z=\bigcup_{i=0}^{m-n}\left(X^{i} \cdot W\right)$. Then $A \sim_{\mathcal{W}(A)} B$ if and only if

1. The initial states of A and B are Z-equivalent: $q_{A} \sim_{Z} q_{B}$.
2. For all $a \in Q(A)$ exists $b \in Q(B)$ such that $a \sim_{Z} b$.
3. For all $a_{i} \xrightarrow{x / y} a_{j}$ in A exists $b_{i}, b_{j} \in Q(B)$, such that $a_{i} \sim_{z} b_{i}$,

$$
a_{j} \sim_{z} b_{j} \text { and } b_{i} \xrightarrow{x / y} b_{j} .
$$

Observation. Since $(1,2,3)$ are identical with the only-if condition of Lemma 2, and therefore imply $A \approx B$, Lemma 3 directly implies Chow's theorem, variant 2, because with Lemma 3

$$
A \sim_{P . Z} B \Leftrightarrow A \approx B
$$

holds.

Zi Technologie-Zentrum Informatik

Chow's Theorem (18): Proof of Lemma 3

Proof of Lemma 3 - (a). Suppose $(1,2,3)$ hold. Then Lemma 2 implies $A \approx B$ and this trivially implies $A \sim_{\mathcal{W}(A)} B$.
Proof of Lemma 3 - (b). Suppose $A \sim_{p . z} B$. Given $a \in Q(A)$ and input sequence $p \in P$ with $q_{A} \xlongequal{p} a$. This sequence p exists because P is a transition cover. Since A and B are deterministic b is uniquely determined by $q_{B} \stackrel{\left\langle x_{1}, \ldots, x_{\ell}\right\rangle}{\Longrightarrow} b$. Since $q_{A} \sim_{P . Z} q_{B}$ and $p \in P, a \sim_{Z} b$ follows, and this shows (2) and (3) (observe that $\rangle \in P$).

Zi Technologie-Zentrum Informatik

Chow's Theorem (19): Proof of Lemma 3

Let $a_{1} \xrightarrow{x / y} a_{2}$ a transition in A. Let $p \in P$ with $q_{A} \xrightarrow{p} a_{1}$. Since P is a transition cover, p exists and also $p \frown\langle x\rangle \in P$. Define $b_{1}, b_{2} \in Q(B)$ uniquely by $q_{B} \xlongequal{p} b_{1}$ and $q_{B} \stackrel{p \sim\langle x\rangle}{\Longrightarrow} b_{2}$.
Now $A \sim_{p . z} B$ implies $a_{i} \sim_{z} b_{i}, i=1,2$. In addition, transition $b_{1} \xrightarrow{x / y^{\prime}} b_{2}$ has to satisfy $y^{\prime}=y$, because otherwise a_{1} and b_{1} could be distinguished by input x, and this would be a contradiction to $a_{1} \sim_{z} b_{1}$.

Zi Technologie-Zentrum Informatik

Chow's Theorem (20): BFS-Algorithm for Transition Cover Construction

Overview over the algorithm presented on the next slide by function tc:

- Breadth-first search (BFS) over deterministic finite (Mealy) automaton (DFA) A
- tc returns set of input traces representing the transition cover
- α is the "usual" queue used in BFS-algorithms
- $N \subseteq Q(A)$ is an auxiliary subset of A-states which should not be inserted into queue α anymore.
- τ maps states q from where the transition graph of A should be further explored to the previously constructed input trace leading from q_{A} to q.

Zì Technologie-Zentrum Informatik

Chow's Theorem (21): Transition Cover Construction

```
function \(t c(\) in \(A: D F A): \mathbb{P}\left(I^{*}\right)\)
begin
    tc \(:=\{\langle \rangle\} ; \alpha:=\left\langle q_{A}\right\rangle ; N:=\left\{q_{A}\right\} ; \tau:=\left\{q_{A} \mapsto\langle \rangle\right\} ;\)
    while \(0<\# \alpha\) do
        \(u=\) head \((\alpha)\);
        foreach \(x \in I\) do
            \(q:=\delta_{A}(u, x)\);
            \(t c:=t c \cup\{\tau(u) \frown\langle x\rangle\} ;\)
            if \(q \notin N\) then
                \(N:=N \cup\{q\} ;\)
                \(\tau:=\tau \oplus\{q \mapsto \tau(u) \frown\langle x\rangle\} ;\)
                \(\alpha:=\alpha \frown\langle q\rangle ;\)
            endif
        enddo
        \(\alpha:=\operatorname{tail}(\alpha)\);
        enddo
end
```


Zi Technologie-Zentrum Informatik

Chow's Theorem (22): Characterisation set construction

- Characterisation set W can be generated as a "by-product" of the standard procedure for constructing a minimal DFA A for given DFA A^{\prime}
- Using a minimal DFA as specification model is not necessary, but desirable for the W -method application, since this keeps the size of the transition cover as small as possible.
- Therefore, given possibly non-minimal DFA A^{\prime}, we simultaneously reduce A^{\prime} to its minimal DFA A and construct W.
- It is reasonable to assume that
- A^{\prime} does not contain any unreachable states q
- A^{\prime} has no accepting state (since as a reactive system it should not terminate)

Zi Technologie-Zentrum Informatik

Chow's Theorem (23): Characterisation set construction

Notation:

- $\omega_{A}: Q(A) \times I \longrightarrow O ; \omega_{A}(q, x)=y \Leftrightarrow\left(\exists q^{\prime} \in Q(A): \delta_{A}(q, x)=\right.$ $\left.\left(q^{\prime}, y\right)\right)$ maps (Source state,Input) to the associated output y. In other words, $\omega_{A}=\pi_{2} \circ \delta_{A}$.
- $\lambda_{A}: Q(A) \times I \longrightarrow Q(A) ; \lambda_{A}(q, x)=q^{\prime} \Leftrightarrow\left(\exists y \in O: \delta_{A}(q, x)=\right.$ $\left.\left(q^{\prime}, y\right)\right)$ maps (Source state,Input) to the associated target state q^{\prime}, that is, $\lambda_{A}=\pi_{1} \circ \delta_{A}$.
- We suppose that all states $q, q^{\prime} \in Q(A)$ are uniquely numbered, so that a relation $<\subseteq Q(A) \times Q(A)$ is well-defined and $q \neq q^{\prime}$ either implies $q<q^{\prime}$ or $q^{\prime}<q$.

1i Technologie-Zentrum Informatik

Chow's Theorem (24): Characterisation set construction

Notation (continued):

- Specification

$$
\begin{aligned}
& \text { od }: Q(A) \times Q(A) \nrightarrow Q(A) \times Q(A) \\
& o d\left(q, q^{\prime}\right)= \begin{cases}\left(q, q^{\prime}\right) & \text { falls } q<q^{\prime} \\
\left(q^{\prime}, q\right) & \text { falls } q^{\prime}<q\end{cases}
\end{aligned}
$$

defines a map on pairs $\left(q, q^{\prime}\right) \in Q(A) \times Q(A)$ which sorts pairwise distinct states according to their $<$-order.

- For input traces $w, w^{\prime} \in I^{*}$ we write $w<w^{\prime}$, if w is a true prefix of w^{\prime}
- $\beta: Q(A) \times Q(A) \nprec I^{*}$ is defined as a function mapping distinguishable states $\left(q, q^{\prime}\right) \in Q(A) \times Q(A)$ to non-empty input traces revealing this distinction by producing different outputs when exercised on q and q^{\prime}.

Zi Technologie-Zentrum Informatik

Chow's Theorem (25): Characterisation set construction

```
procedure W(inout A : DFA, inout W:\mathbb{P}(\mp@subsup{I}{}{*}))
begin
    D:\mathbb{P}(Q(A)\timesQ(A)); // Ordered distinguishable state pairs
    \beta:Q(A)\timesQ(A) }\longrightarrow\mp@subsup{I}{}{*};// Map elements from D to input trac
    D:={};\beta:={};
    // Initialisation: Insert all ordered pairs of states into D
    // which can be distinguished by a single input
    distinguishedByOne(A,D, }\beta\mathrm{ );
    // Identify all distinguishable state pairs, while constructing W
    generateW(A,D, \beta,W);
    // Optionally, reduce the DFA
    reduce A(A,D, }\beta\mathrm{ );
end
```

Zi Technologie-Zentrum Informatik

Chow's Theorem (26): Characterisation set construction

```
procedure distinguishedByOne(in A: DFA,
    inout \(D: \mathbb{P}(Q(A) \times Q(A))\),
    inout \(\left.\beta: Q(A) \times Q(A) \not 尸 I^{*}\right)\)
begin
    foreach \(p<q \in Q(A) \times Q(A)\) do
        foreach \(x \in I\) do
            if \(\omega_{A}(p, x) \neq \omega_{A}(q, x)\) then
            \(D:=D \cup\{(p, q)\} ;\)
            \(\beta:=\beta \oplus\{(p, q) \mapsto\langle x\rangle\} ;\)
            endif
            enddo
    enddo
end
```


Zi Technologie-Zentrum Informatik

Chow's Theorem (27): Characterisation set construction

```
procedure generate \(W\) (in A: DFA,
                inout \(D: \mathbb{P}(Q(A) \times Q(A))\),
                inout \(\beta: Q(A) \times Q(A) \nrightarrow I^{*}\),
                out \(\left.W: \mathbb{P}\left(I^{*}\right)\right)\)
begin
    \(b\) : bool; \(b:=\) false;
    do
            foreach \(p<q \in(Q(A) \times Q(A))-D\) do
                foreach \(x \in I\) do
            \(v:=\lambda_{A}(p, x) ; z:=\lambda_{A}(q, x) ;\)
            if \(\operatorname{od}(v, z) \in D\) then
                    \(b:=\) true;
                        \(w:=\langle x\rangle \frown \beta(o d(v, z)) ;\)
                        //Remove traces which are prefixes of the new (longer) one
                        foreach \(\left(p^{\prime}, q^{\prime}\right) \in D\) do
                            if \(\beta\left(p^{\prime}, q^{\prime}\right)<w\) then
                                    \(\beta:=\beta \oplus\left\{\left(p^{\prime}, q^{\prime}\right) \mapsto w\right\} ;\)
                            endif
                        enddo
                        \(\beta:=\beta \oplus\{(p, q) \mapsto w\} ;\)
                        \(D:=D \cup\{(p, q)\} ;\)
            endif
    while \(b\);
    \(W:=\operatorname{ran}(\beta)\);
end
```


1i Technologie-Zentrum Informatik

Chow's Theorem (27): Characterisation set construction

```
procedure reduce \(A\) (inout \(A\) : DFA,
        inout \(D: \mathbb{P}(Q(A) \times Q(A)))\)
begin
    \(A_{r}: D F A ;\)
    // Definition of equivalence classes:
    \(/ /[p]=\{q \in Q(A) \mid \operatorname{od}(p, q) \notin D\}\)
    // States of the minimised DFA are equivalence classes,
    // each class represented by a state \(p\) of \(A\) which is
    // member of a distinguishable pair \((p, q)\) or \((q, p)\) in \(D\).
    \(Q\left(A_{r}\right):=\{[p] \mid \exists q \in Q(A): o d(p, q) \in D\} ;\)
    \(q_{A_{r}}:=\left[q_{A}\right] ;\)
    \(\delta_{A_{r}}:=\left\{([p], x) \mapsto\left(\left[\lambda_{A}(p, x)\right], \omega_{A}(p, x)\right) \mid(p, x) \in Q_{A} \times I\right\} ;\)
    // Well-definedness of \(\delta_{A_{r}}\) follows from properties of
    // equivalence classes [ \(p\) ].
    \(A:=A_{r} ;\)
end
```


Zi Technologie-Zentrum Informatik

Similar results for other formalisms - overview

- Hennessy and deNicola showed that refinement properties can be established by (possibly infinite) number of tests for CCS-like process algebras
- Brinksma and Tretmans produced similar results for conformance testing against Lotos models
- Peleska and Siegel provided solutions for testing against CSP models
- Vandraager et. al. extended Chow's theorem to timed automata

Technologie-Zentrum Informatik

Conclusion of Part I

- Equivalence or refinement proofs by means of exhaustive grey-box testing are possible for untimed and timed automata and process algebras with synchronous (blocking) communication
- Exhaustive testing has exponential complexity in the number of states
- Apart from the complexity problem, the results presented here do not handle the problem of complex data structures and guard conditions: The state space has to be unfolded completely in order to apply the algorithms in a direct way. The next part of the tutorial shows how to cope with this problem

