
A Formal Introduction to
Model-Based Testing
Part I: Exhaustive Testing Methods

Jan Peleska
jp@verified.de

Verified Systems International GmbH and University of Bremen

ICTAC 2008

Technologie-Zentrum Informatik

Technologie-Zentrum Informatik

Why will testing remain a crucial verification and
validation activity ?

I Simple answer: because standards for safety-critical systems
development will never allow certification without testing

I More elaborate answers:
I Complex HW/SW systems cannot be captured in a completely

formal way – therefore at least HW/SW integration and system
integration testing will remain important for system verification

I Software testing plays an increasingly important role for the
verification of automatic code generators

I 100% software correctness is not always the main issue, because
I 100% software correctness does not imply system safety (recall

Leveson: “ Safety is an emergent property”)
I Systems containing software bugs can still be safe

Jan Peleska 2

Technologie-Zentrum Informatik

Model-based equivalence testing . . .

. . . is a variant of exhaustive testing:

I The goal of the test suite is to establish an equivalence relation
between specification model and implementation

I Typical equivalence relations are
I Bi-similarity
I Failures equivalence

I From a practical point of view, proof of refinement properties
by means of exhaustive testing is often more relevant than
equivalence testing

Jan Peleska 3

Technologie-Zentrum Informatik

Model-based equivalence testing versus model checking

I White-box equivalence testing identical to model (equivalence)
checking

I Grey-box equivalence testing differs from model checking:
I The implementation model is only partially known, e. g., the

maximal number of states and the interface latency of the
implementation

I Black-box equivalence testing is impossible, due to the
time-bomb problem: The SUT may behave properly for an
unknown number of execution loops and fail after some hidden
state condition (e. g., a counter overflow) arises

I In principle, all tests could be assumed to be grey box, since
hardware limitations always impose a finite state system. This
limit, however, will be so large that no practical application of
equivalence testing is feasible.

Jan Peleska 4

Technologie-Zentrum Informatik

Chow’s Theorem (1)

I Tsun S. Chow. Testing Software Design Modeled by Finite-State
Machines. IEEE Transactions on Software Engineering SW-4,
No. 3, pp. 178-187(1978).

I Equivalence testing for deterministic Mealy automata

I One of the first contributions showing that equivalence proof by
grey-box testing is possible with a finite number of test cases

I The test case construction method according to Chow is also
called W-Method

I For a more detailed error classification extending the examples
below see Chow’s paper and
Robert. V. Binder: Testing Object-Oriented Systems. Addison
Wesley (1999).

Jan Peleska 5

Technologie-Zentrum Informatik

Chow’s Theorem (2): Pre-requisites

I A and B are Mealy automata over the same alphabet Σ = I ∪ O

I I contains input symbols, O output symbols

I Transition functions
δA : Q(A)× I → Q(A)× O and δB : Q(B)× I → Q(B)× O
are total functions

I For δ(q1, x) = (q2, y) we also write q1
x/y−→ q2.

I If input sequence p = 〈x1, . . . , xk〉 leads from state q1 to final

state q2, we write q1
p

=⇒ q2.

I We require A and B to be minimal (this simplifies the proof, but
is not essential)

I A is used as the model, B as the implementation.

Jan Peleska 6

Technologie-Zentrum Informatik

Chow’s Theorem (3): Pre-requisites

I The set of states Q(A) has cardinality n, card(Q(B)) = m

I Initial states: qA, qB .

I Test cases are input traces p ∈ I ∗.

I The specification automaton A serves as test oracle: The
generated input trace, when exercised on B, leads to an output
trace which can be observed, and the resulting I/O-trace u ∈ Σ∗

can be automatically checked against A, whether it is a word of
L(A)

I P ⊆ I ∗ is called transition cover of A, if:

∀q1
x/y−→ q2 ∈ δA : ∃p ∈ P : qA

p
=⇒ q1 ∧ p _ 〈x〉 ∈ P

Jan Peleska 7

Technologie-Zentrum Informatik

Chow’s Theorem (4): Pre-requisites

I W ⊆ I ∗ is called characterisation set of A if for all
q1, q2 ∈ Q(A), there exists a w ∈ W distinguishing q1 and q2,
i. e.: w applied to q1 results in an output trace which differs
from the one resulting from application of w to q2.

I Define X n = {p ∈ I ∗ | #p = n} for n ≥ 0.

I Define U1 · U2 = {u1 _ u2 | ui ∈ Ui , i = 1, 2} for U1,U2 ⊆ I ∗.

I Define W(A), the set of W-test cases of A by

W(A) = P · (
m−n⋃
i=0

(X i ·W))

Jan Peleska 8

Technologie-Zentrum Informatik

Chow’s Theorem (5)

Chows Theorem If B passes all W-test cases from W(A) then A and
B are bi-similar (written A ≈ B).

Remarks.

I “Passing a test case from W(A)” means to generate the same
outputs as A for every input sequence w ∈ W(A)

I Bi-similarity for finite deterministic Mealy automata just means
language equivalence.

I Bi-similarity of minimal Mealy automata is equivalent to the
existence of an isomorphism f : A −→ B: f is bijective and
satisfies f (qA) = f (qB) and

∀q1, q2 ∈ Q(A) : q1
x/y−→ q2 =⇒ f (q1)

x/y−→ f (q2)

Jan Peleska 9

Technologie-Zentrum Informatik

Chow’s Theorem (5b) – Illustration
A

S0 S1
c / d

c / e

a / b

a / −

Transition cover P Characterisation set W

W = { c }

Assume card(Q(B)) <= card(Q(A))+1

P = { <>, a, c, ca, cc }

X
1 = { a, c }

Test Cases:
c ac cc cac ccc
ac aac cac caac ccac

cc acc ccc cacc cccc

S0

S0

S0

S1

S1

a c

ca
:

P X W:
1

P X W
0

P X W:
1

Jan Peleska 10

Technologie-Zentrum Informatik

Chow’s Theorem (5c) – Illustration: Time Bomb

Test Cases:
c ac cc cac ccc
ac aac cac caac ccac

cc acc ccc cacc cccc

:

P X W:
1

P X W
0

P X W:
1

S0 S1
c / da / −

B

S2

c / e

a / b

a / e

Failure is found by

c / e

caac
(last c input not needed to uncover failure)

Jan Peleska 11

Technologie-Zentrum Informatik

Chow’s Theorem (5d) – Illustration: Output failure

S0 S1
c / da / −

B

Failure is found by

c / e

a / e

Only transition cover is required to
uncover output failures

ca(c)
Test Cases:
c ac cc cac ccc
ac aac cac caac ccac

cc acc ccc cacc cccc

:

P X W:
1

P X W
0

P X W:
1

Jan Peleska 12

Technologie-Zentrum Informatik

Chow’s Theorem (5e) – Illustration: Transition failure

S0 S1
c / d

B

Failure is found by

c / e

ac
Test Cases:
c ac cc cac ccc
ac aac cac caac ccac

cc acc ccc cacc cccc

:

P X W:
1

P X W
0

P X W:
1

a / −

a / b

"Trapdoor"

Jan Peleska 13

Technologie-Zentrum Informatik

Chow’s Theorem (6): Preparations for the proof

Definition 1: Let V ⊆ I ∗ a set of input traces

1. Two states qi ∈ Q(A), qj ∈ Q(B) are V-equivalent (qi ∼V qj),
if each p ∈ V produces the same outputs when exercised from qi

as when exercised from qj .

2. Automata A and B are V-equivalent (A ∼V B), if their initial
states are V-equivalent, i. e., qA ∼V qB

Obviously ∼V is an equivalence relation on Q(A)× Q(B)

Jan Peleska 14

Technologie-Zentrum Informatik

Chow’s Theorem (7): Proof

Obviously,
A ≈ B =⇒ (∀V ⊆ I ∗ : A ∼V B)

holds for all bi-similar automata (A ≈ B). Therefore we can re-write
Chow’s theorem as

Chow’s Theorem – Variant 2: A ∼W(A) B =⇒ A ≈ B

The proof of variant 2 results from the lemmas below. We assume
that A has n states and B m ≥ n states and that both are minimal.
The characterisation set of A is denoted by W .

Jan Peleska 15

Technologie-Zentrum Informatik

Chow’s Theorem (8): Proof

Lemma 1: Suppose characterisation set W of A partitions Q(B) into
at least n equivalence classes. Then Z =

⋃m−n
i=0 (X i ·W) partitions

Q(B) into m classes. This means that every two states Q(B) can be
distinguished by W(A)

Proof.: Define Z (`) =
⋃`

i=0(X
i ·W). Obviously Z (m − n) = Z .

Perform induction proof for ` = 0, 1, . . . m − n:

Z (`) partitions Q(B) into ` + n classes (∗)

Choosing ` = m − n implies the lemma.

Jan Peleska 16

Technologie-Zentrum Informatik

Chow’s Theorem (9): Proof of Lemma 1

Proof of (∗) – induction start: For ` = 0 (∗) coincides with the
assumptions of the lemma.
Assumption: For given ` ∈ {0, 1, . . . m− n− 1} Z (`) partitions Q(B)
into at least ` + n classes
Induction step: We show that Z (` + 1) partitions Q(B) into at least
` + n + 1 classes
If Z (`) already partitions Q(B) into ` + n + 1 or more classes then we
have nothing to prove. Otherwise there exists k > ` such that
(observe that Z (k) = Z (k − 1) ∪ X k ·W)

∃r1, r2 ∈ Q(B) : r1 ∼Z(k−1) r2 ∧ r1 6∼(X k ·W) r2

Jan Peleska 17

Technologie-Zentrum Informatik

Chow’s Theorem (10): Proof of Lemma 1

If k = ` + 1 there is nothing more to show since (∗) holds for
Z (k) = Z (` + 1).
Otherwise, if k ≥ ` + 2, let p = 〈x1, . . . , xk〉 _ w ,w ∈ W the input
sequence distinguishing r1 and r2.

Choose r ′1, r
′
2 such that r1

〈x1,...xk−`−1〉
=⇒ r ′1, r2

〈x1,...xk−`−1〉
=⇒ r ′2. Then r ′1, r

′
2

can be distinguished by Z (` + 1). �

Jan Peleska 18

Technologie-Zentrum Informatik

Chow’s Theorem (11): Lemma 2

Lemma 2: Let Z =
⋃m−n

i=0 (X i ·W) as introduced in Lemma 1. Then
A ≈ B if and only if the following conditions are fulfilled

1. The initial states of A and B are Z-equivalent: qA ∼Z qB .

2. For all a ∈ Q(A) exists b ∈ Q(B) such that a ∼Z b.

3. For all ai
x/y−→ aj in A exists bi , bj ∈ Q(B), such that ai ∼Z bi ,

aj ∼Z bj and bi
x/y−→ bj .

Jan Peleska 19

Technologie-Zentrum Informatik

Chow’s Theorem (12): Proof of Lemma 2

Proof Step (a). If A ≈ B, then (1,2,3) are directly implied by the
existence of an isomorphism f : Q(A) −→ Q(B).
Proof Step (b). Suppose (1,2,3) hold. We have to establish the
existence of an isomorphism f : Q(A) −→ Q(B). To this end we will
show that function f specified by

f (qA) = qB

(qA
〈x1,...,x`〉

=⇒ a ∧ qB
〈x1,...,x`〉

=⇒ b) =⇒ f (a) = b

is well-defined, one-one and surjective. Then (3) additionally implies
that ∀a ∈ Q(A) : a ∼Z f (a) holds, too.

Jan Peleska 20

Technologie-Zentrum Informatik

Chow’s Theorem (13): Proof of Lemma 2

Well-definedness of f . It has to be shown that different input traces

qA
〈x1,...,x`〉

=⇒ a, qA
〈x ′1,...,x ′k 〉=⇒ a, leading to the same target state a in A

will also lead to the same target state in B.

Therefore suppose qB
〈x1,...,x`〉

=⇒ b and qB
〈x ′1,...,x ′k 〉=⇒ b′ in B. It has to be

shown that b = b′.
Because of (3) we can conclude

a ∼Z b ∧ a ∼Z b′ (∗∗)

We will now show that Z distinguishes every pair of states in B, so
that (**) implies b = b′. This establishes well-definedness of f .

Jan Peleska 21

Technologie-Zentrum Informatik

Chow’s Theorem (13): Proof of Lemma 2

Z distinguishes every pair of B-states. The characterisation set W
of A partitions Q(A) into n = card(Q(A)) classes (since A is
minimal).
Now (2) and (3) imply that W also partitions Q(B) into at least n
classes: Suppose a1 and a2 are distinguished by w ∈ W . Suppose

qA
〈x1,...,x`〉

=⇒ a1 and qA
〈x ′1,...,x ′k 〉=⇒ a2. These two input traces will lead us

according to (3) to states b1, b2 ∈ Q(B) such that ai ∼Z bi , i = 1, 2.

Jan Peleska 22

Technologie-Zentrum Informatik

Chow’s Theorem (14): Proof of Lemma 2

Because of (3) and W ⊆ Z , sequence b1
w

=⇒ has to generate the

same outputs as a1
w

=⇒ and b2
w

=⇒ the same outputs as a2
w

=⇒.
Since w produces different outputs when applied to a1 and a2,
respectively, the same has to hold for b1

w
=⇒ and b2

w
=⇒. Therefor w

also distinguishes b1 and b2, and therefore b1 6= b2.
Since W ⊆ Z and since W partitions Q(B) into at least n classes, we
can apply Lemma 1 to conclude that Z distinguishes all states of B.
Let b ∈ Q(B), then b ∼Z b′ implies b = b′ which shows
well-definedness of f .

Jan Peleska 23

Technologie-Zentrum Informatik

Chow’s Theorem (15): Proof of Lemma 2

f is one-one. Let ai ∈ Q(A), i = 1, 2, a1 6= a2 and
bi = f (ai) ∈ Q(B). We have to show that b1 6= b2.
Since a1 6∼W a2 and W ⊆ Z we conclude a1 6∼Z a2. (3) implies
ai ∼Z f (ai) = bi , i = 1, 2 and therefore b1 6∼Z b2, and therefore also
b1 6= b2.

Jan Peleska 24

Technologie-Zentrum Informatik

Chow’s Theorem (16): Proof of Lemma 2

f is surjective. Given b ∈ Q(B) and an input sequence qB
〈x1,...,x`〉

=⇒ b.
Since A and B are deterministic, the target states b ∈ Q(B), a ∈ Q(A)

are uniquely determined by qB
〈x1,...,x`〉

=⇒ b and qA
〈x1,...,x`〉

=⇒ a. Since we
already know that that f is well-defined this implies f (a) = b. �

Jan Peleska 25

Technologie-Zentrum Informatik

Chow’s Theorem (17): Lemma 3

Lemma 3: Let W(A) = P · Z , where P is the transition cover of A
and Z =

⋃m−n
i=0 (X i ·W). Then A ∼W(A) B if and only if

1. The initial states of A and B are Z-equivalent: qA ∼Z qB .

2. For all a ∈ Q(A) exists b ∈ Q(B) such that a ∼Z b.

3. For all ai
x/y−→ aj in A exists bi , bj ∈ Q(B), such that ai ∼Z bi ,

aj ∼Z bj and bi
x/y−→ bj .

Observation. Since (1,2,3) are identical with the only-if condition of
Lemma 2, and therefore imply A ≈ B, Lemma 3 directly implies Chow’s
theorem, variant 2, because with Lemma 3

A ∼P·Z B ⇔ A ≈ B

holds.

Jan Peleska 26

Technologie-Zentrum Informatik

Chow’s Theorem (18): Proof of Lemma 3

Proof of Lemma 3 – (a). Suppose (1,2,3) hold. Then Lemma 2
implies A ≈ B and this trivially implies A ∼W(A) B.
Proof of Lemma 3 – (b). Suppose A ∼P·Z B. Given a ∈ Q(A) and

input sequence p ∈ P with qA
p

=⇒ a. This sequence p exists because
P is a transition cover. Since A and B are deterministic b is uniquely

determined by qB
〈x1,...,x`〉

=⇒ b. Since qA ∼P·Z qB and p ∈ P, a ∼Z b
follows, and this shows (2) and (3) (observe that 〈 〉 ∈ P).

Jan Peleska 27

Technologie-Zentrum Informatik

Chow’s Theorem (19): Proof of Lemma 3

Let a1
x/y−→ a2 a transition in A. Let p ∈ P with qA

p
=⇒ a1. Since P is

a transition cover, p exists and also p _ 〈x〉 ∈ P. Define

b1, b2 ∈ Q(B) uniquely by qB
p

=⇒ b1 and qB
p_〈x〉
=⇒ b2.

Now A ∼P·Z B implies ai ∼Z bi , i = 1, 2. In addition, transition

b1
x/y ′−→ b2 has to satisfy y ′ = y , because otherwise a1 and b1 could be

distinguished by input x , and this would be a contradiction to
a1 ∼Z b1. �

Jan Peleska 28

Technologie-Zentrum Informatik

Chow’s Theorem (20): BFS-Algorithm for Transition Cover
Construction

Overview over the algorithm presented on the next slide by function
tc :

I Breadth-first search (BFS) over deterministic finite (Mealy)
automaton (DFA) A

I tc returns set of input traces representing the transition cover

I α is the “usual” queue used in BFS-algorithms

I N ⊆ Q(A) is an auxiliary subset of A-states which should not be
inserted into queue α anymore.

I τ maps states q from where the transition graph of A should be
further explored to the previously constructed input trace leading
from qA to q.

Jan Peleska 29

Technologie-Zentrum Informatik

Chow’s Theorem (21): Transition Cover Construction

function tc(in A : DFA) : P(I ∗)
begin

tc := {〈 〉}; α := 〈qA〉; N := {qA}; τ := {qA 7→ 〈 〉};
while 0 < #α do

u = head(α);
foreach x ∈ I do

q := δA(u, x);
tc := tc ∪ {τ(u) _ 〈x〉};
if q 6∈ N then

N := N ∪ {q};
τ := τ ⊕ {q 7→ τ(u) _ 〈x〉};
α := α _ 〈q〉;

endif
enddo
α := tail(α);

enddo
end

Jan Peleska 30

Technologie-Zentrum Informatik

Chow’s Theorem (22): Characterisation set construction

I Characterisation set W can be generated as a “by-product” of
the standard procedure for constructing a minimal DFA A for
given DFA A′

I Using a minimal DFA as specification model is not necessary, but
desirable for the W-method application, since this keeps the size
of the transition cover as small as possible.

I Therefore, given possibly non-minimal DFA A′, we simultaneously
reduce A′ to its minimal DFA A and construct W .

I It is reasonable to assume that
I A′ does not contain any unreachable states q
I A′ has no accepting state (since as a reactive system it should not

terminate)

Jan Peleska 31

Technologie-Zentrum Informatik

Chow’s Theorem (23): Characterisation set construction

Notation:

I ωA : Q(A)× I −→ O;ωA(q, x) = y ⇔ (∃q′ ∈ Q(A) : δA(q, x) =
(q′, y)) maps (Source state,Input) to the associated output y . In other
words, ωA = π2 ◦ δA.

I λA : Q(A)× I −→ Q(A);λA(q, x) = q′ ⇔ (∃y ∈ O : δA(q, x) =
(q′, y)) maps (Source state,Input) to the associated target state q′,
that is, λA = π1 ◦ δA.

I We suppose that all states q, q′ ∈ Q(A) are uniquely numbered, so that
a relation <⊆ Q(A)× Q(A) is well-defined and q 6= q′ either implies
q < q′ or q′ < q.

Jan Peleska 32

Technologie-Zentrum Informatik

Chow’s Theorem (24): Characterisation set construction

Notation (continued):

I Specification

od : Q(A)× Q(A) 6−→ Q(A)× Q(A)

od(q, q′) =

{
(q, q′) falls q < q′

(q′, q) falls q′ < q

defines a map on pairs (q, q′) ∈ Q(A)× Q(A) which sorts pairwise
distinct states according to their <-order.

I For input traces w ,w ′ ∈ I ∗ we write w < w ′, if w is a true prefix of w ′

I β : Q(A)× Q(A) 6−→ I ∗ is defined as a function mapping
distinguishable states (q, q′) ∈ Q(A)× Q(A) to non-empty input traces
revealing this distinction by producing different outputs when exercised
on q and q′.

Jan Peleska 33

Technologie-Zentrum Informatik

Chow’s Theorem (25): Characterisation set construction

procedure W(inout A : DFA, inout W : P(I ∗))
begin

D : P(Q(A)× Q(A)); // Ordered distinguishable state pairs
β : Q(A)× Q(A) 6−→ I ∗; // Map elements from D to input trace
D := {}; β := {};
// Initialisation: Insert all ordered pairs of states into D
// which can be distinguished by a single input
distinguishedByOne(A,D, β);
// Identify all distinguishable state pairs, while constructing W
generateW(A,D, β,W);
// Optionally, reduce the DFA
reduceA(A,D, β);

end

Jan Peleska 34

Technologie-Zentrum Informatik

Chow’s Theorem (26): Characterisation set construction

procedure distinguishedByOne(in A : DFA,
inout D : P(Q(A)× Q(A)),
inout β : Q(A)× Q(A) 6−→ I ∗)

begin
foreach p < q ∈ Q(A)× Q(A) do

foreach x ∈ I do
if ωA(p, x) 6= ωA(q, x) then

D := D ∪ {(p, q)};
β := β ⊕ {(p, q) 7→ 〈x〉};

endif
enddo

enddo
end

Jan Peleska 35

Technologie-Zentrum Informatik

Chow’s Theorem (27): Characterisation set construction

procedure generateW(in A : DFA,
inout D : P(Q(A) × Q(A)),
inout β : Q(A) × Q(A) 6−→ I∗,
out W : P(I∗))

begin
b : bool; b := false;
do

foreach p < q ∈ (Q(A) × Q(A)) − D do
foreach x ∈ I do

v := λA(p, x); z := λA(q, x);
if od(v, z) ∈ D then

b := true;
w := 〈x〉 _ β(od(v, z));
//Remove traces which are prefixes of the new (longer) one
foreach (p′, q′) ∈ D do

if β(p′, q′) < w then
β := β ⊕ {(p′, q′) 7→ w};

endif
enddo
β := β ⊕ {(p, q) 7→ w};
D := D ∪ {(p, q)};

endif
while b;
W := ran(β);

end

Jan Peleska 36

Technologie-Zentrum Informatik

Chow’s Theorem (27): Characterisation set construction

procedure reduceA(inout A : DFA,
inout D : P(Q(A)× Q(A)))

begin
Ar : DFA;
// Definition of equivalence classes:
// [p] = {q ∈ Q(A) | od(p, q) 6∈ D}
// States of the minimised DFA are equivalence classes,
// each class represented by a state p of A which is
// member of a distinguishable pair (p, q) or (q, p) in D.
Q(Ar) := {[p] | ∃q ∈ Q(A) : od(p, q) ∈ D};
qAr := [qA];
δAr := {([p], x) 7→ ([λA(p, x)], ωA(p, x)) | (p, x) ∈ QA × I};
// Well-definedness of δAr follows from properties of
// equivalence classes [p].
A := Ar ;

end

Jan Peleska 37

Technologie-Zentrum Informatik

Similar results for other formalisms – overview

I Hennessy and deNicola showed that refinement properties can be
established by (possibly infinite) number of tests for CCS-like
process algebras

I Brinksma and Tretmans produced similar results for conformance
testing against Lotos models

I Peleska and Siegel provided solutions for testing against CSP
models

I Vandraager et. al. extended Chow’s theorem to timed automata

Jan Peleska 38

Technologie-Zentrum Informatik

Conclusion of Part I

I Equivalence or refinement proofs by means of exhaustive
grey-box testing are possible for untimed and timed automata
and process algebras with synchronous (blocking) communication

I Exhaustive testing has exponential complexity in the number of
states

I Apart from the complexity problem, the results presented here do
not handle the problem of complex data structures and guard
conditions: The state space has to be unfolded completely in
order to apply the algorithms in a direct way.
The next part of the tutorial shows how to cope with this
problem

Jan Peleska 39

