
4th ICSTEST International Conference on Software Testing
April 2- 4, 2003, Cologne

Jan Peleska, Cornelia Zahlten

Hard Real-Time Test Tools –
Concepts and Implementation
Prof. Dr. Jan Peleska
Centre for Computing Technologies, University of Bremen, Germany

Dr. Ing. Cornelia Zahlten
Verified Systems International GmbH, Bremen, Germany

Jan Peleska, Cornelia Zahlten
4.APR.2003

In this presentation, ...

... we describe concepts and techniques for
automated testing of hard real-time systems

Test specification formalisms describing rules for
automated

Discrete and time-continuous test data generation

Test evaluation (“test oracles”)

Hardware and operating system support for testing
in hard real-time

Jan Peleska, Cornelia Zahlten
4.APR.2003

Background and Related Work

Theoretical foundations of the modelling techniques used have been
elaborated by

T. A. Henzinger (Hybrid Automata)
Authors’ research teams at TZI and Verified Systems (algorithms for
automatic test data generation and test evaluation)
Brinksma, Cardell-Oliver, Tretmans, Nielsen et. al. (alternative approaches to
test automation)
E. Bryant (ordered binary decision diagrams)

Real-time concepts are based on / inspired by results of
T. A. Henzinger (GIOTTO real-time programming language)
H. Kopetz (Time-Triggered Architecture for real-time systems)
Authors’ research teams at TZI and Verified Systems (Linux real-time kernel
extensions, user thread scheduling, unified communication concept)
ARINC 653 Standard for avionics operating system API

Jan Peleska, Cornelia Zahlten
4.APR.2003

Background and Related Work

All concepts described here have been implemented in
Verified’s test automation tool RT-Tester
Applications are currently performed for SW integration
testing – HW/SW integration testing – system testing of

Aircraft controllers for the Airbus families:
A318-SDF Smoke Detection Facility

A318/A340-500/600 CIDS Cabin Communication System
A380 IMA Modules – controllers with Integrated Modular Avionics
architecture

Train control and interlocking components (Siemens)

RT-Tester automation tool has been qualified for testing
specific A/C controllers according to RTCA DO-178B

Jan Peleska, Cornelia Zahlten
4.APR.2003

Recall: Hard Real-Time Testing ...

... Investigates the behaviour of the system under
test (SUT) with respect to correctness of

Discrete data transformations

Evolution of continuous observables over time –
speed, temperature, thrust, …

Sequencing of inputs and outputs

Synchronisation

Timing of SUT outputs with respect to deadlines –
earliest/latest points in time for expected outputs

Jan Peleska, Cornelia Zahlten
4.APR.2003

A Glimpse at Theory: Test Specification
Formalisms for Hard Real-Time Systems

Question: How much expressive power is required for
“suitable” hard real-time systems test specification
formalisms?

Answer from theoretical research (Hybrid Automata):
Formalisms need to express facts about

States and events

Cooperating parallel system components

Initial conditions – invariants – flow conditions

Trigger conditions for state transitions

Actions

Jan Peleska, Cornelia Zahlten
4.APR.2003

Hybrid Automaton (one sequential component)

Control Modes

State Variables

int n1, … , nk;

enum { red, green } z;

float x1, …, xm;

Initial condition

x1 <= x2 and n1 = 0

x1 <= x2 + n2

dx1/dt = c and x2 < f(t)

State invariant

Flow condition x2 > x1

d x2/dt = -0,5

[x1 > x2] e / x2’ = x3 and x1’ < x3

Transition Transition label

Jump condition Event Action

Jan Peleska, Cornelia Zahlten
4.APR.2003

Hybrid Automata

Control Modes: Principal states describing the operational modes
of the (sub-)system

State Variables: discrete variables (int, enum, …) and continuous
variables (float, complex,…)

State Space = control modes + state variables

Transitions: change between control modes

Labels: transition specification
Jump condition: must hold for variables

Event: input signal which triggers transition if jump condition holds

Action: list of output signals and predicate specifying how variables
are changed when transition occurs – may be deterministic (x’ = 5)
or nondeterministic (x’ < y)

Jan Peleska, Cornelia Zahlten
4.APR.2003

Hybrid Automata (continued)

Control modes and variables may be changed when
transitions take place

Continuous variables change over time according to
the flow condition specified for actual control mode

System may stay in control mode as long as the
associated state invariant holds

System may take transition as soon as jump condition
holds and (optional) input event occurs

This concept allows to specify deadlines for system
reactions via invariants and jump conditions

Jan Peleska, Cornelia Zahlten
4.APR.2003

Hybrid Automata (continued)

u = 0

u < 5

du / dt = 1

[2 < u] / x’ = 7

After entering control mode C, system will leave this mode

within time interval (deadline) [2,5) time units, setting x to 7.

C

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to Real-Time Testing
Practice: A List of Problems

For practical hard real-time testing, the following
problems have to be solved:

Interface abstraction:
How should SUT interface data be abstracted in
test specifications ?

How is SUT interface data mapped to abstract
specification data and vice versa ?

Communication concept:
How should parallel test system components
interact with each other and with SUT ?

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to Real-Time Testing
Practice: A List of Problems

Parallel execution: How can
Stimulation of test-specific SUT reactions

Simulation of environment components

Checking of SUT reactions

be performed in parallel and in real-time ?

Generation of input data: How should SUT input ports
be stimulated in real-time, in order to

Trigger specific SUT reactions (transitions)

Establish invariant conditions in specific SUT states

Establish flow conditions on continuous SUT inputs ?

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to Real-Time Testing
Practice: A List of Problems

Checking of output data: How can we check SUT
outputs against

State transitions describing the expected SUT
behaviour

State invariants and

Flow conditions which should be enforced by SUT

- preferably on-the-fly ?

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Interface Abstraction
Interface Modules are used as adapters
between test specifications and SUT interfaces
(SW or HW interfaces)

Events and state variables are refined to the
concrete SUT input interfaces and associated
data

SUT outputs are abstracted to the events and
variable values used on test specification level.

Jan Peleska, Cornelia Zahlten
4.APR.2003

Example: Interface Abstraction

AM 1 (identical to SWI test)

IFM_CAN_HSI
can_msg = csp2can(…);

output(can_smk_msg,LAV_S,alarm)

void smkCtrl() {…
msg=getSmkMsg();…putArcMsg(msg);…}

IFM_ARC_HSI

arc2csp(arc_msg);

AM 2 (identical to SWI test)

input(arc_label052,LAV_S,alarm)

CAN Driver Layer
can_send(can_msg);

SUT

CAN Bus ARINC Bus

Driver Layer
arc_send(…)can_recv()

ARINC Driver Layer
arc_msg = arc_recv();

can_msg

Msg Type Fct Code Module ID
„LAV_S“

System Id
„Smk Detection

System“

28 27 26 25 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 1

...
CAN Message Identifier CAN Data Frame

7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 0

Byte 1
„Alarm“

Abstract output interface of AM

Concrete CAN message generated from abstract AM output

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Communication concept
On abstract level, all interfaces are identified as ports

Sampling ports offer operations
Read and keep current data value in port
Write new value to port

Used for communication of sensor/actuator data and state
variables
Queuing ports are FIFO buffers with operations

Append to end of queue
Read and delete first element of queue
Read and keep first element of queue

Used for communication of messages and events

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Parallel execution:
Parallel components are allocated as Abstract Machines
on dedicated Light Weight Processes (LWPs)

Light weight processes in multi-processor environments
may use CPUs exclusively

User thread scheduling of Abstract Machines on LWPs
without participation of the operating system kernel

Port communication mechanism is implemented by
Communication Control Layer

Jan Peleska, Cornelia Zahlten
4.APR.2003

RT-Tester Organisational Model for Testing A/C Controllers

AM 1 AM 2 AM 3 AM n...

IFM
ARINC 429

IFM
Serial

IFM
CAN

IFM
AFDX

IFM
DIGI-I/O

AML

CCL

IFML

Test Engine

System Under Test : A318-SDF, A318/A340 CIDS, A380 IMA Module

abstract port data

physical interface data

Jan Peleska, Cornelia Zahlten
4.APR.2003

Solutions … LWPs, Abstract Machines and Interface Modules

RT-Tester process – all LWPs on reserved CPUs

CPU 1 CPU 2 CPU 3 CPU 4

Other Processes

(soft real-time):

• Standard Linux

Scheduling

• Visualisation

• Test management

• ftp, SNMP

• TCP/IP

RT-Tester Engine

LWP 1 LWP 2 LWP 3
User Thread

Scheduler

User Thread

Scheduler

User Thread

Scheduler

Communication

Control Layer

Communication

Control Layer

Communication

Control Layer

Abstract Machine 11

. . .

Abstract Machine 1k

Interface Module 11

. . .

Abstract Machine 21

. . .

Abstract Machine 2m

Interface Module 21

Abstract Machine 31

. . .

Abstract Machine 3n

Interface Module 31

.

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Parallel execution (continued):
Explicit mapping from I/O interrupts to CPUs

High resolution real-time clock and timers

Avoid PCI bus and memory bus bottlenecks by
means of test engine cluster consisting of 2 or
more PCs

Communication between cluster nodes via high-
speed message passing (DMA) over Myrinet link

Accuracy better than 100microsec without using
specialised hardware

Jan Peleska, Cornelia Zahlten
4.APR.2003

Test Engine Cluster Configuration for A380 IMA Testing

•PCI bus

•RTT Cluster Node 1

•serial •DIGI•-•I/O •DIGI•-•I/O •DIGI•-•I/O •VMIPCI

•PCI bus

•RTT Cluster Node 2

•parallel •AFDX •AFDX •AFDX •AFDX

•PCI bus

•RTT Cluster Node 3

•CAN •CAN •CAN •AFDX •ARINC•429

•VME bus Computer

•special interface •VMIVME PCI VME Bridge
(reflective memory)

• M
Y

R
IN

E
T

 S
W

IT
C

H

•System
•Under Test

•Myrinet

•Myrinet

•Myrinet•C
o

m
p

o
n

en
t

1

•CAN

•AFDX

•AFDX

•C
o

m
p

o
n

en
t

2

•CAN

•AFDX

•DIGI•-•I/O

•special•I/O

PCI bus

RTT Cluster Node 1

serial DIGI I/O DIGI I/O DIGI I/O VME-PCI

PCI bus

RTT Cluster Node 2

parallel AFDX AFDX AFDX AFDX

PCI bus

RTT Cluster Node 3

CAN CAN CAN AFDX ARINC429

VME bus Computer

special interface VME-PCI

M
Y

R
IN

E
T

 S
W

IT
C

H

System
Under Test

Myrinet

Myrinet

MyrinetIM
A

 M
o

d
u

le
 1

CAN

AFDX

AFDX

IM
A

 M
o

d
u

le
 2

CAN

AFDX

DIGI I/O

special I/O

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Generation of input data – example: Control of
Fasten Seat Belts Signs – switch FSB signs
on (FSBsigns = true) within 500msec if

Cockpit switch FSBswOn has been activated or
Cabin pressure is low (CPC1on or CPC2on) and
automatic FSB switching has been configured
(CONF_FSB_CPC)for this situation
Landing gears are down and locked
(LDGdownLck) and automatic FSB switching has
been configured (CONF_FSB_LDG)

Jan Peleska, Cornelia Zahlten
4.APR.2003

Adapting Theory to RT-Testing Practice:
Solutions

Generation of input data – example:
Logical condition C for “FSB SIGNS ON”:
C ≡
FSBswOn or

(CONF_FSB_CPC and (CPC1on or
CPC2on))or

(CONF_FSB_LDG and LDGdownLck)

Jan Peleska, Cornelia Zahlten
4.APR.2003

Example – continued: specification of FSB
controller

FSBsigns = F

not C

[C]/u = 0

C and u < 500

du/dt = 1 [C]/FSBsigns = T

[not C]/u = 0

[not C]/FSBsigns = F (not C)and u < 500

du/dt = 1

C and FSBsigns

[not C]/u = 0

[C]/u = 0

Jan Peleska, Cornelia Zahlten
4.APR.2003

Example – continued: Input Generation for Condition C

Automatic generation with Ordered Binary Decision
Diagrams (OBDD): Every path of OBDD defines
combination of input values to make C true or false

FSBswOn

CONF_FSB_CPC

CPC1on

CPC2on

CONF_FSB_LDG

LDGdownLck

C

●

FALSE TRUE

T

●

●

●

●

●

F

F

F
T

F T

T

T
F

T
F

Jan Peleska, Cornelia Zahlten
4.APR.2003

Example – continued: Input Generation for Condition C

Test system simulates SUT transitions between
control modes in parallel to SUT execution

In each control mode, test system generates input
data vector, so that

Every possible transition will be taken

Every possible data combination for making conditions true
or false is generated from OBDD

If too many combinations exist, heuristics are applied to
generate “relevant” combinations – users may specify such
combinations to optimise data generation process

Jan Peleska, Cornelia Zahlten
4.APR.2003

Conclusion
Hybrid Automata have suitable expressive power for testing
real-time systems with both discrete and time-continuous
interfaces (sensors, actuators)
For using Hybrid Automata in the context of testing,

A hard real-time testing environment has been developed
based on

Port communication
Network of cooperating Abstract Machines (AM) performing test
control, simulation and checking and
Interface Modules (IFM) for mapping data between AM and SUT
interfaces
Specialised user thread scheduling for AM and IFM on reserved
CPUs – hard real-time extension of Linux kernel
Test engine cluster platform based on multi processor PC linked
via Myrinet

Jan Peleska, Cornelia Zahlten
4.APR.2003

Conclusion

For using Hybrid Automata in the context of
testing (continued),

Test data generation algorithms have been
developed based on

Graph traversal in real-time for coverage of control modes

User-specified selection of discrete input data to SUT or

Automatic selection of input data based on binary decision
diagrams

Stepwise ∆t-integration of flow conditions – solutions of
differential equation may be imported from Matlab or
similar tools

Jan Peleska, Cornelia Zahlten
4.APR.2003

Conclusion

For using Hybrid Automata in the context of
testing (continued),

Algorithms for automatic evaluation of SUT
responses (“Test Oracles”) have been developed
based on

Graph traversal algorithms for checking SUT outputs
against expected transitions between control modes
Pre-compiled correctness conditions for checking
invariants and jump conditions
Comparison of time-continuous SUT outputs on actuator
interfaces against reference functions derived from flow
conditions

