
Complete Agent-driven Model-
based Testing for Autonomous
Systems
Kerstin I. Eder, Wen-ling Huang, and Jan Peleska
Kerstin.Eder@bristol.ac.uk huang@uni-bremen.de peleska@uni-bremen.de

2021-10-21

mailto:kerstin.Eder@bristol.ac.uk
mailto:huang@uni-bremen.de
mailto:peleska@uni-bremen.de

Acknowledgements

Kerstin Eder was supported in part by the “UKRI Trustworthy
Autonomous Systems Node in Functionality” under grant number
EP/V026518/1.

Wen-ling Huang and Jan Peleska were supported in part by the
German Ministry of Economics, Project “HiDyVe – Highly Dynamic
Virtual and Hybrid Validation and Verification” under grant
agreement 20X1908E.

HiDyVe Project Objectives
V&V for the following application scenarios

• Formation flight – similar to platooning of trucks

• Autonomous taxi, take-off, and landing ATTOL

• Future urban mobility – combined autonomous cars and drones

Motivation &
Main Contributions

Motivation
Why V&V for ATS is not feasible with “conventional” methods

• Too many test cases to ensure safety by means of tests on target system alone

• Applications based on machine learning (e.g. trained neural networks for image
recognition) cannot be verified by means of conventional reasoning (e.g. Hoare
Calculus) and may show evolving behaviour which cannot be specified “once-
and-for-all”

• Multi-agent systems developing and exchanging plans on-the-fly cannot be
verified and validated “once and for all” at type certification – re-validation and
re-certification at runtime is required

Autonomous
Transportation Systems

Nidhi Kalra & Susan M. Paddock (2016): Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation,
Santa Monica, CA, doi:10.7249/RR1478.

Motivation
Why V&V for ATS is not feasible with “conventional” methods

• Too many test cases to ensure safety by means of tests on target system
alone

• Applications based on machine learning (e.g. trained neural networks for
image recognition) cannot be verified by means of conventional reasoning
(e.g. Hoare Calculus)

• Multi-agent systems developing and exchanging plans on-the-fly cannot be
verified and validated “once and for all” at type certification – re-validation
and re-certification at runtime is required

This is the main topic of this talk – and we
suggest a comprehensive approach to solve this

problem

Nidhi Kalra & Susan M. Paddock (2016): Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation,
Santa Monica, CA, doi:10.7249/RR1478.

Note. This is a position paper –
feedback is very welcome!

A new Strategy to Perform ATS Testing
An approach to solve the test suite size problem for ATS

• On the module level, use complete model-based testing strategies with guaranteed
fault coverage

• On the system level, use novel scenario-based end-to-end testing strategy and novel
strategy to assess system test coverage, exploiting knowledge about complete
module tests and their models

• Optimise the system test execution by

• Multiple concurrent system test executions on target systems and in the cloud

• Change of system test case objectives on-the-fly (online testing), driven by

continuous coverage assessment

• Coordination of system test executions by means of multi-agent system (agent-

based system testing)

This Approach is Suitable to Obtain Certification Credit
We analyse existing standards and try to predict future changes

• Automotive domain

• ISO 26262. Road vehicles – functional safety

• ISO 21448. Road vehicles – Safety of the intended functionality

• Railway domain

• CENELEC EN 50128:2011. Railway applications – Communication,

signalling and processing systems – Software for railway control and
protection systems

This Approach is Suitable to Obtain Certification Credit
We analyse existing standards and predict future changes

• Avionic domain

• RTCA DO-178C. Software Considerations in Airborne Systems and Equipment

Certification

• DO-330. Software Tool Qualification Considerations

• DO-331. Model-based Development and Verification Supplement

• DO-333. Formal Methods Supplement

• EASA (European Union Aviation Safety Agency)

• Artificial Intelligence Roadmap – A human-centric approach to AI in aviation

• Concept Paper: First usable guidance for Level 1 machine learning applications

Complete Model-based Testing
Methods

MBT-Paradigm
Model System

Abstract Tests Executable
Tests

Is a partial

description of

can be run

against

Are abstract

versions of

Are derived

from

被測試的系統

FSM

testing theories

Model-Based -Testing

SUT

Conformance vs. Property-oriented Testing
In the context of safety-critical control systems

• Conformance testing
• Objective. Verify that SUT behaviour conforms to that of a reference model

• Conformance relations

• Observational equivalence

• Refinement in several variants

• Modelling formalisms

• Finite state machines and variants thereof

• Process algebras

• UML/SysML

• . . .

• Test cases are derived from the model

System Under Test

Conformance vs. Property-oriented Testing
In the context of safety-critical control systems

• Property-oriented testing
• Objective. Verify that SUT fulfils a behavioural property

• Property specification

• Temporal logic (LTL, CTL, TCTL, …)

• Test cases are derived from the property

• Model-based property-oriented testing

• In addition to the property specification, a model specifies the complete required

behaviour of the SUT or a part thereof

• The model fulfils the property

• Test cases are derived from the property in combination with the model
• The existence of a model helps to reduce the test suite size

Complete Testing Theory
in conformance testing

• A testing theory is a recipe explaining how to derive test cases from a model,
so that the detection of conformance violations by the SUT can be
guaranteed under certain hypotheses

• A test suite (generated by application of the theory) is exhaustive, if every
non-conforming SUT fails at least one test case of the suite

• A test suite is sound, if every conforming SUT passes every test case

• A test suite is complete, if it is sound and exhaustive

Complete Testing Theory
in property-oriented model-based testing

• A testing theory is a recipe explaining how to derive test cases from a model
and a property formula, so the detection of property violations by the SUT can
be guaranteed under certain hypotheses

• A test suite (generated by application of the theory) is exhaustive, if every
SUT violating the property fails at least one test case of the suite

• A test suite is sound, if every SUT fulfilling the property passes every test
case

• A test suite is complete, if it is sound and exhaustive

Conformance vs. Property-oriented Testing
Academia vs. Industry

• In academia, conformance testing has been investigated comprehensively

• In industry, the focus is on model-based property-oriented testing

• The ATS-related standards demand that every test case is traced back to a

requirement (= property)

• Models are created anyway for the purpose of system design

• The concept of conformance does not occur anywhere in the ATS-related standards

• Complete real-world systems are too complex to investigate model conformance

• RTCA DO-178C:

“Model coverage analysis does not eliminate the need for traceability analysis between
requirements from which the model was developed and the model.”

Testing on the Module Level

Applicability of Complete Testing Methods
on the module level

• On the system level, behavioural models are usually too large and complex to
allow for complete testing methods

• On the module level, the model size is acceptable

• Example. Consider system of autonomous freight train controller

Detailed system model available in

Kerstin Eder, Wen-ling Huang & Jan Peleska (2021): Complete
Agent-driven Model-based System Testing for Autonomous
Systems – Technical Report, doi:10.5281/zenodo.5203111.

POWER ON

POWER OFF
𝚠𝚑𝚎𝚗(𝚙𝚠𝚛 = = 𝟷)

𝚠𝚑𝚎𝚗(𝚙𝚠𝚛 = = 𝟶)

BRAKE FOR
OBSTACLE

HALTED

ACTIVE[ω = = 𝟶]

[ω = = 𝟷]

[𝚟 ≤ 𝟶]/𝚊 := 𝟶;
[𝚟 > 𝟶]/𝚊 := 𝚊−;

𝚠𝚑𝚎𝚗(𝚟 ≤ 𝟶)/𝚊 := 𝟶;

OBSTACLE PRESENT

𝚠𝚑𝚎𝚗(ω = = 𝟷)

𝚠𝚑𝚎𝚗(ω = = 𝟶)

TRAIN CONTROLLER Complex sub-
models here

Identify module handling
OBSTACLE PRESENT

Reference model for module ObstaclePresent (Symbolic Finite State Machine [SFSM])

Application of complete testing
strategy for conformance testing

Wen-ling Huang & Jan Peleska (2016): Complete model-based equivalence
class testing. Software Tools for Technology Transfer 18(3), pp. 265–283,
doi:10.1007/s10009-014-0356-8.

1. Create input equivalence classes from guard conditions
[check module code whether other/finer guards are used
and refine classes if necessary]

ℐ = {c1, c2}, c1 = {𝚟 > 𝟶}, c2 = {𝚟 ≤ 𝟶}

2. Create abstraction SFSM → FSM

c2/𝚊 := 𝟶;
c1/𝚊 := 𝚊−;

c1, c2/𝚊 := 𝟶;

c1/𝚊 := 𝚊−;
c2/𝚊 := 𝟶;

s0

s1

s2

[𝚟 ≤ 𝟶]/𝚊 := 𝟶;

SFSM

Objective. Verify that software is
I/O-equivalent to SFSM Model

FSM abstraction of module ObstaclePresent

Application of complete testing
strategy for conformance testing

Wen-ling Huang & Jan Peleska (2016): Complete model-based equivalence
class testing. Software Tools for Technology Transfer 18(3), pp. 265–283,
doi:10.1007/s10009-014-0356-8.

4. Perform static analysis of module code regarding
bound for number of control statesm

5. Calculate complete test suite from FSM, observing m

c2/𝚊 := 𝟶;
c1/𝚊 := 𝚊−;

c1, c2/𝚊 := 𝟶;

c1/𝚊 := 𝚊−;
c2/𝚊 := 𝟶;

TC 1: c1 . c1
TC 2: c2 . c1 . c1

TC 3: c2 . c2 . c1

s0

s1

s2

Calculated for m = 0
Observe that and are equivalent!s0 s1

6. Calculate concrete test suite by selecting
1 representative per input class

TC 1: (v = 10) . (v = 10)
TC 2: (v = 0) . (v = 10) . (v = 10)
TC 3: (v = 0) . (v = 0) . (v = 10)

Theorem. Test case translation from
FSM to SFSM preserves completeness

7. Expected results are checked against reference SFSM
Wen-ling Huang & Jan Peleska (2017): Complete model-based equivalence
class testing for nondeterministic systems. Formal Aspects of Computing
29(2), pp. 335–364, doi:10.1007/s00165-0160402-2.

Property-oriented Module Testing
Skipped in this Presentation

• See paper and technical report doi:10.5281/zenodo.5203111

• The properties (= requirements) we would like to prove for the
ObstraclePresent module are

G(v > 0 ⇒ Xa = a−)

G(v = 0 ⇒ Xa = 0)

System-Level Testing

System-Level Testing
Meaningful System Tests

• On the system-level, end-to-end (E2E) tests, describing meaningful scenarios from
the end users’ perspective, are required → they need to be suitable for validation

• Significant observation: complete module tests are not suitable for E2E test
construction, because the paths selected for module tests are optimised with
respect to length

• These shortest paths often specify robustness situations

• Module tests require frequent resets, due to this shortest path selection, they are
not designed for in-depth investigation of paths

• SFSMs used as module test reference models do not contain sufficient information
to construct meaningful E2E tests

A B

position xA = 0 position xB > 0

xStopv(t)

A B

position xA = 0 position xB > 0

xStop
v(t)

Brake to target when close to B

Maximal speed while far away from B

System-Level Testing
Meaningful E2E Tests

System-Level Testing
E2E Test Scenarios

• Use Hybrid Automata (HA) instead of SFSMs

• HA model terminates: it describes E2E scenarios on the system level

• States are decorated by invariants specifying time-continuous evolution of

input variables according to applicable physical laws

• Initial states describe meaningful starting points for E2E scenarios

• Termination states describe meaningful scenario end states
• Transitions best tested on module level are removed from the HA model

• E2E tests are derived from HA by selecting specific paths from start to end

states

• This results in a tree structure: Symbolic Scenario Test Tree (STTT)

POWER OFF
!"# = 0

WMA
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0/' := (;!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧ c ≥ cMin ∧ v = 0/' := '+;

SD
!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧

c ≥ cMin ∧ v = a+ ⋅ (t − t0) ∧ x = x0 + ((3/2) ⋅ a+ ⋅ (t − t0)2)

. . .

ST
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v > 0 ∧ v = v0 + a− ⋅ (t − t0) ∧ x = x0 + v ⋅ (t − t0) + (a−/2) ⋅ (t − t0)2

. . .

. . .

.

WMA_END

!"# = 1 ∧ ω = 0 ∧ v = 0/' := (;

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x > α ∧ xB − xStop > δ ∧ v = 0/' := '+;

Symbolic Scenario Test Tree (SSTT) for autonomous freight train

POWER OFF
!"# = 0

WMA
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0/' := (;!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧ c ≥ cMin ∧ v = 0/' := '+;

SD
!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧

c ≥ cMin ∧ v = a+ ⋅ (t − t0) ∧ x = x0 + ((3/2) ⋅ a+ ⋅ (t − t0)2)

. . .

ST
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v > 0 ∧ v = v0 + a− ⋅ (t − t0) ∧ x = x0 + v ⋅ (t − t0) + (a−/2) ⋅ (t − t0)2

. . .

. . .

.

WMA_END

!"# = 1 ∧ ω = 0 ∧ v = 0/' := (;

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x > α ∧ xB − xStop > δ ∧ v = 0/' := '+;

Symbolic Scenario Test Tree (SSTT) for autonomous freight train Initial states describe
meaningful starting points for

E2E scenarios

POWER OFF
!"# = 0

WMA
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0/' := (;!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧ c ≥ cMin ∧ v = 0/' := '+;

SD
!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧

c ≥ cMin ∧ v = a+ ⋅ (t − t0) ∧ x = x0 + ((3/2) ⋅ a+ ⋅ (t − t0)2)

. . .

ST
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v > 0 ∧ v = v0 + a− ⋅ (t − t0) ∧ x = x0 + v ⋅ (t − t0) + (a−/2) ⋅ (t − t0)2

. . .

. . .

.

WMA_END

!"# = 1 ∧ ω = 0 ∧ v = 0/' := (;

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x > α ∧ xB − xStop > δ ∧ v = 0/' := '+;

Symbolic Scenario Test Tree (SSTT) for autonomous freight train

Termination states
describe meaningful end
points of E2E scenarios

POWER OFF
!"# = 0

WMA
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0/' := (;!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧ c ≥ cMin ∧ v = 0/' := '+;

SD
!"# = 1 ∧ ω = 0 ∧ xB − x > δ ∧ xB − x > α ∧

c ≥ cMin ∧ v = a+ ⋅ (t − t0) ∧ x = x0 + ((3/2) ⋅ a+ ⋅ (t − t0)2)

. . .

ST
!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v > 0 ∧ v = v0 + a− ⋅ (t − t0) ∧ x = x0 + v ⋅ (t − t0) + (a−/2) ⋅ (t − t0)2

. . .

. . .

.

WMA_END

!"# = 1 ∧ ω = 0 ∧ v = 0/' := (;

!"# = 1 ∧ ω = 0 ∧ xB − x ≤ α ∧ v = 0

!"# = 1 ∧ ω = 0 ∧ xB − x > α ∧ xB − xStop > δ ∧ v = 0/' := '+;

Symbolic Scenario Test Tree (SSTT) for autonomous freight train

State invariants also
describe time-continuous evolutions of

interface variables according to physical
laws

Test Execution on the
System Level

Test Execution of the System Level
Testing in the cloud

• Majority of tests have to be executed in the cloud, to ensure timely
completion of test campaigns

• Prerequisites to obtain certification credit for test results obtained in the cloud

• Trustworthy simulation of the “real” operational environment

• Execution of the SUT software in trustworthy simulator (virtual prototype)
modelling the target hardware (registers, address maps, …)

Vladimir Herdt, Daniel Große, Pascal Pieper & Rolf Drechsler (2020): RISC-V
based virtual prototype: An extensible and configurable platform for the
system-level. J. Syst. Archit. 109, p. 101756, doi:10.1016/
j.sysarc.2020.101756.

Test Execution of the System Level
Testing on the target in the real operational environment

• System tests need to be intrusive, so that interfaces can be manipulated to
make rare events occur more often

• Example. For the autonomous freight train, the position sensor interfaces
need to be manipulated, so that low-confidence position values and
erroneous position values can be created whenever needed during the test
execution

Test Execution of the System Level
Coverage considerations

• How many system tests need to be executed ?

• Avionic standard RTCA DO-333 states:
“Tests executed in target hardware are always required to ensure that the software
in the target computer will satisfy the high-level requirements . . . ”

• For requirements represented in LTL, suitable witness paths can be
identified in the SSTT (or the SSTT needs to be extended)

• System tests need to cover each of these paths with at least one witness

φi πi

πi

Test Execution of the System Level
Coverage considerations

• How many system tests need to be executed on the target system in the real
operational environment?

• For most critical applications, ensure that system tests on the target cover all
normal behaviour transitions of the module test models

• Justification. Software has already been shown to be correct with respect to
module test models. Therefore, covering these model branches in system
tests on target indicates that the HW/SW integration satisfies the requirement

• For less critical applications, a smaller percentage of the module test transitions
should be covered by the system tests on target

Test Execution of the System Level
System test coordination by multi-agent system

• System tests are executed concurrently in the cloud and on the target in the
real operational environment

• Coordinator agent has view on overall coverage achieved so far and on test
execution status of all running tests

• Coordinator agent directs test execution agents to continue their on-the-fly
tests into branches of the SSTT that increase the coverage in an optimised
way

• In the cloud, simulation agents provide obstacles and position values that
are consistent with the applicable physical laws Greg Chance, Abanoub Ghobrial, Séverin Lemaignan, Tony Pipe

& Kerstin Eder (2020): An Agency-Directed Approach to Test
Generation for Simulation-based Autonomous Vehicle
Verification. In: IEEE International Conference On Artificial
Intelligence Testing, AITest 2020, Oxford, UK, August 3-6, 2020,
IEEE, pp. 31–38, doi:10.1109/AITEST49225.2020.00012.

Conclusion

Conclusion
Summary

• We have proposed a novel V&V approach for complex autonomous systems

• Complete tests on the module level ensure logical software correctness

• Scenario tests on the system level represent meaningful end-to-end tests

• Some scenario tests are executed with original equipment in real operational
environment, the majority of tests in the cloud

• Coverage monitoring exploits the fact that the module software has been
proven to be correct

• System tests are executed concurrently on-the-fly, coordinated by test agents

Conclusion
Next steps

• Refine the coverage theory for system testing

• Several proofs of concept for the V&V steps presented here

• Autonomous freight train modelled in this paper

• Safety-critical control of human-robot interaction

• Please visit FMAS presentation of Mario Gleirscher: tomorrow at 13:30

• Autonomous cars

• Autonomous drones

• All experiments conducted with cloud tests in simulation environment and on
target system hardware in realistic physical environment

THANK YOU VERY MUCH FOR
YOUR ATTENTION!

