
Property Checking of Safety-
Critical Systems – Mathematical

Foundations and Concrete
Algorithms

Wen-ling Huang and Jan Peleska
University of Bremen

{huang,jp}@cs.uni-bremen.de

http://cs.uni-bremen.de

MBT-Paradigm
Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

Motivation
• Two ways to verify the correctness of a model or of

an implementation

• Conformance testing – check whether the
implementation conforms to (= „is just as good“)
as the reference model

• Property testing – check whether the
implementation fulfils a given logical property, for
example, a safety requirement

Motivation

• For conformance testing, we already know that the
complete testing theories we have introduced
before allow to prove equivalence (or reduction)
between a model and an implementation

• In this seminar, we show how the same theories
can be applied to property testing

Example – Electronic Water
Kettle

• A water kettle with integrated controller

• Requirements for the controller (see diagram next
slide)

1. When water boils (temp = 100), switch power
off automatically (pwr := 0)

2. When water is not boiling (temp < 100), switch
power on (pwr := 1) if and only if user switch is
in position 1 (sw = 1)

sw = 0 (OFF)
sw = 1 (ON)

User switch:
requests to kettle controller

Water kettle controller
sw

pwr

pwr = 0 (OFF)
pwr = 1 (ON)

Power control switch

temp

temp < 100 (not boiling)
temp = 100 (boiling)

Temperature

Overview
1. How Properties are defined

2. Expressing properties of control systems with Linear
Temporal Logic (LTL)

3. Safety Properties

4. Maximally nondeterministic state machines
representing LTL safety properties

5. Applying complete testing theories for checking LTL
safety properties

How Properties are Defined
• Executions of non-terminating systems can be described by infinite

sequences of sets of atomic propositions

• Atomic proposition. A basic fact that cannot be divided logically into
smaller facts

• The set of atomic propositions that are relevant for the system being
analysed is denoted by AP

• In an execution state s , the set of facts from AP that hold in s is denoted by
the subset L(s) of AP

• This is interpreted in the sense that also the negation of all atomic
propositions from (AP – L(s)) holds in s

denotes the set of all infinite sequences over sets of atomic propositions

(2AP)!

Example – Electronic Water
Kettle

• A water kettle with integrated controller

• Requirements for the controller (see diagram next
slide)

1. When water boils (temp = 100), switch power
off automatically (pwr := 0)

2. When water is not boiling (temp < 100), switch
power on (pwr := 1) if and only if user switch is
in position 1 (sw = 1)

sw = 0 (OFF)
sw = 1 (ON)

User switch:
requests to kettle controller

Water kettle controller
sw

pwr

pwr = 0 (OFF)
pwr = 1 (ON)

Power control switch

temp

temp < 100 (not boiling)
temp = 100 (boiling)

Temperature

How Properties are Defined
• Atomic propositions can represent abstractions of

facts derived from physical observables or from
program variables

AP = {o, p, h}

Atomic proposition Meaning Variable Condition

o User has switched kettle on sw = 1
p Controller has switched power on pwr = 1
h Water is boiling (hot!) temp = 100

How Properties are Defined
• A (linear time) property P is just a subset of the set

of all infinite sequences over sets of atomic
propositions

P ✓
�
2AP

�!

• A system fulfils a property P if and only if every
possible system execution is an element of P

• We also say in this case that the system is a model
for P

SYSTEM |= P

How Properties are Defined
• In this presentation, we are mainly interested in

safety properties

P ✓
�
2

AP
�!

is a safety property if and only if

8⇡ 2
�
2

AP
�! � P : 9⇡0

prefix of ⇡ : P \ {⇡0.⇡00 | ⇡00 2
�
2

AP
�!} = ?

• Safety violations can always be detected on a
finite prefix π’ of observations

• Safety violations can never be “undone”:
regardless of how you continue after π’, the
execution will never become safe again

Example. The electric water kettle controller should
never be powered when the water is already boiling
– this can be specified by the safety property

A typical execution which is in P would look like

{} . . . {}.{o}.{o, p} . . . {o, p}.{o, h}.{o, h}.{h} . . . {h}.{} . . .

AP = {o, p, h}
P = {⇡ 2

�
2AP

�! | 8i � 0 : {p, h} 6✓ ⇡(i)}

Linear Temporal Logic

• LTL is introduced to specify linear time properties
without having them to enumerate explicitly as sets
of infinite sequences of sets of atomic propositions

• LTL introduces additional operators for
expressing causal aspects of system behaviour
(„When property 1 becomes true, it is guaranteed
that property 2 becomes true ‚a little later‘“)

Linear Temporal Logic
LTL formulas are constructed from the following elements

• atomic propositions from some set AP

• logical operators ^,¬

• temporal operators X (next) and W (weak until)

– X' states that ' holds in the next state

– 'W states that ' holds at least until some state

where holds (or forever, if no such state exists)

Linear Temporal Logic
LTL Syntax Rules.

Let AP = {a, b, c} be a set of atomic propositions; then

1. The Boolean constants true. false are valid LTL formulas

2. Every p 2 AP is a valid LTL formula

3. If ' is a valid LTL formula, then ¬' is a valid LTL formula

4. If ' and are valid LTL formulas, then (' ^) is a valid LTL formula

5. ' is a valid LTL formula, then X' is a valid LTL formula

6. If ' and are valid LTL formulas, then ('W) is a valid LTL formula

Linear Temporal Logic
• Models for LTL formulas

• On an abstract level, models are sequences of
sets of atomic propositions

• π represents a sequence of observations about an executing
system

• π(i) is the set of propositions (= „facts“) that hold in execution state i

• πi is the path segment of observations starting at π(i):
πi = π(i).π(i+1).π(i+2)…

⇡ 2
�
2AP)! ' 2 LTL ⇡

?

|= '

Linear Temporal Logic
1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logicπi denotes the path segment starting at π(i):
πi = π(i).π(i+1).π(i+2). . .

1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logic
Every path segment fulfils ‚true‘1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logic

No path segment fulfils ‚false‘
1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logic

A path segment fulfils atomic proposition
p iff p is contained in the first element π(i)
of the segment

1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logic

A path segment fulfils the negation of an
LTL formula, iff it is not a model for the
formula

1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

Linear Temporal Logic
1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

A path segment fulfils (phi ⋏ psi) if the segment is a
model for both phi and psi

Linear Temporal Logic
1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�
A path segment fulfils X phi if the segment starting with
π(i+1) fulfils phi

Linear Temporal Logic
1. ⇡i |= true, 8i � 0

2. ⇡i 6|= false, 8i � 0

3. ⇡i |= p, i↵ p 2 ⇡(i)

4. ⇡i |= ¬', i↵ ⇡i 6|= '

5. ⇡i |= ' ^ , i↵ (⇡i |= ') and (⇡i |=)

6. ⇡i |= X', i↵ ⇡i+1 |= '

7. ⇡i |= 'W , i↵
�
8k � i : ⇡k |= '

�
_
�
9j � i : ⇡j |= ^ 8i  k < j : ⇡k |= '

�

A path segment fulfils (φ W ψ) if it
• fulfils φ in every segment πi , πi+1, πi+2, . . .
• or has a sub-segment πk fulfilling ψ and

fulfils φ until πk is reached

Example.

AP = {a, b, c}
⇡ = ⇡(0).⇡(1).⇡(2).⇡(3) . . .

= {a}.{b}.{a, b}.{c} . . .

⇡ |=
�
¬(¬a ^ ¬b)

�
Wc (⇤)

Proof.

1. ⇡3 |= c because c 2 ⇡(3)

2. Rules 3,4,5 imply that ⇡(0) = {a} |= ¬(¬a ^ ¬b)

3. Rules 3,4,5 imply that ⇡(1) = {b} |= ¬(¬a ^ ¬b)

4. Rules 3,4,5 imply that ⇡(2) = {a, b} |= ¬(¬a ^ ¬b)

5. Rule 7 implies (*)

Prove that

LTL Formulas and Properties
Since the models of LTL formulas are executions,
we can associate each LTL formula in a natural way
with a property: the set of all executions that are
models for the formula

Property P (') = {⇡ 2 (2

AP
)

! | ⇡ |= '}

In [3] it has been proven that

Theorem. Every safety property P can be expressed
by an LTL safety formula (defined on the next slide).

LTL Formulas and Properties

The safety properties originally defined by

P ✓
�
2

AP
�!

is a safety property if and only if

8⇡ 2
�
2

AP
�! � P : 9⇡0

prefix of ⇡ : P \ {⇡0.⇡00 | ⇡00 2
�
2

AP
�!} = ?

can be characterised by safety LTL formulas defined as

1. Every propositional LTL formula (i.e. a formula without operators X,W)

is a safety formula

2. If ', are safety formulas, then so are ' ^ , ' _ , X', and ' W

Linear Temporal Logic
Additional “more intuitive” operators are introduced
by syntactic equivalence

' _ ⌘ ¬(¬' ^ ¬) Execution ⇡ fulfils ' or
') ⌘ ¬(' ^ ¬) On execution ⇡, ' implies
G' ⌘ (' W false) ' holds in every state of the execution ⇡
F' ⌘ (¬G¬') Finally ' holds in some state of the execution ⇡
(' U) ⌘ (' W) ^ F Finally holds in a state of ⇡, and until then, ' holds

Linear Temporal Logic
Example. Consider again the safety property
introduced for the electric water kettle

This can be expressed in LTL by the safety formula
expressing an invariant (a proposition that holds in
every state on a given execution path)

'P ⌘ G
�
¬(p ^ h)

�

AP = {o, p, h}
P = {⇡ 2

�
2AP

�! | 8i � 0 : {p, h} 6✓ ⇡(i)}

Controlled Atomic
Propositions

• As in the water kettle example shown above, atomic
propositions may be related to observables (e.g.
program variables) whose value can be set by the
control system under consideration. We call these
atomic propositions controlled.

• Example. The proposition p (pwr = 1) can be
controlled by setting the pwr-output to 1 or 0.
Propositions o (sw = 1) and h (temp = 100) are
uncontrolled, because the controller has to accept the
inputs sw and tmp generated by the users and the
temperature sensor

Controlled Atomic
Propositions

• Let AP be a set of atomic propositions over mixed
input and output variables

• Suppose that the output variables have finite
ranges (inputs may be infinite)

Lemma. AP can be transformed into an equivalent
set AP’ where all atomic propositions refer either to
input variables or to output variables only

Controlled Atomic
Propositions

Example. Consider an alternative set of atomic
propositions for the water kettle

AP

0
= {o, p, z}

Atomic proposition Meaning Variable Condition

o User has switched kettle on sw = 1
p Controller has switched power on pwr = 1
z Power switch state fulfils relation to temperature temp  100� pwr

AP

0
= {o, p, z}

Atomic proposition Meaning Variable Condition

o User has switched kettle on sw = 1
p Controller has switched power on pwr = 1
z Power switch state fulfils relation to temperature temp  100� pwr

Now apply transformation formula for separation
of input and output variables

z ⌘
_

e2{0,1}

�
z[e/pwr] ^ pwr = e

�

⌘ (temp  100 ^ pwr = 0) _ (temp  99 ^ pwr = 1)

This can be equivalently expressed in the original atomic
propositions from AP as

z ⌘ ¬p _ ¬h

AP

0
= {o, p, z}

Atomic proposition Meaning Variable Condition

o User has switched kettle on sw = 1
p Controller has switched power on pwr = 1
z Power switch state fulfils relation to temperature temp  100� pwr

Now apply transformation formula for separation
of input and output variables

z ⌘
_

e2{0,1}

�
z[e/pwr] ^ pwr = e

�

⌘ (temp  100 ^ pwr = 0) _ (temp  99 ^ pwr = 1)

This can be equivalently expressed in the original atomic
propositions from AP as

z ⌘ ¬p _ ¬h

Exchange every occurrence of
pwr in z by value e

Safety Formulas and Finite
State Machines

From the theory of generalised nondeterministic
Buchi Automata [1] we can derive

Theorem. Every LTL safety formula can be
expressed by a maximally nondeterministic FSM
which fulfils this formula

This FSM is constructed according
to the following specifications

1. Separate the atomic propositions into AP = API [APO, such that the

p 2 API refer to input variables only, and the p0 2 APO to output variables

only.

2. Define FSM(') = (Q, q0,⌃I ,⌃O, h) with

(a) ⌃I = 2

API

(b) ⌃O = 2

APO

(c) L(FSM(')) |= '

(d) 8P ✓ (2

AP
)

!
: P |= ') P ✓ L(FSM('))

Example. The most nondeterministic FSM fulfilling

'P ⌘ G
�
¬(p ^ h)

�

only has a single state, because it is a simple state invariant

FSM('P)

?/?,

?/{p},
{o}/?,

{o}/{p},
{h}/?,

{o, h}/?

Property checking for an implementation of the
water kettle controller

Water Kettle
Controller
WKC

pwr in {0,1}

sw in {0,1}

temp in {0,1}

We assume that WKC is a member of the following
fault domain for reactive I/O transition systems
WKC 2 D(m = 3, I)

I = {X1, X2, X3, X4}
X1 = {(sw, temp) | sw = 0 ^ temp < 100} = {(sw, temp) | ¬o ^ ¬h}
X2 = {(sw, temp) | sw = 0 ^ temp = 100} = {(sw, temp) | ¬o ^ h}
X3 = {(sw, temp) | sw = 1 ^ temp < 100} = {(sw, temp) | o ^ ¬h}
X4 = {(sw, temp) | sw = 1 ^ temp = 100} = {(sw, temp) | o ^ h}

Property checking for an implementation of the
water kettle controller

Water Kettle
Controller
WKC

pwr in {0,1}

sw in {0,1}

temp in {0,1}

We assume that WKC is a member of the following
fault domain for reactive I/O transition systems
WKC 2 D(m = 3, I)

I = {X1, X2, X3, X4}
X1 = {(sw, temp) | sw = 0 ^ temp < 100} = {(sw, temp) | ¬o ^ ¬h}
X2 = {(sw, temp) | sw = 0 ^ temp = 100} = {(sw, temp) | ¬o ^ h}
X3 = {(sw, temp) | sw = 1 ^ temp < 100} = {(sw, temp) | o ^ ¬h}
X4 = {(sw, temp) | sw = 1 ^ temp = 100} = {(sw, temp) | o ^ h}

Recall:
o is equivalent to (sw = 1)
h is equivalent to (temp = 100)

Property checking for an implementation of the
water kettle controller

From the previous lecture about input equivalence class
testing we know that the WKC can be abstracted to a
finite state machine T(WKC) with inputs X1,…,X4 and outputs
pwr := 0 and pwr := 1
By changing the notation for the input and output alphabets,
we can alternatively write the labels as

?/{p}����! for

X1/pwr:=1�������!
{h}/{p}�����! for

X2/pwr:=1�������!
{o}/{p}�����! for

X3/pwr:=1�������!
{o,h}/{p}������! for

X4/pwr:=1�������!

?/?���! for

X1/pwr:=0�������!
{h}/?����! for

X2/pwr:=0�������!
{o}/?����! for

X3/pwr:=0�������!
{o,h}/?�����! for

X4/pwr:=0�������!

Theorem. Let S 0 be a reactive I/O transition system with input equivalence
classes X1, . . . , Xn and output values y 2 {e1, . . . , ek}. Suppose that the input
classes have defining propositions 1, . . . , n.
Let ' be a safety LTL formula with propositions from the set

{ 1, . . . , n, y = e1, . . . , y = ek}

Then
S 0 |= ', T (S 0) |= '

Sig1

T (Sig1) SafetyLTL

SafetyLTL

T

|=

|=

id

Proof sketch.

1. Suppose that S 0 |= '.

2. Then, for every execution ⇡ = (x1/y1).(x2/y2) · · · 2 L(S 0
), ⇡ |= ' holds.

3. Every ⇡ = (x1/y1).(x2/y2) . . . is abstracted to a sequence [⇡] = (X1/y1).(X2/y2) . . . ,

such that xi 2 Xi for all i = 1, 2, . . .

4. We can write this equivalently as sequences of formulas [⇡] = (1/y =

y1).(2/y = y2) . . . , where i is the defining formula of input equivalence

class Xi

5. By construction of T , the FSM T (S 0
) also executes [⇡] = (1/y = y1).(2/y =

y2) . . .

6. Since ' is a formula with propositions in { 1, . . . , n, y = e1, . . . , y = ek},
this formula can be evaluated on [⇡] and holds there, if and only if it holds

on ⇡ = (x1/y1).(x2/y2) . . .

7. Since S and T (S 0
) perform exactly the same [⇡], this concludes the proof.

Safety Formulas and Refinement of
the Input Equivalence Class Partitions
• What do we do if we wish to check whether the system

under test satisfies a safety formula whose propositions do
not come from the input classes?

• Just refine the input equivalence class partition, so that
the resulting new propositions allow to define the formula

• What do we do if the formula contains atomic propositions
referring to output variables, but not with equality?

• Just re-define the formula with propositions using
conjunctions and disjunctions of atoms involving equality
only

Example. Suppose we wish to test whether the WKC fulfils
formula

G
�
temp < 50 ^ on =) pwr > 0

�

This can be equivalently transformed to

G
�
temp < 50 ^ on =) pwr = 1

�

and we can refine the input partitioning to

X11 = {(sw, temp) | sw = 0 ^ temp < 50}
X12 = {(sw, temp) | sw = 0 ^ 50  temp < 100}
. . .

• Now we can consider the nondeterministic
developed for representing the safety formula as the
reference model for the FSM abstraction FSM(WKC)
of the water kettle controller

• New: Since is the maximally
nondeterministic FSM satisfying the safety formula, it
performs actions that are not wanted for the real
implementation

• Solution: we do not test for equivalence, but we test
for reduction, applying again a complete test suite for
that purpose

FSM('P)

FSM('P)

• If the tests are all passed by the SUT, this means that its
language is a sub-language of , and therefore
the FSM(WKC) fulfils the safety formula

• Since the safety formula is expressed in o, h, p, and these
atomic propositions are directly represented in the input
equivalence class partitioning and the finite outputs of the
WKC, every WKC-execution can be abstracted to an
execution in

• By construction of T, WKC and FSM(WKC) execute exactly
the same sequences in

• Therefore, since FSM(WKC) only performs executions fulfilling
the formula , the same holds for WKC

�
2{o,h,p}

�
!

FSM('P)

�
2{o,h,p}

�
!

'P

WKC implementing the electronic water kettle controller

A

 [sw = 0 and temp < 100]/
pwr := 0

B

 [sw = 1 and temp < 100]/
pwr := 1

C

 [sw = 1 and temp = 100]/
pwr := 0

D [sw = 0 and temp = 100]/
pwr := 0

 [sw = 0 and temp < 100]/
pwr := 0

 [sw = 1 and temp < 100]/
pwr := 1

 [sw = 1 and temp = 100]/
pwr := 0

 [sw = 0 and temp = 100]/
pwr := 0

 [sw = 0 and temp < 100]/
pwr := 0

 [sw = 1 and temp < 100]/
pwr := 1

[sw = 1 and temp = 100]/
pwr := 0

 [sw = 0 and temp = 100]/
pwr := 0

 [sw = 0 and temp < 100]/
pwr := 0

 [sw = 1 and temp < 100]/
pwr := 1

 [sw = 1 and temp = 100]/
pwr := 0

 [sw = 0 and temp = 100]/
pwr := 0

FSM abstraction T(WKC)

A

 { }/{ }

B { o }/{ p }

C

 { o,h }/{ }

D { h }/{ }

 { }/{ }

 { o }/{ p }

 { o,h }/{ }

 { h }/{ }

 { }/{ }

 { o }/{ p }

{ o,h }/{ }

 { h }/{ }

 { }/{ }

 { o }/{ p }

 { o,h }/{ }

 { h }/{ }

Testing T(WKC) against
for reduction

• A simple complete test suite for checking whether a
deterministic implementation is a reduction of a
nondeterministic FSM reference model is as follows

• Test cases use all input sequences of length nm, where

• n is the number of states in the reference model

• m is the maximal number of states in the implementation

• A test case executed against the implementation is PASS,
if and only if the outputs observed for the input sequence
are one possible output sequence according to the
reference model

FSM('P)

Applying the test theory for the WKC implementation

1. n = 1 (number of states in FSM('P))

2. Assume m = 4 (number of states in T (WKC))

3. Need all input sequences of length 4 to construct the test cases

4. 4 possible inputs in each step: ?, {o}, {h}, {o, h}

5. This results in 4

4
= 256 test cases

Applying the test theory for the WKC implementation –
Test case example
1. Input sequence {o}.{o}.{h}.{o}

2. Admissible outputs according to FSM('P):

(a) {}.{}.{}.{}
(b) {}.{}.{}.{p}
(c) {}.{p}.{}.{}
(d) {}.{p}.{}.{p}
(e) {p}.{}.{}.{}
(f) {p}.{}.{}.{p}
(g) {p}.{p}.{}.{}
(h) {p}.{p}.{}.{p}

3. T (WKC) produces outputs

{p}.{p}.{}.{p}

4. Test case is PASSed

FSM('P)

?/?,

?/{p},
{o}/?,

{o}/{p},
{h}/?,

{o, h}/?

FSM abstraction T(WKC)

A

 { }/{ }

B { o }/{ p }

C

 { o,h }/{ }

D { h }/{ }

 { }/{ }

 { o }/{ p }

 { o,h }/{ }

 { h }/{ }

 { }/{ }

 { o }/{ p }

{ o,h }/{ }

 { h }/{ }

 { }/{ }

 { o }/{ p }

 { o,h }/{ }

 { h }/{ }

Further Reading

1. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
Cambridge, Massachusetts, 2008.

2. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

3. A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6(5):495–511, September 1994.

